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ABSTRACT:

Computation of a DTM from a DSM is a well-known and very important task. We derive the DTM by a procedure consisting
of ground points extraction, surface interpolation and triangulation by a canonical mesh if the terrain is flat or has only moderate
changes in elevation. In regions with steep slopes, such as at riversides, and with man-made 3D structures, such as around bridges,
interpolation artifacts and suppression of high-resolution details can lead to coarse errors in local elevations even for the building
detection task. The eligible regions must be therefore detected and at least locally reprocessed. For detection, we search for
connected components of a certain minimum size with negative relative elevations. For reconstruction, we suppress the points with
erroneously reconstructed DSM values and interpolate the surface by means of L; splines. Finally, these meshes must be fused into
one single DTM mesh. We applied land cover classification to demonstrate the usability of our correction. The overall accuracy
amounts to around 88% while the number of faulty assignments due to incorrect DTMs can be significantly reduced.

1. INTRODUCTION
1.1 Motivation

Accurate Digital Terrain Models (DTMs) are required in many
applications. For instance, DTMs are important for urban plan-
ning or navigation tasks. Regarding applications for land cover
classification, features derived from a DTM can provide inform-
ation about building positions, roads and natural areas. Sources
of systematic errors in DTMs must be eliminated in order to
avoid mis-classifications. Many authors (Bulatov et al., 2019,
Haéufel et al., 2018, Huang et al., 2015) presented approaches
of training data acquisition for land cover classification. For
example, in (Bulatov et al., 2019), segmentation results are as-
signed to one of four classes (building, grass, road, and tree)
using cascades of simple features followed by an interactive
verification step, which is not too time-consuming if only larger
segments are considered. Among simple features used to differ-
entiate between mentioned classes, especially relative elevation
plays a crucial part. Local heights are derived by subtracting
the DTM from the DSM and are needed to separate elevated
objects from the ground, and further on differentiation between
different types of elevated objects.

Procedures commonly used for determination of the DTM lead
to wrong elevation values. This effect is caused by the impact
of filtration and methods of interpolation.

In the following section (Section 1.2), an overview of related
work will be presented. In Section 2, we describe how the
initial DTM is computed and in what way areas in the initial
DTM are detected exhibiting incorrect elevations. After the
detection, specific parts of the DTM will be processed separ-
ately concerning surface interpolation and the reinsertion into
the DTM which is part of Section 2.3 and Section 2.4. In Sec-
tion 3, the corrected NDSMs are considered as features for a
machine-learning-based workflow for land cover classification,
whereby our main task will be to track the classification accur-
acy in critical regions. In Section 4, we summarize our findings
and propose ideas for future work.

*Corresponding author

1.2 Related Work

The generation of DTMs is a fundamental step in preparation
of airborne data. It is being addressed regularly in the literature
and even the surveys dedicated to discussion and evaluation of
algorithms for ground surface filtering are being regularly pub-
lished (Sithole, Vosselman, 2004, Meng et al., 2010, Chen et
al., 2017). The reader may check these sources for an extens-
ive background while the following short overview will only
describe several frequently cited methods.

Ground surface is characterized by a large amount of proper-
ties. However in challenging terrains, none of these proper-
ties alone is unconditionally valid and, therefore, many authors
tried to find a reasonable combination of approaches modeling
these properties. For example, (Kraus, Pfeifer, 1998) rely on
the fact that the terrain is locally flat and low. They thus per-
form plane fitting weighting the points above the plane more
than those lying below. Thus, terrain containing gullies and
other kinds of uneven surfaces is expected to be challenging for
this algorithm. Then, one can apply the algorithm of (Sithole,
Vosselman, 2005) arguing that the points belonging to the same
surface must have a flat connection. The measurement data is
segmented in such a way that all heights of the points of a seg-
ment can be approximated by a plane. After grouping segments
by properties and employing region-growing method, the cor-
responding surfaces are adjusted. If no segment does grow any-
more, all small segments are eliminated. This algorithm has
many variations (Lersch et al., 2004) and successors, to which
we also count directional and slope-based approaches (Meng et
al., 2009, Hingee et al., 2016, Mousa et al., 2017). Moreover,
clustering, gives us a hint to the third criterion as described
in (Sithole, Vosselman, 2005), namely that the off-terrain ob-
jects must not have too large area. This is used in the algorithms
of (Wack, Wimmer, 2002) and (Bulatov et al., 2014). In the
last algorithm, for example, the ground points were obtained by
morphological filtering and approximated by a smooth surface,
such as a solution of heat equation with a reasonable boundary
condition (Gross et al., 2005), a cubic spline (Kilian et al., 1996,
Bulatov, Lavery, 2010) or a thin-plate spline (Mongus, Zalik,
2012). Choice of the filter size is a problem and therefore,
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many authors use iterative filters with different parameters, see
for example (Mongus, Zalik, 2012, Maguya et al., 2014). An
older approach (Elmgqyvist et al., 2001) employs active contour
models and use an energy function for simultaneously taking
several aforementioned criteria for ground point extraction into
account.

