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ABSTRACT:

Facial appearance has long been understood to offer insight into a person’s health. To an experienced clinician, atypical facial
features may signify the presence of an underlying rare or genetic disease. Clinicians use their knowledge of how disease affects
facial appearance along with the patient’s physiological and behavioural traits, and their medical history, to determine a diagnosis.
Specialist expertise and experience is needed to make a dysmorphological facial analysis. Key to this is accurately assessing how a
face is significantly different in shape and/or growth compared to expected norms. Modern photogrammetric systems can acquire
detailed 3D images of the face which can be used to conduct a facial analysis in software with greater precision than can be obtained
in person. Measurements from 3D facial images are already used as an alternative to direct measurement using instruments such
as tape measures, rulers, or callipers. However, the ability to take accurate measurements – whether virtual or not – presupposes
the assessor’s facility to accurately place the endpoints of the measuring tool at the positions of standardised anatomical facial
landmarks. In this paper, we formally introduce Cliniface – a free and open source application that uses a recently published highly
precise method of detecting facial landmarks from 3D facial images by non-rigidly transforming an anthropometric mask (AM) to
the target face. Inter-landmark measurements are then used to automatically identify facial traits that may be of clinical significance.
Herein, we show how non-experts with minimal guidance can use Cliniface to extract facial anthropometrics from a 3D facial image
at a level of accuracy comparable to an expert. We further show that Cliniface itself is able to extract the same measurements at a
similar level of accuracy – completely automatically.

1. INTRODUCTION

The human phenotype – including our apparent physiological
form – is modified by our genotype and the expression of our
genes which is affected by developmental and environmental
factors. Many rare diseases are caused by genetic variations
which can result in perturbation of normal growth and func-
tioning. While the variety of different genetic diseases is in-
dividually rare, it is estimated that cumulatively between 6–8
percent of the human population is affected by a rare disease
(Nguengang Wakap et al., 2020). Rare diseases are frequently
characterised by medical complexity, pain, suffering, disability,
and premature death. Up to 30% of children affected by a rare
disease die before their fifth birthday (Global Genes, 2020).

Assessing the phenotype (phenotyping) is a clinician’s daily
work, including searching for clues to disease diagnosis. The
shape and growth of the face is a focus of phenotyping be-
cause characteristic facial variations are found in approximately
1 in 3 rare diseases (Ferry et al., 2014). By measuring the face
and head and comparing these measurements against statistical
norms and expected patterns of growth, the clinician can make
inferences about possible diagnoses. With a large and accur-
ate enough set of observations, the scope of possible diseases is
reduced to support diagnosis, including guiding genetic testing
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where relevant. Unfortunately, due to variation in facial appear-
ance and the subtle nature of many clinically salient phenotypic
traits, the ability to perform a dysmorphological analysis of the
human face requires specialist training and experience that is
uncommon to general medical practitioners.

Clinicians are now beginning to use 3D facial imaging to sup-
port the measurement and interpretation of patients’ facial fea-
tures (Poulton et al., 2018, Baynam et al., 2016, Baynam et al.,
2013, Hammond et al., 2012), and to explore the genetic basis
for the phenotypic expression of facial features (Shaffer et al.,
2016, Hammond, Suttie, 2012). Two-dimensional photographs
have been used for some time to help clinicians assess patients
(Ferry et al., 2014), but the advent of photogrammetric techno-
logies that can capture very detailed and spatially accurate 3D
representations of the face and head gives clinicians the ability
to take real world measurements that can be compared against
existing norms to identify unusual and clinically relevant traits.
A standardised ontology of phenotypic terms known as the Hu-
man Phenotype Ontology (HPO) (https://hpo.jax.org) (Köhler
et al., 2018) has also been developed to better define and com-
municate the nature of these traits and more effectively share
knowledge about (facial) phenotypic variation.

