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ABSTRACT:

LiDAR (Light Detection and Ranging) mounted with static and mobile vehicles has been rapidly adopted as a primary sensor for
mapping natural and built environments for a range of civil and military applications. Recently, technology advancement in electro-
optical engineering enables acquiring laser returns at high pulse repetition frequency (PRF) from 100Hz to 2MHz for airborne LiDAR,
which leads to an increase in the density of 3D point cloud significantly. Traditional systems with lower PRF had a single pulse-in-air
zone (PIA) big enough to avoid a mismatch between pulse pair at the receiver. Modern multiple pulses-in-air (MPIA) technology
ensures multiple windows of operational ranges for single flight line and no blind-zones; downside of the technology is projection of
atmospheric returns closer to same PIA zone of neighbouring ground points and more likely to be overlapping with objects of interest.
These characteristics of noise compromise the quality of the scene and encourage usage of noise filtering neural network as existing
filters are not effective. A noise filtering deep neural network requires a considerable volume of the diverse annotated dataset, which
is expensive. We developed simulation for data augmentation based on physical priors and Gaussian generative function. Our study
compares deep learning networks for noise filtering and shows performance gain on 3D U-Net. Then, we evaluate 3D U-Net for
simulation-based data augmentation, which shows an increase in precision and F1-score. We also provide an analysis of the underline
spatial distribution of points and their impact on data augmentation, and noise filtering.

1. INTRODUCTION

LiDARs have emerged as powerful mapping tools for urban plan-
ning, navigation systems, and robotics. Airborne LiDAR has rev-
olutionized the process of data acquisition for topographical sur-
veying to capture reality. Sometimes, the perceived quality of the
scene is compromised by unwanted reality. This unwanted atmo-
spheric data, due to sensor operation or adverse weather condi-
tions such as fog, rain, or snow, is broadly termed as noise.
Traditional systems with lower PRF can complete a survey in a
single pulse-in-air zone, which avoided the mismatch of pulse
pair at the receiver. As the technology advanced, gateless LiDAR
sensors were introduced with higher PRF, no restriction of sin-
gle window operational ranges, and no blind-zones guaranteeing
high-density 3D point cloud. As PRF increases, PIA zones be-
come narrower, which requires manufacturers to come up with
algorithms to track the PIA zone automatically within a single
flight-line to match laser pulse pair. The downside of the technol-
ogy was atmospheric points are most likely to be projected closer
to or overlap with objects of interest. Figure 1 shows the 3D point
cloud acquired using Teledyne Optech’s Galaxy T1000 airborne
LiDAR to visualize the compromised perception of the scene due
to noise. So, while the atmospheric returns always existed, at
lower PRF, we could remove these atmospheric points with sim-
ple height filters, or nearest-neighbor algorithms quite effectively.
But once they started mixing with the object of interest, more so-
phisticated algorithms become necessary.
Previous works have demonstrated encouraging performance to
denoise 2D images using statistical, machine learning, and deep
learning methods (Goyal et al., 2020). Existing sophisticated
deep learning methods such as PointCleanNet (Rakotosaona et
∗Corresponding author

al., 2020) have dealt with sparse noise points for meshes. There
are two significant studies for noise filtering due to adverse
weather conditions for autonomous driving systems, which do
not deal with sensor noise (Heinzler et al., 2019) and (Stanislas
et al., 2019). Developing a deep neural network for noise fil-
tering requires a thorough investigation of the diverse annotated
dataset. We not only studied airborne LiDAR technology and
its operation to understand the sensor noise but also acknowledge
the need for a massive annotated dataset for training a deep neural
network. The collection of the new dataset and manual annota-
tion is labor-intensive and expensive. We developed simulations
to replicate the noise mechanism to analyze the dataset and aug-
ment it for training noise filtering neural network. These simu-
lations used physical priors and Gaussian generative function for
producing synthetic noise with variable density. It considers the
multiple pulses in air (MPIA) technology to estimate the distance
ROBS traveled by pulse beyond the maximum range before the
next beam was fired (Roth and Thompson, 2008). ROBS helps
in determining the proximity of each point from their respective
PIA zone. This proximity can be an indication of a point belong-
ing to the systematic noise pattern. Significant contributions of
our work are as follows:

• Case study of the sensor noise and simulation-based data
augmentation; and

• Our work also demonstrates the performance of various
deep neural networks for noise filtering and the impact of
simulation-based data augmentation on deep neural network
3D U-Net (Çiçek et al., 2016).
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(a)

(b)

Figure 1: 3D point cloud from Galaxy T1000 (a) Sideview, (b)
Top view; red points represent noise

2. RELATED WORK

In this section, we will discuss the recent work related to 3D data
augmentation. Data augmentation increases the volume and di-
versity of the dataset. Some of the data augmentation methods
are relatively simpler such as scaling, colouring, shifting, rotat-
ing, while others are much more complex such as simulations
and deep learning. We will divide this section into two signifi-
cant subsections, simulation-based, and deep learning-based data
augmentation (Shorten and Khoshgoftaar, 2019).