Finally, example-based, or supervised segmentation methods
cannot be missed in a literature survey nowadays. Learning
a model based on neural architecture reminding ConvNet with
some 17 million labeled points, (Hu, Yuan, 2016) interpreted
a neighborhood of a 3D point as an image with 128 x 128
pixels and extracted the ground points according to the output of
the last fully-connected layer. This approach was improved by
(Gevaert et al., 2018) who argued that in high-resolution data,
such small images may not contain the largest non-terrain ob-
ject and who proposed using atrous convolutions on large im-
ages instead of image down-sampling. They moreover men-
tioned that many easy training examples can be created by a
rule-based approach. In the reality, while training data acquis-
ition is costly, the problems may emerge in challenging spots.
Therefore, in the next section, we will present our conventional
approach for DTM computation and local correction, which
will be evaluated on a challenging data set.

2. DTM CORRECTION

The knowledge about local elevations, synonymous with the
difference between DSM and DTM, is a very important fea-
ture for land cover classification. After the derivation of the
DSM (see Section 2.1), the initial DTM is computed remov-
ing non-terrain elements. In case of terrain areas with steep
slopes (e.g. river embankments), problems may occur result-
ing in incorrect DTM height values. Two important tasks have
to be solved: Detection of incorrect DTM areas and correction
of the corresponding elevations. Faulty DTM areas are detec-
ted by searching for elevation values in the DTM that exhibit
those of DSM. But, only looking for areas characterized by
DSM < DTM also points out areas of tiny elevated terraces
that are (task specific) not really in need of correction as it is
the case e.g. at sidewalks. With our work, we do not want to
distinguish between sidewalks and roads, but even the curbside
fulfills DSM < DTM. To exclude these areas, a parameter
for minimum distance is introduced.

The areas in need of correction, denoted as areas of steep slopes,
are detected (Section 2.2.1) and the connected components are
labeled, filtered, represented as point clouds, and interpolated
using one of three procedures presented in Section 2.3. Fi-
nally, canonical triangulations constituting these fine meshes
are fused with the original mesh, see Section 2.4. The reason
to produce a mesh is that meshes are faster for computations
within e.g. simulation applications. A Simulation system as
e.g. Virtual Battlespace (VBS) enable the generation of ter-
rain databases whereby the meshes could be exported to VBS
(Haufel et al., 2017).

2.1 DSM and Initial DTM Generation

Starting with an airborne point cloud, we sample the point’s
elevations into 2.5D data. For generation of the DSM an equi-
spacial grid of a fixed resolution is required. It has to be checked
whether the point density of the ALS data fits the DSM grid’s
resolution (see Figure 1). Here are first considerations: Usu-
ally, in data sheets of a measurement campaign, information

about the point density is available. The grid resolution should
roughly contain 1 to 4 points within a grid cell. If it is not
possible to reduce the grid’s resolution but natural objects are
mostly present in this area, interpolation of the point cloud will
be sufficient.