Being able to visualise a patient’s face in 3D is itself useful to
clinicians due to the extra spatial dimension (over 2D photo-
graphs) and the ability to see a face from different viewpoints;
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such information can help to make better subjective clinical as-
sessments. The image can also be revisited later on if reas-
sessment is needed or new information comes to light. How-
ever, taking accurate measurements directly from the 3D facial
image itself is not possible or accessible for most clinicians.
Given a 3D image capture system, producing a 3D image of a
subject’s face and then viewing it usually entails using the hard-
ware vendor’s software which is tied by licensing arrangements
to the system’s owner. Images can usually be converted into
non-proprietary formats for viewing in other applications, but
measurement data (if it can be taken) cannot be stored with the
image or communicated to others, except by external means.
Third-party applications that allow 3D facial images to be im-
ported for viewing may also suffer from user interface com-
plexity and are not generally tailored to the specific use cases
of clinicians interested in facial anthropometrics and dysmor-
phology supporting rare disease diagnosis.

Using 3D facial images in a clinical setting, allowances must
be made for how clinicians take facial measurements which
are defined in terms of standardised anthropometric landmarks.
Some of these are difficult to localise – especially on severely
dysmorphic faces. Several landmarks are surface approxima-
tions for the position of cephalometric points and a clinician
would normally palpate the face to find cranial ridges that help
to position these landmarks. Since such practices are not pos-
sible on 3D images, algorithms must be able to accurately pos-
ition the landmarks. This enables the extraction of facial meas-
urements if the clinician has access to suitably tailored software.

2. BACKGROUND AND CONTRIBUTION

Several algorithms have been developed to approach the chal-
lenge of accurate anthropometric landmark placement on 3D fa-
cial images (Gilani et al., 2015, Yang, 2011, Myronenko, Song,
2010, Chui, Rangarajan, 2003). Recently, a new method was
developed using the approach of mapping a 3D anthropomet-
ric mask (AM) (Claes et al., 2012) through non-rigid deform-
ation to a target face (White et al., 2019). This method uses
an affinity matrix of symmetrically weighted nearest neighbour
correspondences between the AM and the target surface. Over
several iterations, the correspondences are adjusted by gradu-
ally transforming and relaxing the mask toward and away from
the target surface in a way that evens out possibly erroneous
transformative steps, taking a less local approach to the mask’s
deformation (the authors call this the Visco-Elastic step). The
algorithm’s parameters can be changed to weight the affinity
matrix to include or exclude certain parts of the mask or tar-
get surface, to change the number of points used in K-Nearest
Neighbour correspondence finding, and to change the size of
the local smoothing region after each iteration. These changes
result in greater mapping detail or improved anthropometric
correspondence (accuracy of these concerns is traded against
one another).

Landmark detection is performed by establishing correspond-
ences between anthropometrically similar regions on faces. A
simple barycentric coordinate mapping between the correspond-
ing triangles of the two surfaces is used to transfer landmarks
from the mask to the target face. The geometric surface of
the same AM supplies a common reference between hetero-
genous faces. This means the algorithm can be used for gen-
eric landmark placement and it is especially suited to localising
landmarks at positions where the local geometry is relatively

uniform unlike methods that depend upon the presence of re-
gions having curvature of a certain form e.g., spline-patch based
methods (Gilani et al., 2015). The algorithm has been shown
to out-perform the automated landmark placement accuracy of
other state-of-the-art methods (White et al., 2019).

The original implementation is available as an open source tool-
box for MATLABTMcalled MeshMonk. This greatly improves
its utility – especially among other researchers and those seek-
ing to understand the statistical norms of the human face. How-
ever, software such as MATLABTMis too generic and unwieldy
for most occasional users. The toolbox functionality is also tar-
geted to supporting the non-rigid correspondence algorithm and
its use in registering many faces against one another. As such
there is a clear need to incorporate this algorithm into a platform
that has been designed from the ground up to support facial an-
thropometrics and dysmorphological analysis.

2.1 Cliniface

We formally introduce Cliniface: sofware for interactively visu-
alising, analysing, investigating anthropometrics, and detecting
dysmorphological traits from 3D facial images. We have de-
veloped Cliniface through international collaboration with re-
searchers and clinicians to provide them with a suite of tools
to easily visualise and interrogate the 3D facial images of their
patients or study subjects, irrespective of how the images are
generated. With Cliniface, a user can interactively view a 3D
facial image, take more than 50 different measurements, and
view a report on whether any of the more than 40 different spe-
cific phenotypic facial traits of potential clinical significance
listed in Cliniface’s database are present.