2.1 Deep Learning Networks

There are two approaches of deep learning often used for data
augmentation; generative adversarial network (GAN) and adver-
sarial training networks. PC-GAN is a novel approach to generate
synthetic 3D object point cloud (Li et al., 2018). PC-GAN pro-
posed a generic framework to use the underline distribution of
data to create a point cloud for 3D models. Due to its usage of
local latent variables to understand the neighborhood and spatial
location of the point and global latent variable to interpret the
overall shape of the object, it’s not suitable for large scale point
cloud generation. (Achlioptas et al., 2017) has proposed an au-
toencoder which produces a latent space that effectively increased
the performance accuracy of GAN networks for 3D point cloud
objects. PointFlow learns the distribution of shape and points
and uses the invertible parametrized transformation to learn from
these distributions and generate a model for syntenic data (Yang
et al., 2019). This approach increases the accuracy of generating a
3D object point cloud. Adversarial examples are objects that look
like real objects with few perturbations. These examples are gen-
erated using deep learning or simple geometrical manipulation to
create synthetic datasets. GAN networks proposed to generate the
synthetic 3D object point cloud are relevant for object detection
and recognition(Shu et al., 2019). Existing frameworks lack the
generation of synthetic data for large scale 3D point cloud. They
also deal with convergence problems and suffer from difficulty in
producing high-resolution output.

2.2 Simulations

There are different simulations developed to address the data
scarcity for large scale point cloud using virtual reality and gam-
ing. One such simulation generates synthetic scenes from the

game-based environment (Yue et al., 2018). These scenes can be
customized by the user, which can help boost the performance
of neural networks training on a synthetic dataset. The results
showed performance gain on a semantic segmentation task. (Sal-
lab et al., 2019) proposed a hybrid technique that used real data
to make simulated data more realistic using cycleGAN. It also
shows that simulated data is not usually very realistic, especially
by off-the-shelf opensource simulations for autonomous driving
scenes. Commercial tool Blender’s 3D sensor simulation plugin
used to generate a large-scale 3D point cloud called SynthCity
(Griffiths and Boehm, 2019a). There are multiple other data aug-
mentation techniques based on class weights for imbalanced class
distribution or random duplication of points proposed by (Grif-
fiths and Boehm, 2019b) and (Qi et al., 2017). Research work
for autonomous driving vehicles that deals with noise due to ad-
verse weather conditions proposed augmentation model for fog
and rain (Heinzler et al., 2019). It utilizes distance matrix, in-
tensity matrix, extinction coefficient, and point scattering rate for
the augmentation of rain and fog. The augmented dataset is used
to train proposed neural network architecture and shows overall
performance increase. Though it also caused ambiguity between
rain and fog classes due to their inherently same nature. Our
approach proposed a simulation to generate atmospheric points
based on the principals of MPIA and increasing PRF to reflect
the uniqueness of modern sensor noise.

3. METHODOLOGY

In this section, we will discuss our proposed synthetic noise sim-
ulations. To understand our proposed methodology, we first dis-
cuss the basic concepts of LiDAR scanning. We then introduced
physical priors-based simulation and Gaussian model-based sim-
ulation for generating synthetic noise.

3.1 Airborne LiDAR Scanning:

LiDAR is built from these significant components; LiDAR sen-
sor, a GPS receiver, and an inertial measurement unit (IMU)
mounted on a vehicle (helicopter or plane) shows in Figure 2 (El-
Sheimy, 2005). LiDAR scanner emits a laser pulse (echo/beam),
which reflects from the target to the receiver. It calculates the 3D
point using three major measurements; the position of the sensor,
the direction in which the signal traveled, and the distance cov-
ered by the pulse for hitting the target. Trajectory information
is acquired using a global navigation satellite system’s receiver,
which is mounted on the vehicle along with altitude and orienta-
tion. IMU is used to track the position of LiDAR using pitch, roll,
and yaw angles. LiDAR’s signal is deflected using a mirror inside
the scanner, and the position of the mirror is stored on every laser
pulse shot. (Rohrbach, 2015). The euclidean distance equation is
used to calculate the distance R between the target and sensor.