At first, an empty grid is generated matching the final data res-
olution. The ALS data is assigned to the grid and for each grid,
the maximum and the mean elevation values are computed. In
case of urban regions, using maximum values led to promising
results. Empty cells or holes can be filled by solving Laplace’s
equation. In urban areas, non-terrain objects, such as buildings,
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Figure 1. DSM Processing.

trees or vehicles (elevated objects) are pictorially removed from
the DSM raster, resulting in a DTM. This is done by using a
filter whose size is determined in dependency of the maximum
dimension of a non-terrain object which can be found in the
study area. Usually, it is the smallest extension (length, width)
of the largest building in the data. This filter is moved across the
DSM raster in order to extract always the minimum height. We
refer to those points that fulfill DSMger = DSM as ground
points and all other points are deleted. On a reduced resolution,
we generate a surface by interpolation of the ground points. As
usual in ill-posed problems, a regularization term penalizing the
norm of the 2™ derivative is needed. To take into account pos-
sible outliers and sudden changes of elevation, the optimization
is carried out in the L -norm over the set of all C'* cubic splines
(Bulatov, Lavery, 2010). In order to obtain the result on the
original resolution, triangle interpolation with spline nodes as
vertices is employed, yielding the so-called canonical triangle
mesh. In our work, the DTM computation was completed using
L; spline and L spline interpolation and Gridfit method. These
temporary DTMs are denoted as DTMtlemp and separately de-

noted as DTMy |, DTMj 5 and DTM{g. The results will be
compared as introduced in the following sections.

2.2 Detection of Areas with Steep Slopes

A more careful look at the relative elevation (DTM — DSM)
detects areas with questionable elevations, which have to be
examined in more detail and to be corrected, if necessary. In
Section 2.2.1 and Section 2.2.2, two approaches how to de-
tect areas are described respectively, whereby in Section 2.2.1,
DTMs DTM%emp are used. A further method will be introduced
adding OSM data into the temporary DTM generation process
described in more detail in Section 2.2.2. In total these tempor-
ary DTMs are denoted as DTMfemp and separately denoted as

2 2 2
DTM; |, DTM; , and DTM;E-
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Figure 2. DSM profiles of areas with steep slopes: river (left),
garage entrances (right).
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Figure 3. DSM — DTM exhibit at special areas disturbed
elevation values, top profiles corresponds to line 1 (river),
bottom profiles corresponds to line 2 (bridge). Color
specifications are explained in the text.

2.2.1 Detection of Incorrect Elevations Unfortunately, by
comparing the DSM to the resulting DTM it may happen that
the DTM exhibits higher elevation values than the DSM. Some
of these raster points form connected components denoted as
suspicious areas Si,...,n. We assess each of these connected
components S1,...,n by its size and the minimum permitted (av-
erage) deviation of DSM — DTM in order to find out which
areas are supposed to be corrected. This effect (DSM > DTM)
may occur in specific terrain formations with steep slopes which
is also noted in e.g. (Wack, Wimmer, 2002).
Such areas can be found at river courses with embankments, at
entries of underpasses, at under crossings or at external cellar
entries. In Figure 2, two examples of height profiles are shown,
displaying a river profile on the left and a garage entrance on
the right. Within these areas, raster points of unreliable el-
evation values are marked and a subsequent generation of the
DSM — DTM would exhibit wrong elevation values, usually
terrain points should show elevations near zero (see Figure 3).
Thus, in Figure 3, bottom right, three bridge profiles derived
by the L1 spline (blue line) as well as the Ly spline (green line)
interpolation and the Gridfit method (brown line) exhibit height
values in a range from approximately 1.75 m to 2.75 m. In Fig-
ure 3, top right, negative height values are detected within the
river. Considering the river area, the L; spline interpolation,
L> spline interpolation as well as the Gridfit method showed
similar results for the river profiles. The least negative elev-
ation values were achieved using Gridfit method. In case of
bridge areas, L; spline interpolation resulted in lowest eleva-
tions, starting from 1.9 m to the maximum of 2.1 m. Slightly
worse results were achieved using the Gridfit method.

The embankment is part of the terrain and the detected S1,..
will contain parts of the river and parts of its surrounding. The
difference between DSM and DTM (allowing a small deviation)
exhibits indications for invalid DTM parts. To proceed, a binary
mask for steep slopes 7' is generated, highlighting those areas:

1
T =
t

1,2
if DSM — DTMtemp <er, 0
otherwise.

Here e7 is the average negative height of all points fulfilling
DSM — DTMtlemp < 0. This choice turned out to be useful to
avoid too many alarms as they would occur in regions of e.g.
sidewalks that we do not distinguish from roads. Nevertheless
et should be chosen carefully depending on the requirements
of detail.

