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ABSTRACT:

The development of automated and autonomous vehicles requires highly accurate long-term maps of the environment. Urban
areas contain a large number of dynamic objects which change over time. Since a permanent observation of the environment is
impossible and there will always be a first time visit of an unknown or changed area, a map of an urban environment needs to model
such dynamics.
In this work, we use LiDAR point clouds from a large long term measurement campaign to investigate temporal changes. The data
set was recorded along a 20 km route in Hannover, Germany with a Mobile Mapping System over a period of one year in bi-weekly
measurements. The data set covers a variety of different urban objects and areas, weather conditions and seasons. Based on this
data set, we show how scene and seasonal effects influence the measurement likelihood, and that multi-temporal maps lead to the
best positioning results.

1. INTRODUCTION

Nowadays there is a strong trend towards automated or even
autonomous driving. One important element for the develop-
ment of autonomous vehicles are very precise and up-to-date
models or maps of the environment. As natural environments
change over time, it is virtually impossible to provide such up-
to-date maps. In the past, a frequent solution to this problem
has been to identify static parts of the environment, which will
then be the only parts that will be included in the map (Thrun,
2002). However, the urban environment consists of a variety of
objects that behave differently. While there are indeed static ob-
jects such as buildings or the road surface, which are unlikely
to change, other objects like vegetation will behave periodic-
ally throughout the seasons. Parked vehicles and other mobile
objects may change their position in a daily or weekly cycle,
let alone moving objects such as pedestrians and cars, which
change within seconds (Cheng and Sester (2018), Bock et al.
(2016)). Therefore, the removal of all objects which are non-
static will also dismiss a large amount of possibly useful in-
formation. While probabilistic mapping methods assume that
contradictions in the data are caused by sensor noise, there are
very few approaches which explicitly model changes of the en-
vironment (Thrun et al., 2006).

Other approaches model defined states of dynamic objects, for
example open and closed doors (Stachniss, 2009). This reduces
the complexity of the environment model, but also is limited to
a fixed set of states and can not adapt to unexpected changes,
which makes such models unsuitable for uncontrolled outdoor
environments.

Meyer-Delius et al. (2012) apply Hidden Markov Models
(HMM) to occupancy grids of dynamic environments. They
assign to each cell a probability about the occupancy state plus
the state transition probability of the HMM. For validation they
used two different settings: one is a parking lot that was scanned
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twelve times during a day by a SICK LMS laser range finder.
The second test scenario is a small hall, where people are cross-
ing from an office to two different exits.

Another explicit model of dynamic behavior is the spatio-
temporal environment model presented by Krajnik et al. (2015).
It uses the spectral domain to model temporal changes and also
provides an exploration strategy to acquire measurements in
different locations on a reasonable basis. Krajnik et al. (2015)
use occupancy grids, topological maps and feature-based maps
as environment models and test their approach on two real
world data sets each collected over a period of several months.

Biber et al. (2005) define three requirements for long term
maps: 1. The lifetime of a map shall not influence the time that
it needs to adapt to a change. 2. The map needs to be robust
to outliers. 3. The map shall not interpolate between measure-
ments. Their approach does not explicitly model dynamic parts
of the environment, but covers those by multiple temporal maps
with different timescales. They test their map learning system
in an indoor environment performing three runs per day over a
period of five weeks.

2. APPROACH

In this paper, we investigate the influence of scene content and
scene changes on vehicle localization. Usually, robotic loc-
alization is based on a probabilistic approach where, at each
time step, a belief is computed, which is a maximum a posteri-
ori estimation based on a prior and the measurement likelihood
(Thrun et al., 2006). The measurement likelihood in turn is usu-
ally modelled by a function which assesses the degree of agree-
ment between the actual measurement data and the correspond-
ing predicted data, obtained from an assumed robot pose and
a map (this function often being the Gaussian density). Under
ideal circumstances, a correct robot pose leads to a high likeli-
hood, and ideally, there will be a sharp peak around the correct
pose.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-317-2020 | © Authors 2020. CC BY 4.0 License.