A reimplementation of the MeshMonk non-rigid correspond-
ence algorithm is used in Cliniface to perform facial landmark
detection. Some library dependencies are removed and pro-
cessing speed is increased by more than 25% but it is in es-
sence the same algorithm which is explained in detail in the ori-
ginally published paper (White et al., 2019). In Cliniface, the
algorithm’s parameter tuning is modified to allow for accept-
able accuracy (especially on very dysmorphic faces) but faster
speeds befitting user expectations of an interactive application.
The parameters remain tunable via Cliniface’s preferences to
allow adjustment for research purposes or for improved regis-
tration accuracy on a case-by-case basis. Cliniface includes a
suitable bilaterally symmetric AM for generic facial registration
and landmarking (Ekrami et al., 2018) (used with permission)
but Cliniface also allows researchers to easily incorporate and
use their own AMs. Figure 1 shows left to right the non-rigid
deformation of the AM (left) to an input target face (centre) and
the result of transferring the landmarks from the deformed AM
to the target face’s original surface.

Cliniface includes curvature and facial asymmetry visualisa-
tions and two or more images can be viewed simultaneously
to directly compare anthropometrics between faces, whether of
the same or different individuals (contingent on memory limita-
tions). Users can also take investigative measurements between
any two points on the face (landmarks or not) including angles,
depth, and both surface and straight-line distances. All analytic
results including landmark positions and detections of atypical
facial traits are saved alongside the original 3D image within
the same file archive (a compressed format called a 3DF). Res-
ults can also be exported to XML or JSON formats for further
analysis outside of Cliniface and PDF reports of the dysmor-
phological analysis can be produced containing a fully manip-
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Figure 1. Non-rigid transformation of the AM with template
landmarks (left) to a target face showing the resulting

deformation (centre), followed by landmark transfer to the target
face using barycentric coordinates (right).

ulable 3D model of the face (viewable using Adobe’s Acrobat
ReaderTM).

Cliniface has been built to support ongoing research in facial
anthropometrics and dysmorphology using 3D images, so it has
been designed around a centralised plugin architecture to sim-
plify its continuing extensibility to new features. Cliniface does
not send data offsite – all processing and analysis is performed
client side – so it can be used in situations where privacy is of
concern or in research without unduly complicating ethical con-
siderations. The solution can travel to the data, rather than the
data to the solution.

Cliniface is free and open source to help drive the uptake and
utility of 3D imagery in the clinical setting and accelerate re-
search into effective techniques of deriving diagnostic criteria
from the facial phenotype. Cliniface is being continually im-
proved upon to incorporate feedback and new features sugges-
ted by users; the latest version can be downloaded for Windows
and Linux from https://cliniface.org.

2.2 Aims and Hypotheses

Automatically generated straight-line distance measures using
Cliniface ought to be comparable in accuracy to those of an ex-
pert clinician because landmark positioning is handled by the
non-rigid registration algorithm. The measurement endpoints
depend upon the accuracy of landmark placement, however it
is not necessarily the case that inaccurate automatic landmark
placement by the non-rigid registration algorithm will entail in-
accuracy of any given inter-landmark distance measure. This
is because the error vector of the positions of both landmarks
in the inter-landmark pair may be equivalent. Therefore, the
accuracy of straight-line distance measures generated by Clini-
face should be more tolerant to errors in landmark positioning
and Cliniface’s measurement accuracy should be tested inde-
pendently of the how accurately landmark positions are auto-
matically placed.

We test empirically against 3D facial images taken from a di-
verse range of subjects generated by two different hardware
capture systems. Measurement accuracy should not be impacted
adversely because of the different 3D image generation sys-
tems used (assuming the systems meet an acceptable minimum
standard of accuracy and detail in 3D image generation).

The measurement tools built-in to Cliniface and the static nature
of the 3D facial image allow for a degree of finesse in meas-
urement placement that is not possible when taking measure-
ments from subjects’ faces in real life. We test the accuracy

of measurements ascertained through Cliniface if the automatic
landmark registration process offers subjectively poor enough
results that the user is willing to manually override the detec-
ted landmark positions so that measurement accuracy depends
upon the user’s placement of the landmarks.