Areas exceeding a minimum size, are labeled and the corres-
ponding raster points of the DSM are used to derive meshes us-
ing L interpolation with a much finer resolution which will be
described in Section 2.3. In Figure 4, the results of interpolation
of T with the L; splines, Ls splines and the Gridfit method, re-
spectively, are displayed. The masks 7" exhibit, beside the river,

Figure 4. Mask 1" derivation based on DTM computation using
L, spline (left) and L2 spline (middle) interpolation and Gridfit
method (right).

small components which are entrances of underground park-
ings or cellars or in their majority sudden elevation changes in
the street course. The masks 7" for generating the three (corres-
ponding) DTMs exhibit less areas that have to be corrected for
the L, spline than for the Ly spline and the Gridfit method. In
case of the Gridfit method, beside the river area, more small-
sized areas are detected which partially will be removed (see
Section 2.3).

2.2.2 Detection of Areas Using OSM data The focus of
this work is the detection of areas with steep slopes. If no in-
dication for a steep area can be identified or if there are con-
siderations how to improve the initial DTM, additional inform-
ation has to be added. We opt for freely available GIS data and
here, OpenStreetMap data was included. If an object type from
OSM data is already outlined by a polygon, this can directly
be used for rasterization and mask generation. Otherwise the
object types are represented by a polygonal chain, like roads
or waterways. In these cases, we assume a plausible width for
these objects and therewith generate a polygon along the poly-
gonal chain. This plausible width is derived from the OSM
road attribute concerning the road’s type. In Figure 5 on the
left side, already rasterized OSM roads and river are superim-
posed. In this case the river was outlined by a polygon, how-
ever, on the left side, the river is still continuing (see Figure 5,
left, blue-striped area), because it was not included in OSM wa-
terways. The process of DTM correction, ignoring raster points
confirmed by OSM information, will be described using this
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Figure 5. OSM mask preparation: overlaid OSM data (left),
water mask W- g (right).
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large river polygon as an example. Bridges, part of roads, and
over crossing the river (part of R) are removed, resulting in the
mask W-g.

In the first step, all raster points of the DSM not overlapping
W_r remain stable for DTM computation. The remaining ras-
ter points, confirmed by W- g, are set to zero. They are denoted
as unreliable elevations.

On the top left side of Figure 6, a detailed view of local el-
evations is displayed including two lines across the river and
along the bridge for profile generation to compare the results
achieved with L; spline, Lo spline interpolation as well as Grid-
fit method. Already with the usage of the OSM data (Figure 6,
top right), the local elevations (before correction) are improved
around the bridge area. Highlighting the result achieved by L;
spline interpolation shows a maximum value of about 1.1 m,
in contrary to results achieved by Gridfit method where the
maximum value is approximately 2.2 m. In the river area, less
improvements could be seen compared to the results achieved
without using OSM data.

Considering the surface model and the OSM affected DTMs for
the L; spline interpolation, L2 spline interpolation as well as
the Gridfit method, those raster points fulfilling Equation 1 are
denoted as possible candidates for mesh surface interpolation
(Section 2.3). Most suspicious area candidates could be detec-
ted in the DTM using L spline interpolation (Figure 7, left). In
case of the Lo spline interpolation, less areas are detected. One
possible explanation is that the Ly spline interpolation exhibits
Gibbs artifacts and produces oscillating surfaces so that most of
the DSM points show larger values than the DTM.

0 20 40 60 80 100 120
Distance along profile

10 20 30 40 50 60 70 80 90 100
Distance along profile

Figure 6. OSM-affected DSM — DTM including a river-profile
line (1) and a bridge profile line (2) (top left), binary mask for
unreliable areas (top right). River profiles (middle),bridge
profiles (bottom) [L; spline (blue line), L2 spline (green line),
Gridfit (brown line)].

Figure 7. Mask T derivation based on OSM data affected DTM
computation using L spline (left) and L2 spline (middle)
interpolation and Gridfit method (right).

2.3 Mesh Surface Interpolation

In this section, all connected areas confirmed by the binary
mask 7" (Section 2.2) are considered separately for mesh sur-
face approximation. For mesh surface interpolation, we use on
the one hand, raster information and, on the other hand, a trian-
gular mesh of the elevation models.

Firstly, the temporary elevation model EM (raster data) is gener-
ated representing the DSM without non-elevated regions (Bu-
latov et al., 2016):

DTM(z)
EM(z) = {DSM(:B)

The parameter ¢ is considered to be a small value near to zero
and for this work 9 is set to 0.2 m. In Figure 8, a part of the

if DTM(z) < DSM(z) — 6
otherwise.