 
317



Temporal changes lead to large (as compared to the measure-
ment accuracy) discrepancies between real and expected meas-
urements. If this is not considered in the measurement model,
it results in much too small likelihoods. In contrast, if it is
modelled as outliers, the corresponding measurements are dis-
carded. In highly dynamic scenes, this may result in large parts
of the measurement data becoming unusable, which means that
the pose estimation becomes brittle since it is based on very
little data. Therefore, the goal of multi-temporal maps is to pre-
dict, for any given point in time, the environment in such a way
that discrepancies between real and expected measurements are
minimized and, since they are inliers then, a large part of these
measurements can be used for pose estimation. In an informal
way, one could say that robots that have the most accurate idea
of their environment are the least surprised about their meas-
urements and, therefore, can act in the most confident way.

Apart from temporal changes, object characteristics influence
the likelihood function. Measurements to rigid objects, like
walls, will lead to highly repeatable measurement values, which
vary just by the precision of the measurement system, whereas
vegetation, e.g. hedges, will lead to a wider spread.

In this paper, we investigate both effects. To this end, we have
undertaken a major measurement campaign over a time span of
one year. We aligned the data with a high precision so that our
results are not influenced by systematic offsets from different
measurement epochs. The result is a map for each epoch, and
a map comprising all epochs. We then assess the influence of
the scene content and dynamic scene changes on the computa-
tion of the likelihood function, in our case, concentrating on the
deviations between true and predicted measurements and the
number of inliers.

Using this setting, we evaluate the following three hypotheses:

1. The maps are suitable for localization. The true location
leads to the smallest deviation and most inliers. Scenes
containing vegetation lead to a spread of the likelihood
function.

2. The maps reflect seasonal effects. Taking a map based on
an epoch with a small temporal distance leads to a better
performance.

3. If several epochs are used to create the map, the result im-
proves significantly.

3. DATA

For this work we use data from a long-term measurement cam-
paign. Starting in March 2017, we performed measurements
with a LiDAR Mobile Mapping System about every two weeks
along a 20 km route through Hannover, Germany (see Fig.
1b). The measurement area includes inner city areas as well
as residential districts in suburbs, multi-lane roads, various
intersections, parking lots, tram lines and areas with high
cycling and pedestrian traffic. Due to the long measurement
period, the data set contains different seasons with various
weather and lighting conditions as shown in Fig. 2.

The data was acquired by a Riegl VMX-250 Mobile Mapping
System (MMS) RIEGL VMX-250 (2012) which is mounted on
a measurement vehicle as shown in Fig. 1a. The MMS contains
two Riegl VQ-250 laser scanners which have a maximum

a b

Figure 1. (a) Measurement vehicle with VMX-250 mounted on
the roof top, (b) Route of the biweekly measurement campaign

a b c
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Figure 2. Example images of the same scene in different seasons
(a): 17-03-28, (b): 17-04-28, (c): 17-06-06, (d): 17-06-20,
(e): 17-08-08, (f): 17-10-04, (g): 17-11-07, (h): 18-01-17,
(i): 18-02-15; the change in the vegetation is most notable.

overall scanrate of 300,000 points per second with a ranging
accuracy of ten millimeters. In addition, the system contains a
localization unit and four cameras.
The highly accurate GNNS/INS system is combined with a
Distance Measurement Instrument (DMI) for localization. The
trajectories are obtained by a post-processing using reference
data from the Satellite Positioning Service (SAPOS). This
leads to an overall accuracy of the trajectory in the decimeter
range.

For this work we use a subset of 14 measurement epochs
which took place from March to October 2017 (see Fig. 3).
The point clouds of those epochs were aligned using the strip
adjustment approach from Brenner (2016). The result has a
standard deviation below two centimeters.

Our work is based on laser point clouds; for the described
period we have over 5 billion laser points in total. Fig. 4
presents the high quality and density of our data set. It shows
an overlay of all epochs, where each epoch is colored using the
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color scheme shown in Fig. 3. It can be seen that static objects,
such as facades, show a dense mixture of all colors, except for
areas where facades are occluded by vegetation. Tree crowns,
on the other hand, show many small regions of distinguishable
colors, corresponding to the extents of the crown at different
growth periods. Pedestrians (at the bottom of the figure) are
single colored since they are present in a single epoch only.