In this study, manual measurements are taken from participants’
faces by an experienced clinical geneticist. These are com-
pared against the same measurements from 3D facial images
of the same participants taken using Cliniface’s built-in meas-
uring tool by non-expert assessors, and by measurements gen-
erated automatically by Cliniface using non-rigid registration.
Four hypotheses are tested:

1. Measurements taken manually by the expert are not signi-
ficantly affected by the choice of measuring device.

2. Measurements by non-experts using Cliniface are not sig-
nificantly affected by how the images are generated.

3. Measurements by non-experts using Cliniface are not sig-
nificantly different from expert manual measurements.

4. Measurements automatically made by Cliniface using non-
rigid registration are not significantly different from expert
manual measurements.

3. METHODOLOGY

Ten different inter-landmark straight-line distances involving
ten different facial landmarks were selected for measurement.
The landmarks were Nasion (N), Exocanthion (EX), Endocan-
thion (EN), Pronasale (PRN), Alar Curvature Point (AC), Sub-
alare (SBAL), Subnasale (SN), Cheilion (CH), and Labrale Su-
perius (LS). The standard anatomical positions of these land-
marks are shown by the yellow dots next to their abbreviations
on the example face in figure 2.

Figure 2. The standard anatomical positions of the landmarks
used to define the distance metrics.

The list of measures used is shown in table 1 which shows the
two landmarks defining the endpoints of the measure (L1 and
L2), the measure name, and if it is bilateral (i.e., measured on
both sides of the face).

The landmarks and their associated measures were chosen for
their relative ease of identification by the non-expert assessors
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L1 L2 Measure Name Bilateral?
EN EN Intercanthal Distance -
EX EX Outercanthal Distance -
EX EN Palpebral Fissure Length Yes
CH CH Labial Fissure Length -
SN LS Philtral Length -

SBAL SBAL Subnasal Width -
N PRN Nasal Bridge Length -

AC PRN Nasal Ala Length Yes

Table 1. The inter-landmark distance measures.

and for the range of practical difficulty in measuring between
the landmark pairs.

Four non-experts (P1–P4) and one experienced clinical genet-
icist (CG) were tasked as assessors. To establish the baseline
level of accuracy, the experienced assessor took the above ten
measures directly from the faces of 25 different adult parti-
cipants ranging in sex, age, and ethnicity using both a pair of
Vernier callipers and a standard tape measure. The aim of using
both devices was to identify the degree (if any) of measurement
bias due to the use of different measuring devices.

The 25 subjects had 3D images of their faces taken using two
different 3D image capture systems: the 3dMD static system
in the dual camera module configuration (3dMD Ltd, London,
UK), and the Vectra H1 handheld imaging system (Canfield
Scientific, New Jersey, USA). Each non-expert assessor was
tasked with successively viewing each of the 50 facial images
produced by these systems in Cliniface and using its inbuilt
measurement tool to interactively drag the endpoints of each
measure into position. Figure 3 shows Cliniface’s interface
while using its “virtual callipers” to place the endpoints of a
measure between two arbitrary points on an example face.

Figure 3. Cliniface’s user interface during interactive placement
of the nasal bridge measure.

Prior to this, each assessor was briefed on the nature of the task
and shown images (similar to figure 2) to advise them of how
to identify and localise the standard anatomical positions of the

landmarks. Assessors interpreted how best to place the inter-
landmark measurement endpoints in accordance with this guid-
ance for each of the 3D facial images.

Finally, the 50 facial images were sequentially loaded into Clini-
face and the automated landmark detection algorithm was used
to record the same set of measurements from each face without
any user intervention or readjustment of the detected landmark
positions.

The same 3D images were used across all assessments by the
non-experts and in Cliniface to undertake automated landmark
positioning and measurement. After taking the images of the
participants and before their use in the experiments, some of
the facial models in the images were repositioned slightly to
ensure proper centring within Cliniface’s viewer. Aside from
this, no other pre-processing of the images was performed; the
surface geometries were left as captured by the respective 3D
image capture systems. This was not ideal for the automated
landmark detection algorithm as non-face areas such as the neck
or shoulders can potentially confuse the registration algorithm,
but it was deemed acceptable to standardise and simplify the
protocol for this study. Figure 1 shows Cliniface’s facial regis-
tration and unadjusted landmark mapping on one of the authors.
This shows the full set of landmarks detected by Cliniface but
only those shown in figure 2 were used in this study.