@

% A

‘ |

Figure 8. Generation of elevation model EM. On the left, DSM
with a white profile line. On the right, elevation profiles: DSM
(dashed-blue), DTM 22 (dashed-green), and DSM lying below

temp
DTM2 (dashed-red).

temp

DSM and a line used to generate a profile are displayed. The
diagram on the right side visualizes the procedure of generating
the elevation model denoted as EM (red-dashed line). The red-
green dashed line contains DTM components, and the red-blue
dashed line contains parts of the DSM.

Only areas of Si,... n (see Equation 1) exceeding a minimum
size (5 sqm) are used for mesh interpolation denoted as 77 ,pe-
In Figure 9, the elevation model EM (left) and connected areas
T abel (right) are displayed. Considering each area of 1] ,pe]>
we determine the bounding boxes of all vertices belonging to
the triangles of the mesh representation.

In order to collect all necessary triangles, the bounding box for
each connected component is slightly enlarged by 2.5 m in each
direction, and the corresponding area is cut off the raster eleva-
tion model. Simultaneously, the corresponding triangles of the
DTM mesh are determined and denoted as triangles to be re-
moved.

Now, one has to consider more carefully the cut-off raster points,
which shall be used for mesh surface interpolation. This cut-off
raster may exhibit high elevated small components (e.g. bushes
or stone heaps) that mainly belong to objects with low planarity
values. The planarity feature is computed by means of (Gross,
Thoennessen, 2006), and allows the distinction between trees
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(typically low planarity values) and buildings (high planarity
values). Raster points that exhibit low planarity values could
distort the interpolation process and are therefore removed. The
remaining raster points are used for L; spline interpolation res-
ulting in spline nodes (X;, Yi, Z;). The spline nodes are used
for mesh surface approximation (canonical meshing) resulting
in M 4pel- SO, for every connected component which is de-

Figure 9. Elevation model EM (left), labeled areas for mesh
computation (right).

termined by T ,pel» M1 abe] defines the labeled meshes.

These meshes M ,p,e] have to be inserted into the holey DTM
mesh in order to create a waterproofed mesh. Now, one has
to merge the meshes M| ,p,q in the areas around overlaps or
gaps with the initial DTM mesh. The procedure for obtaining
gap-free surfaces is described in Section 2.4.

2.4 Mesh Fusion

For each mesh My .14, its vertices (point cloud) are used for
fusion process with the mesh proceeding from the initial DTM.
In Figure 10, the process of fusion is displayed. In the first
step, all DTM triangles representing areas to be corrected, are
removed resulting in a DTM (green triangles) exhibiting holes
(white areas). This new holey DTM is completed by insert-
ing all meshes M ,p .1 considering indexing of merged vertices
and corresponding triangles. In Figure 10, the new DTM exhib-
iting holes and the newly inserted meshes (bottom row, black)
and a detailed view (top right, light-red) are displayed. This
process is completed after all meshes My 4. have been in-
serted. Based on all vertices and deleting duplicate vertices,

Figure 10. Mesh fusion: DTM exhibiting holes in areas which
have to be corrected and filling the holes with M| ;e (left),
detailed view of overlapping meshes: DTM and Mj 414 (right).

Figure 11. Corrected DTM using OSM data.

Delaunay Triangulation is applied producing a waterproofed
mesh (Lenk, Heipke, 2006). In Figure 11, the final DTM based
on OSM data and L; spline interpolation is displayed. This final
DTM is used to derive local elevations for the NDSM. To eval-
uate the results, we perform classification and focus especially
on areas with steep slopes.

3. RESULTS

The chosen region of our research is located in Southern Ger-
many and exhibits urban, rural and industrial areas. We selec-
ted the town Ettlingen which is characterized by buildings of
different height and shapes, small parks, roads and a river flow-
ing through the city center of Ettlingen. At corners of some
buildings one can find out-of-building stairways or entrances of
garages. Embankments border the river. All of these character-
istics exhibit steep slopes which may turned out to be often mis-
or non-classified regions. The steep slope is mis-interpreted by
the classification algorithm as rise of an elevated object, as it is
the case for e.g. building walls. Therewith, adjoining objects
to slopes or the slopes itselves are wrongly classified. A ter-
rain computation which is based on surface elevation may lead
at these specific terrain conditions to faulty elevation values,
which can influence the final step of land cover classification.