Figure 3. Temporal distribution of the 14 measurement epochs
used for this paper; Bars colored by measurement epoch (blue =

oldest, red = newest measurement)

Figure 4. Example point cloud, colored by epoch (blue = oldest,
red = newest measurement)

4. MAPS AND TEST SETS

For our experiments we divided the data set into epochs for
modelling and testing. We use the point cloud from measure-
ment epoch nine (17-06-20) as a test set Test E9, i.e. data of this
epoch is used as true measurements and will be compared with
different maps, created from the rest of the data. We compare
four different maps: three maps from different seasons, which
were created from one single measurement epoch each (Map
1, Map 8, Map 14) and one map created from all measurement
epochs (Map All) (for details, see Fig. 5 and tab. 1). We selec-
ted the different epochs in a way that one is temporarily close
to the test epoch (Map 8 - 2 weeks), one is in spring (Map 1
- three months earlier), and the third one in october Map 14,
i.e. 4 months later. In this way, the temporal effects of the ve-
getation will be present in the data. We use a grid based map
representation and sort all points into a voxel grid with a voxel
edge length of two centimeters. Voxels which contain at least
one reflecting point are marked as occupied.

Figure 5. Input data for maps (Map E1, Map E8, Map E14:
green; Map All: green and grey) and test set (Test E8: red)

In order to evaluate the likelihood, we extracted trajectory snip-
pets of about eight meter length from our test data and sub-
sampled the corresponding point clouds to a point distance of
maximum ten centimeters. Fig. 6 shows the example test areas.
Bounding box BB 1 is an area with mostly static parts, such
as facades, road surface and sidewalks (see Fig. 6a). Fig. 6b
shows bounding box BB 2, which additionally contains a tree
and is used to analyze seasonal effects.

Name Epochs

Test E9 17-06-20
Map E1 17-03-22

Map E8 17-06-06

Map E14 17-10-04

Map All 17-03-22 17-03-28 17-03-31 17-04-05

17-04-13 17-04-28 17-05-09 17-06-06
17-07-04 17-08-08 17-08-23 17-09-05
17-10-04

Table 1. Measurement epochs used for maps and test set

a b

Figure 6. Example test sets BB 1 (a) and BB 2 (b) with Map All
in grey; Points of the test sets are colored by the measured

distance (short measurements = blue, far measurements = red).
The black line above the road surface is the trajectory of the

vehicle.

5. EVALUATION OF DIFFERENT MAPS

To obtain the response of the likelihood, the trajectories of the
test areas BB 1 and BB 2 were shifted systematically in a seven
times seven grid of one centimeter edge length. This produces
49 subsets for each test trajectory.

For each of the shifts, we assess the likelihood as follows. Us-
ing a ray tracing algorithm (Amanatides and Woo, 1987), we
find, for each measured point, the closest occupied voxel in the
map which lies along the scan ray. We then compute the dis-
crepancy dv between the voxel and the measured point, which
is treated as a signed distance since the intersection of the ray
with the voxel may occur before or after the real measurement.
Fig. 7 illustrates the ray tracing approach for the case where the
closest voxel on the ray lies in front of the actual measurement.
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Instead of computing a single likelihood value from all the
rays, we collect all dv in a histogram of discrepancies. If the
discrepancies are within the tolerance range of -0.06 m to
+0.06 m, they are considered being inliers (in this way we take
the high accuracy of the map into account). Apart from the
histogram of discrepancies, we also calculate the percentage of
inliers.

Point

Laser Ray
Distance Tolerance
Traversed Voxel, Free
Traversed Toxel, Occupied
Closest Occupied Voxel on Ray

Scanner Head

Figure 7. Illustration of tracing a LiDAR beam to determine the
occupied voxel in the map which is closest to the measured

point, within the distance tolerance range.