4. RESULTS AND ANALYSIS

The first two hypotheses in section 2.2 concern how the fa-
cial measures are taken (i.e., the mode of measurement). The
second two hypotheses concern how accurately non-experts and
Cliniface itself can take the facial measures. To test the second
two hypotheses, the baseline set of measurements for compar-
ison against first had to be established. The analysis for this
determination is given in section 4.1.1. The second two hypo-
theses are tested with reference to this baseline in section 4.2.

4.1 Measurement Mode

The violin plots in figure 4 show the distributions of measure-
ment differences over all participants due to the use of different
measuring devices by the expert assessor (EX) shown in red, or
due to the use of differently generated 3D images by the non-
expert assessors (P1–P4) shown in blue, and by Cliniface (CF)
shown in green. Plot EX shows measurement differences by
the expert as callipers minus tape measure. Plots P1–P4, and
CF show measurement differences as 3dMD minus Vectra H1.
The plots show the median value (centre vertical bar), the in-
terquartile range (thick black bar), and the extreme values (end
vertical bars).

4.1.1 Callipers versus Tape Measure The use of two dif-
ferent devices by the expert assessor resulted in large and con-
sistent measurement differences. The RMSE in measurement
over all participants, was found to be 3.82 mm. Paired samples
t-testing confirmed clear rejection of the null hypothesis at α =
0.05 i.e., accuracy was significantly affected by the choice of
measuring device.

The expert assessor reported that of the two devices, they were
more comfortable using the tape measure. For any particular
measure, discomfort in using one device over the other might
appear as increased variance over all participants for one of the
devices. F-testing was performed over all participants for each
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Figure 4. Distributions of measurement differences over
participants due to the expert’s use of measuring device (red),

3D image source by the non-experts using Cliniface for manual
measurement (blue), and 3D image source by Cliniface using

non-rigid registration to derive measurements (green).

of the expert’s measurements. The null hypothesis was formed
as: for a given measure, measurement variance between the two
devices is not significantly different. Rejection of the null hy-
pothesis would imply decreased precision for some reason –
possibly due to a lack of familiarity with the device. However,
at α = 0.05, this hypothesis was not rejected for any of the
measures. Paired samples t-testing for the individual measures
was also performed, and together with the f-testing results this
confirmed that for every one of the ten measures, accuracy was
significantly affected by device selection while precision was
not.

Since the nature of the error was found to be one of accuracy
rather than precision, the expert determined using his experi-
ence that the tape measure derived measurements were in fact a
better reflection of the true distances and should be used as the
baseline set for comparison against.

4.1.2 3dMD versus Vectra H1 In figure 4, plots P1–P4, and
CF show differences as the measurements obtained from the
3dMD images subtracted by the those same measurements ob-
tained from the Vectra H1 images for the four non-experts and
Cliniface respectively. Across all assessors (including Clini-
face), there is a small but consistent bias resulting in the dis-
tances obtained from the 3dMD images to be slightly longer.
The RMS errors for assessors P1–P4, and Cliniface are respect-
ively: 1.77, 2.05, 2.11, 1.50, and 0.90 [mm].

To test the second hypothesis, paired samples t-tests were per-
formed. At α = 0.05, this hypothesis was rejected by assessor
P3 with P = 0.001 < α. When measurement differences were
averaged together over assessors P1–P4, the hypothesis was re-
jected with P = 0.025 < α. Upon further investigation, it was
found that human assessors had more trouble placing the labial
fissure distance measure than any other. The mean RMS error
over all measures was found as 1.30 mm with standard devi-
ation of 0.57 mm. The labial fissure measure with RMSE of
2.86 mm was found to be an outlier with sigma of 2.7. Figure 5
shows the most severe example of this issue where the labial
fissure measure (i.e., between the mouth corners) is shorter in

the Vectra H1 image on the right (and incorrectly placed) than
in the 3dMD image on the left. Note the apparent difference
in skin tone in the two images which may have had some bear-
ing on the assessors’ ability to determine the correct position of
the mouth corners. Note also that the participant maintained a
perfectly neutral mouth position in both images.

Figure 5. Inaccurate placement by an assessor of the labial fissue
measure in the Vectra H1 image (right) while placement is

accurate in the 3dMD image (left).