3.1 Experimental Setup for Land Cover Classification

To demonstrate the usability of our procedure, we use a region-
based classification using a segmentation result and OSM data
described in (Hiufel et al., 2018). In this classification pro-
cess, only few features, namely color information, local elev-
ation, NDVI, planarity and entropy were used. In an interme-
diate step towards classification the obtained segmentation res-
ults (Wassenberg et al., 2009) are fused with the mentioned fea-
tures. Following, OSM data (Hiufel et al., 2018) overlapping
with segments and verified with the derived features produces
an initial classification result (see Figure 12 (bottom left)). Due
to this process, some of the segments may remain unlabeled due
to the fact, that no OSM data overlaps the segments classifica-
tion. Using this labeled pixels as reference data, we chose the
white-transparent square in Figure 12 (bottom left) for train-
ing of a Random Forest (Breiman, 1996) with 20 decision trees
to perform comprehensive classification all over the image. In
other words, all labeled pixels were used for validation. The
corresponding confusion matrix is displayed in Table 1. For
this initial result an overall accuracy (OA) of 88.84% and x
value (Cohen’s Kappa) of 80.42 % could be achieved. We wish
to compare these values with those obtained after correcting
the NDSM (see Section 3.2). To present a setting for qualitative
evaluation (Section 3.3), we show in Figure 12 the orthophoto
of the study area and the uncorrected NDSM, Figure 12, top
left and right). The reference data as result of (Haufel et al.,
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Figure 12. Orthophoto (top left), reference data (bottom left),
NDSM (top right) and final result based on Random Forest
(bottom right).

2018) is shown in the bottom left image of the figure while the
bottom right image shows the classification result with uncor-
rected NDSM. In all subsequent figures, red, white, yellow, and
green colors are used for building (B), road (R), grass (G) and
tree (T) areas.

R B G T
R | 293657 | 12959 17010 | 5449
B | 13267 | 499225 | 386 38419 |k = 80.42%
G | 6262 62 12059 | 116 OA = 88.84%
T | 2311 10953 386 51045

Table 1. Confusion matrix obtained after using
NDSM without correction.

3.2 Quantitative Evaluation

With our workflow, we are able to correct the local elevations.
The variants using OSM and without OSM combined with dif-
ferent DTM computations using L; spline and L, spline inter-
polation and Gridfit method led to six different terrain models
listed in Section 2.2.

After correcting NDSM and applying Random Forest, over-
all accuracies using the variants DTM%emp and DTM?emp for
NDSM computation were in the same range as the initial result.
Considering all results, better overall accuracies were achieved
using OSM data support than by not using OSM data. Thus, in
Tables 2 to 4, the confusion matrices for NDSMil, NDSMi2
and NDSM? F are shown. Remarkable mis-classifications oc-
curred between road class and grass class. Besides, trees were
incorrectly classified as buildings which can be explained by re-
lative smooth surfaces leading to high planarity values. In total,
there are slight deviations between the covariance matrices, the
« values for tables show values > 80% indicating a high agree-
ment.

Figure 13. Detailed views of classification results (top row) in
areas of bridges (LII) mixture of parking slot and lawn (III):
(middle and left) bridges densely-classified as buildings,
incorrectly classified grass and tree areas (right); corresponding
orthophotos (middle row); ground truth data for areas I-I11
(bottom row).

R B G T
R | 295157 | 11835 | 16039 | 5814
B | 14629 | 500204 | 449 | 38395 |k = 80.52%
G| 5857 |74 11567 | 101 |OA = 88.91%
T | 2400 | 10979 | 360 | 50680

Table 2. Confusion matrix obtained using

2
NDSM? |.
R B G T

R | 295353 | 11860 | 16130 | 5753
B | 14606 | 500075 | 456 | 38249 |1 30‘54%(7
G| 5851 |62 11834 | 114 = 88.91%
T | 2436 | 11118 | 364 | 50877

Table 3. Confusion matrix obtained using

2
NDSM? ,.
R B G T

R | 203593 | 13046 | 18083 | 5467
B | 13445 | 499303 | 423 | 38451 | ° 50'38(7;(7
G | 5401 |27 12081 | 132 = 88.81%
T | 2288 | 10713 | 368 | 50984

Table 4. Confusion Matrix obtained when
using NDSM%}F.