R =
√

(xp − xl)2 + (yp − yl)2 + (zp − zl)2 (1)

where xp, yp, zp = coordinates of the points
xl, yl, zl = coordinates of the sensor

One of the most critical parameters of the LiDAR is pulse rate
frequency (PRF), which is the number of beams shot in one sec-
ond. MPIA technology enables the sensor to fire the next beam
before receiving the last. Manufacturers have the proprietary al-
gorithm in place to match these pulse pairs by tracking the PIA
zone automatically for a single flight. The negative side of the
technology is that atmospheric points are projected closer to the
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Figure 2: Airborne LiDAR

transition point of PIA zone of the neighboring regular/non-noise
objects.The increasing PRF makes this problem worse as more
shots, and the same rate of atmospheric returns per shot causes
more atmospheric points. Higher PRF also develops narrower
PIA zones due to which atmospheric points are likely to be closer
to or overlaps with regular/non-noise objects. Figure 3 shows
workflow of the simulations. Both simulations used PIA LiDAR
equation for estimating physical priors. P2-Simulation uses travel
time of laser pulse while GM-Simulation uses distance from sen-
sor to target.

3.2 Physical Priors-based Simulation (P2-Simulation)

The simulation-based on physical priors assumes that travel time
for atmospheric points is less than target data. PRF is taken from
LiDAR configuration, and the maximum sensing range RMAX

is estimated by the speed of light c and PRF c
2×PRF

. The simu-
lation model takes PRF, c, regular data points, and noise density
and output simulated data. Figure 4 shows how simulation esti-
mates the travel time of the atmospheric return. Opportunity time
window 1

PRF
gives time limit for receiving signal to correctly

match with sent signal without specific matching algorithm for
laser pulses. This time window helps in calculating travel time
difference ∆t between regular and synthetic noise points. ∆t is
used to estimate the travel time of synthetic noise and projects it
on a transition point between two PIA zones.

3.3 Gaussian Model-based Simulation (GM-Simulation)

We selected Gaussian generative models for our second simula-
tion to fix limitations of P2-Simulation by extracting range con-
straints, as shown in Figure 3. The simulation model takes PRF,
c, regular data points, flight trajectory, and noise density to output
simulated data based on Algorithm 1. Physical priors were cal-
culated using PIA LiDAR equation; PIA = ceil( R

RMAX
) and

ROBS traveled by any pulse beyond maximum range RMAX .
The generative noise functions use these physical priors to esti-
mate Gaussian parameters. The distribution of ROBS from man-
ually annotated data is used to generate random normal distri-
bution of given noise density, which is used in calculating the
distance RSN between synthetic noise point and sensor using a
PIA zone that of a particular regular/non-noise point. Synthetic
noise is projected on the distance RSN along the vector from the
sensor to a regular/non-noise point, as shown in Figure 5.

where NRI = Total no. of raw input points
NAN= Total no. of actual noise points
NSN = Total no. of synthetic noise points
NREG= Total no. of points in clean point cloud

Algorithm 1: Gaussian Model-based Simulation.
Input: PRF , c, NSN , R[i]

REG,T [i]
REG P

[i]
REG, R[j]

RI , P [i]
REG,

P
[j]
RI , i = 1, 2, 3, ....., NREG,
j = 1, 2, 3, ......, NRI

Result: PSD: GM-Simulated Data
RMAX = c

2×PRF
;

RAN = RRI −RREG;

while k ≤ NAN do

PIA
[k]
AN = ceil(

R
[k]
AN

RMAX
);

R
[k]
OBS = R

[k]
ANmodRMAX ;

end
µOBS = mean(ROBS);
σOBS = standard dev(ROBS);
RSN

OBS = Gaussian(µOBS , σOBS , NSN );

while m ≤ NSN do

R
[m]
SN = ((PIA

[m]
REG − 1)×RMAX +R

[m]
OBS);

P
[m]
SN =

~
T

[m]
REG

P
[m]
REG

|
~

T
[m]
REG

P
[m]
REG

|
×R[m]

SN ;

end
PSD = PSN + PREG

T
[i]
REG = {i ∈ R3; 0 < i ≤ NREG}
P

[i]
REG = {i ∈ R3; 0 < i ≤ NREG}
P

[j]
RI = {j ∈ R3; 0 < j ≤ NRI}

3.4 Noise Filtering Deep Neural Network

We designed an experimental study using a deep neural network
3D U-Net to observe the results of noise filtering for 3D point
cloud. The selection of 3D U-Net was based on its larger recep-
tive field, performance efficiency, and state-of-art performance
for semantic segmentation over various medical imaging datasets.
The architecture of 3D U-Net can be seen in the Figure 6. It
shows multi-resolution features extraction and decoding it to full
resolution using skip connections.