Once the most severe example of this issue was removed from
the analysis (the participant’s images shown in figure 5), even
though the issue was still present in other participants’ images,
it was found that paired samples t-testing over the averaged to-
gether measurement differences of all four non-expert assessors
no longer resulted in rejection of the hypothesis with P =
0.123. That is, in aggregate, it was found that there were no
significant differences in measurement accuracy when switch-
ing between the 3dMD and Vectra H1 generated images. How-
ever, the hypothesis was still rejected in the case of assessor P3.
This appears to be a human assessor dependent issue however
because difficulties placing particular measures were not ob-
served in the automatically obtained Cliniface measurements.
In the case of Cliniface, the RMSE for measurement of the la-
bial fissure was not significantly different from the other indi-
vidual measurement RMS errors, and measurement variance in
general due to image source difference was much narrower as
seen in the bottom plot of figure 4.

For the remainder of the experiments, the problematic parti-
cipant’s images were retained because while posing a problem
to some assessors when measuring certain features, it was felt
that the images were still typical of what might be generated
under normal circumstances.

4.2 Measurement Accuracy

In this section, the facial measurements taken by the non-expert
assessors P1–P4, and the automatically generated measurements
of Cliniface are compared against the expert assessor’s baseline
measurements decided upon in section 4.1.1. Due to the sim-
ilarity of measurements obtained from the 3dMD and Vectra
generated images for each participant and there being no par-
ticular reason to favour one 3D image type over the other, each
assessor’s measurements from both sets of images were aver-
aged together for comparison against the expert assessor’s.

The violin plots in figure 6 show the distributions of measure-
ment differences from the expert’s over all participants for as-
sessors (P1–P4) shown in blue, and Cliniface (CF) using non-
rigid registration shown in green.
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Figure 6. Distributions of measurement differences from the
expert assessor’s over participants for the non-experts using

Cliniface for manual measurement (blue), and Cliniface using
non-rigid registration to derive measurements (green).

Paired samples t-testing was performed with α = 0.05 to eval-
uate the third null hypothesis for each non-expert assessor i.e.,
that the measurements taken by the assessor using Cliniface are
not significantly different in accuracy to those taken by the ex-
pert. For assessors P1, P2, and P4, P values of 0.139, 0.087, and
0.564 respectively were obtained – failing to reject the null hy-
pothesis. For assessor P3, a P value of 0.001 was obtained and
the null hypothesis was rejected. This means that the accuracy
of measurements taken using Cliniface when not relying upon
its automated landmark detection, is still very dependent upon
the assessor’s understanding of how to position the landmarks
on the given face.

Paired samples t-testing with α = 0.05 was also used to eval-
uate the fourth and final hypothesis i.e., that the automatically
generated measurements of Cliniface are not significantly dif-
ferent in accuracy to those taken by the expert. A P value
of 0.282 was obtained – failing to reject the null hypothesis
and providing support to the conclusion that Cliniface is able
to automatically generate measurements of facial features at a
level of accuracy comparable to an expert.

RMS errors for assessors P1–P4 were calculated as 4.02, 4.10,
4.20, and 3.50 [mm]. The RMSE of Cliniface’s measurements
was calculated as 4.87 mm. F-testing on Cliniface’s measure-
ment errors versus an average of the errors over assessors P1,
P2, and P4 (not P3 due to the lack of accuracy) revealed that
the variance in measurement error by Cliniface was not signi-
ficantly different to the variance in error by the three human
assessors for every individual measure except subnasal width
(P = 0.02 < α = 0.05).

5. DISCUSSION

We found that the majority of non-expert assessors using Clini-
face had comparable measurement accuracy to the expert us-
ing direct manual measurement. Additionally, we demonstrated
that the accuracy of measurements generated by Cliniface was
similar to the expert’s measurements, and that the precision of
Cliniface’s automatically generated measurements was similar
to those of the accurate non-expert human assessors.

It should be noted that the results of comparisons between the
accuracy of measurement by non-expert assessors and Clini-
face depend upon the objective veracity of the measurements
obtained by the expert. The comparison against a single expert
is a study limitation which could be addressed in further stud-
ies, including to further assess interrater reliability, accuracy,
and precision of manual measurements and for comparisons of
multiple measurement approaches – both manual and virtual.