3.3 Qualitative Evaluation

The previous section has not yet provided an ultimate proof
of benefit from correction of NDSM because changes occurred
only locally. Thus, only a limited number of pixels has changed
their class. Therefore, we wish to look in more detail at the most
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(strategically) important areas of our dataset. We chose two
smaller dataset subareas around bridges and a third area where
all classes appear in similar number of pixels. We denote this
three regions as subareas I, II and III. They are shown in Figure
13 and for readers’ orientation about their approximate posi-
tion in Figure 12. In Figure 13, we see that because the initial
DSM was not flexible enough, specific areas exhibiting strong
slopes were not determined as elevated objects, are still exist-
ent. Hence, the bridges, which are actually part of the terrain,
were mostly classified as buildings. The results of classification
achieved after correction of NDSM are displayed in Figure 14.
In rows 1, 3 and 5 of Figure 14, from left to right, the classific-
ation results based on DTM generation DTMil, DTMi2 and
DTME}F are shown. In rows 2, 4 and 6 the classification results
based on DTM generation using OSM data DTMil’ DTMiZ
and DTM2GF are displayed.

Looking at the bridge of area I, we can see that to different ex-
tents, land cover classification in this area could be improved
compared to the result without correction of DTM since the
bridge was supposed to be assigned to the road class. Better res-
ults were achieved by those DTM variants which were affected
during initial DTM computation by OSM data (see Figure 14,
row: 2). The best result was achieved by OSM data-influenced
DTM generation using DTMi1 , the bridge was correctly classi-
fied belonging to the road’s class and some parts of the planted
median strip were correctly classified as low vegetation. For
DTM variants DTM? , and DTMZ ., small bridge compon-
ents were misclassified as parts of buildings. These little inac-
curacies can be easily explained since they occur due to vehicles
on the bridge. The classification of vehicles as buildings is the
nearest similar hit since such entities are not part of our classi-
fication categories. Comparing these results to the initial result,
the bridge was almost completely misclassified as belonging to
the building class.

In Figure 14 (rows: 3 and 4), results achieved by DTM gen-
eration influenced by OSM data show a more accurate classi-
fication on the bridge (black-dotted circle) than those variants
without using OSM data. Comparison between the best res-
ult achieved with DTMi and the initial result (see Figure 13)
show, that the bridge is now correctly classified as part of the
road class. Misclassified building spots belong to street lamps
and could be deleted because they exhibits atypical size. Con-
sidering flat terrain (see Figure 14, rows: 5 and 6) affected by
used land cover classes and comparing it with the initial result,
the best result could be achieved by NDSM generation using
DT Mil. Looking at the small lawn (black-dotted circle), the
best results could be achieved by the DTM generation variants
based on L; spline interpolation. Altogether it can be men-
tioned that the best results could be achieved by including OSM
data to the process of DTM generation and using L spline.

4. CONCLUSIONS AND FUTURE WORK

In this work, we presented an approach to correct a digital ter-
rain model in critical regions. These areas in general exhibit
steep slopes, which may have negative repercussions while com-
puting DTM and successively performing land cover classifica-
tion with NDSM as feature. Starting with a DSM, at first, a tem-
porary DTM was computed, and areas, which had to be correc-
ted could be processed individually as meshes which were fused
into the temporary DTM at corresponding positions. These cor-
rected local elevations were used for the classification process.
Since these areas are too small to have large impact on a whole
data set, the overall accuracies could not be improved signific-
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Figure 14. Detailed views of classification results for Areas I, 11,
[II: DTM generation (rows: 1, 3, 5) using (left to right): L
spline (1), L spline (2), Gridfit method (3); DTM generation
with OSM data (rows: 2, 4, 6) using (left to right): L spline (4),
L> spline (5), Gridfit method (6)

antly. However, we selected three strategically important areas
and after a visual inspection, specific areas exhibited correct
land cover class assignments.

For future work, in order to be able to obtain more valid res-
ults regarding the correction of NDSMs at specific areas, more
test sites have to be inspected. These test sites should be com-
parable to the study area, meaning it should be characterized
by urban components, bridges traversing a river or a valley, or
further comparable structures.
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