The results of experiments and simulations lead us to understand
the LiDAR noise characteristics. We also compared the perfor-
mance of 3D U-Net with support vector machine (SVM), denois-
ing autoencoder (DAE) (Palla et al., 2017), and PointNet (Qi et
al., 2017). 3D U-Net is a deep network that requires massive,
diverse datasets. We generated a simulation-based augmented
dataset and trained 3D U-Net with and without augmentation to
analyze performance differences. We only selected synthetic data
from second simulation as it gives us fair opportunity of compar-
ison due to its output similarity to real dataset as shown in Figure
3.

4. EXPERIMENTS

4.1 Datasets

For simulation and noise filtering experiments, we acquired a
dataset of thirteen scenes of a site using the Teledyne Galaxy
T1000. Each scene contains roughly 5 million points and cov-
erage area of approximately 1km2. These are all outdoor rural
scenes containing forest and agricultural land. All the scenes are
manually labeled into two classes noise and regular objects. Due
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Figure 3: Parametric Generative Model

Figure 4: Physical Priors-based Simulation

Figure 5: Gaussian Model-based Simulation

to 0.1% to 3.5% presence of noise, each scene has imbalanced
class distribution.

4.2 Simulations

We took each manually labeled scene from the dataset; separate
noise and regular objects from the scenes. Physical priors-based
simulation takes the regular objects or clean LiDAR file to gen-
erate the synthetic noise along the transition point of PIA-zone.
Gaussian model-based simulation requires real noise data to esti-
mate the mean µ and standard deviation σ to generate the Gaus-

Figure 6: 3D U-Net Architecture

sian distribution of ROBS for synthetic noise. Simulation pack-
age enables the user to either input a noisy ground truth for es-
timation of these parameters or manually input based on domain
expertise.

4.3 Noise Filtering Using Simulation-based Data Augmen-
tation

We randomly split the dataset into nine scenes for training and
four scenes for testing. Each scene was then projected on the
voxel grid, where each voxel is of size 2m3 and contains a count
of points as feature. These voxels are then inputted as the cell of
128x128x128 to the network for noise filtering. We also trained
3D U-Net with a synthetic and real dataset together, which in-
creased our dataset to 18 scenes. Synthetic data was generated
using the GM-Simulation of 5% density of noise throughout the
dataset. Both experiments have similar training settings.

5. RESULT AND DISCUSSION

Our experiments of sensor noise simulation and utilizing it for
data augmentation for noise filtering has given interesting results.
GM-Simulation simulated synthetic noise closer to real noise, as
shown in Figure 7. To further verify our results, we calculated
probability density function for noise shown in Figure 8, which
validate similar spatial distribution of noise over ROBS . We also
performed experiments for noise filtering. Our first experiment
with 3D U-Net shows excellent performance as compared to the
SVM, DAE, and PointNet. We have compared the results on re-
call, precision, and F1-score for all test scenes for noise class.
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(a) 1.2% Real Noise.

(b) 5% Synthetic noise

Figure 7: GM-Simulation vs Real data; red: noise points and
blue: regular points

These matrices defined in the following Equations 2, 3, and 4.

Recall =
TruePositive

TruePositive+ FalseNegative
(2)

Precision =
TruePositive

TruePositive+ FalsePositive
(3)

F1− Score = 2× Precision×Recall
Precision+Recall

(4)

Our ablation study of noise filtering shows that 3D U-Net has the
best recall and F1-score for noise class and comparable precision,
which are critical for noise filtering problems. Recall gives us
correctly identified noise points from correctly predicted points.
The F1-score provides a balance between completeness and cor-
rectness of the predicted noise points, as shown in Table 1. These
results helps us in identifying the challenges of noise filtering as
compare to semantic segmentation. Main reason of the failure
of other methods is their lack of larger receptive field which is
critical for context learning in regard to sensor noise containing
global systematic noise pattern.
We then performed another experiment of 3D U-Net to observe
the effects of data augmentation on the learning of the network.
We trained network with synthetic and real data and tested on four
real test scenes, as shown in Figure 14. We did not train our net-
work with synthetic data by P2-Simulation. It generated noise on
transition point between two PIA zones which did not show com-
plex and random overlaps with objects of interest and would not
be fair comparison. Empirically, a network that was trained using
real and synthetic data outperformed vanilla training on precision
and F1-score for almost all four cases. It has comparable per-
formance on recall except for test scene 01, as shown in Figure
14 first row. Test scene 01 has denser noise as compared to other
scenes, and training might have suffered from the bias due to sim-
ilar noise density throughout the synthetic dataset. On the other
hand, test scene 04 shows better performance on all three metrics
for augmentation experiment , as shown in Table 2. It can be con-
cluded from visualization of the results that augmentation helps
high overlapping cases, as shown in row third and fourth of Fig-
ure 14. The results clearly show the problematic areas. Most of
these noise and regular objects overlaps with each other or noise
points clumped together, exhibiting the characteristics of com-
plex objects such as trees or bushes. These results motivated us
to observe the underlying global and local spatial distribution of
points and understand the underline issues behind these results.