The analysis in section 4.1.1 did not demonstrate an improved
precision of measurement by the expert when using callipers
over the tape measure. This is interesting because intuitively
the callipers offer improved accuracy due to their more reliable
construction and the fact that, unlike the flexible tape measure,
the callipers will always report the distance of a straight line.
Since it is also the case that callipers are typically indicated
as the preferred method for taking many anthropometric meas-
urements (Karen W. Gripp, Allanson, 2013), this aspect of the
study – though unrelated to Cliniface – should be investigated
further.

The analysis in section 4.1.2 found that averaged over assessors
there was no significant difference due to the images ascer-
tained by different image capture systems. However, for an
individual assessor (P3) the choice of image mattered. This
may be a stochastic effect, or it may point to a meaningful dif-
ference when assessing selected facial measurements. Human
qualitative assessment of the captured images may remain an
important complementary part of the workflow. Other methods
of generating 3D images are available and will be developed
in the future and the results of this study do not extend to 3D
images in general.

In section 4.2, the analysis found that for the facial images
tested, Cliniface’s automatically generated measurements were
comparable in their accuracy to those taken by the expert. It
was also found that suitably guided human assessors could take
measurements using Cliniface at the expert level of accuracy
(excepting assessor P3). The precision in Cliniface’s measure-
ments was also found to be similar in all but one measure to
those human assessors who matched in accuracy.

In total, it took under 45 minutes for Cliniface to sequentially
process and annotate the 50 3D images of the participants – less
than one minute per image. For the human assessors, the task
took at least four times longer. In addition, some of the human
assessors needed to review their assessments later due to acci-
dentally skipping an image, or failing to place a measurement.
Cliniface is more reliable in its ability to take a comprehensive
set of measurements.

It is important to note that the observed accuracy in the dis-
tance measurements automatically generated by Cliniface does
not imply accuracy of the landmark endpoints for each of the
measures due to possible equivalent errors for inter-landmark
pairs. Figure 7 shows an example of this where the mouth/lip
landmarks are placed lower than they should be but the nasal
landmarks are placed correctly on the participant’s face (left).
This results in the horizontal labial fissure length remaining
reasonably accurate while the accuracy of the vertical philtral
length measurement is reduced. This is due to the poor non-
rigid registration of the AM to the participant’s mouth (right
most image).

In normal use, Cliniface’s workflow addresses the need to im-
prove the accuracy of automatic landmark placement by prompt-
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Figure 7. Incorrect placement of mouth landmarks on the
participant’s face (left) due to poor non-rigid registration of the
mouth (right) without causing measurement error in the labial

fissure length.

ing the user after automated facial registration and landmark-
ing to confirm landmark positions using a dialog that describes
the standard anatomical landmark positions. For this study,
prompting the assessors to check landmark placement on a per
image basis was not undertaken and so it was possible for the
assessors to make mistakes in measurement placement. Errors
of the kind shown in figure 7 would be easier to avoid using
Cliniface under normal circumstances.

Finally, it is likely that Cliniface can obtain more accurate meas-
urements if the user has the expertise to fine-tune the paramet-
ers of the non-rigid registration algorithm. The version of the
algorithm used in Cliniface is tuned to trade some accuracy for
speed.

6. CONCLUSION

In this study, the accuracy of measures placed on 3D facial im-
ages by both non-expert human assessors and an automated al-
gorithm were evaluated against a baseline set of expert meas-
urements. Cliniface: a novel interactive software application
for the visualisation, extraction, and analysis of measurements
from 3D facial images was introduced which provided both the
means for the non-expert assessors to take measurements, and
also the means to automatically generate measurements from
3D facial images without user intervention.

We found that three out of four of the non-expert assessors were
able to take measurements using Cliniface at a level of accur-
acy comparable to the expert for the measures under evaluation.
Also that the measurements automatically generated by Clini-
face were similar in accuracy to the measurements obtained by
the expert, and that the precision of Cliniface’s automatically
generated measurements were similar to those of non-expert
human assessors.

This study’s conclusions are tempered by the lack of certainty
concerning the objective veracity of the expert assessor’s meas-
urements; future research should first try to more accurately
ascertain the true objective measurements from the 3D facial
images under evaluation. This can be achieved by using more
expert assessors so that confidence intervals of accuracy can be
obtained. This will also allow for a study of measurement reli-
ability to be undertaken which should be prioritised to properly
evaluate the use of Cliniface going foward for investigative re-
search into new and diagnostically useful 3D facial features.
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