We calculated global spatial distribution of noise for all scenes
which confirmed our assumption that noise is similarly dis-
tributed throughout the dataset. To clearly understand the

(a)

(b)

Figure 8: Comparison of the distribution of a) real noise from
Figure 7-a) and b) GM-Simulation synthetic noise from Figure

7-b)

problem, we decided to investigate the local spatial distribution
of noise points. We generated 20m3 voxel ten times the input
voxel due to limitation of storage memory resources. Figure 9
reflects two different cases of noise and regular objects overlap-
ping in a voxel. Graphs in Figure 10 indicate the probability
density of noise points at ROBS for the voxels from Figure 9-a)
and 9-b). It is evident that the highest probability of random
point to be noise is lower for Figure 9-b) then Figure 9-a) due
to large overlaps and position of centroid.Graphs in Figure 11
show that probability for regular point to be at observed range
interval of [34-47]m is 0 for Figure 9-a) but for Figure 9-b)
its lowest for 34m and its highest for an interval of [42-46]m
around transition point of PIA zone that is because of points
distribution in the voxel is very close to noise. We observed two
more voxels that only contain noise but with different density.
The normal distribution of points in Figure 13 shows that the
overall probability is higher for a Figure 12-b) voxel because of
the density of points but lower for Figure 12-a). We concluded
that noise present in the dataset shows various characteristics
such as complexity, randomness and global systematic pattern
and it can be divided into three major types; type-I: sparse noise,
type II: systematic noise and type III: complex noise. It can help
us compare the neural network generalization and performance
with respect to noise types in a later stage.
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Noise
Recall Precision F-1 Score

SVM 46.78% 54.05% 0.501
DAE (Palla et al., 2017) 53.57% 99.90% 0.697
PointNet(Qi et al.,
2017)

68.29% 98.19% 0.805

3D U-Net (Çiçek et al.,
2016)

77.92% 91.43% 0.841

Table 1: Comparison of 3D U-Net for noise filtering with SVM, Denoising Autoencoder, and PointNet over recall, precision and
F1-Score.

Noise (w/o aug.) Noise (aug.)
Recall Precision F-1 Score Recall Precision F-1 Score

Test Scene 01 93.80% 96.50% 0.951 79.53% 96.50% 0.872
Test Scene 02 93.70% 90.70% 0.921 93.10% 95.10% 0.941
Test Scene 03 43.20% 17.6% 0.25 38.80% 44.10% 0.408
Test Scene 04 47.10% 23.50% 0.341 53.80% 52.20% 0.530

Table 2: 3D U-Net results for noise class using with and without augmentation for individual test scenes.

(a) (b)

Figure 9: Two voxels from one scene, a) sparse noise far from
the terrain, b) complex noise overlapping with bushes; red: noise

points, blue: regular points and green: centroid

(a) (b)

Figure 10: Normal distribution of noise points for voxels from
Figure 9

(a) (b)

Figure 11: Normal Distribution of regular points for voxels from
Figure 9

(a) (b)

Figure 12: Raw point cloud of 20m3 relatively far from terrain
containing only noise, a) sparse noise, b) dense noise relatively
close to the terrain than a); red: noise points and green: centroid

(a) (b)

Figure 13: Normal distribution of noise points for voxels from
Figure 12
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6. CONCLUSION

In this work, we reviewed the technology advancement of air-
borne LiDAR systems and their utilization in data acquisition
for scientific and commercial applications. We concluded that
physical priors, along with spatial distribution of points, provide
leverage in simulating synthetic noise. We showed simulation-
based data augmentation can improve performance for certain
cases. We also evaluated the underline global and local distri-
bution of noise points to better understand the results obtained
for noise filtering. Our analyses state the importance of differen-
tiating the noise in types; type I: sparse noise, type II: systematic
noise, and type III: complex noise. In future works, we can utilize
these analyses for designing a new deep neural network for noise
filtering using a physical priors-based attention module.
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(a) (b) (c)

Figure 14: Visualization of results; a) Groundtruth, b) 3D U-Net (w/o aug.) and c) 3D U-Net (aug.). Red points are noise and blue
points are regular non noise objects
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