6. RESULTS AND DISCUSSION

In order to prove our hypotheses from section 2, we will discuss
some of the histograms of discrepancies dv . Note that the histo-
grams in figs. 8–13 are normalized. As noted above, all points
with a dv within the range from -0.06 m to +0.06 m are counted
as inliers.

To confirm hypothesis 1, we first examine the change in dis-
tances when the robot pose is modified. For the case of BB 1,
the histograms in Fig. 8 and 9 show that when the robot posi-
tion deviates from the correct position at x = 0, y = 0, the per-
centage of points with a small absolute distance |dv| decreases
(blue bar in the middle of the figure goes down from 60% to
45%, 23% and 20%). Taking a close look at Fig. 8, one can
see that secondary local maxima appear in the histograms at the
positive and negative shift distance, as expected. The effect is
also illustrated in 3D space, for a selected shift of x = 3 cm, in
Fig. 10. As expected, the shift leads to positive discrepancies
(yellow-red colors) on one facade and negative discrepancies
(green-blue colors) on the opposite facade. Note that since the
facades in our maps are almost parallel to the y-axis of our local
coordinate system for this example, the shift in x-direction has
a larger influence than the shift in y-direction, which is why the
effect does not appear in Fig. 9. (Clearly, since the trajectories
were shifted in the x-y-plane, the shift has also no influence on
points on the ground.)

The same experiment for BB 2 yields slightly different results,
see Fig. 11. As can be seen, the percentage of measurements
which fits the expectations (blue bar in the center) also de-
creases with increasing robot displacement. However, the de-
crease is not as strong as in the previous case. Here, we observe
the spread in the likelihood induced by the presence of vegeta-
tion, as predicted in our first hypothesis.

With regard to the effects of temporal distance, Figures 12 and
13 show the distance histograms of BB 1 and BB 2 with the
maps Map E1, Map E8, Map E14 and Map All. They confirm
hypothesis 2: for both bounding boxes, the seasonal map Map
E8, which is the closest one in time to the test set, fits best, i.e.

has the largest percentage of inliers (not considering plot d, i.e.
MapAll, for now). In BB 1 the effect is very small. Since it does
not contain any vegetation – this was expected. Figures 14 to 17
show the point clouds of BB 2 compared to the different maps.
The voxels of the maps are colored grey and the points of the
test set are colored by the discrepancy dv . Points with a low dv
are green, here the found voxels are very close to the measured
points, i.e. fall into the same voxel. If the voxel lies in front
of the point, the point is colored green - blue and if the voxel
lies behind the point, the point is yellow - red. The most points
with a relatively large dv are in the treetop. Due to seasonal
growth of the foilage, here is the biggest difference between the
different epochs. Map E8 and Map All contain the most inliers.
This is expected, because Map E8 is closest in time to the test
set and Map All was merged from all epochs, so it also contains
the points from Map E8 and additionally all other epochs.

Hypothesis 3 is definitely confirmed. Map All, containing all
measurement epochs clearly has the smallest distances between
points and corresponding voxels for all bounding boxes, see
Fig. 12 and 13. For 90% (BB 1) and 80% (BB 2) of all
measurements there is a corresponding voxel found. As shown
in Fig. 18 and 19 it is also most robust against the shift, as a
wrong position is still rated as good. This, however, also shows
the disadvantage of adding all measurements to a map without
any update concept: The map fills up with points which do
not exist any more, like the foilage in the tree crown which
is much denser in Map All than in the others or the parked
vehicles, which overlap. This leads to conflicts with the current
state of the environment. For a point in a parked car, a voxel
is found in the map, which belongs to a completely different car.

a b

c d

Figure 8. Distance histograms of bounding box BB 1: Test E9 in
Map E8, shift-y = 0, (a) shift-x = 0, (b) shift-x = 1 cm, (c) shift-x

= 2 cm, (d) shift-x = 3 cm (x-axis: dv in meters)
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c d

Figure 9. Distance histograms of bounding box BB 1: Test E9,
Map E8, shift-x = 0, (a) shift-y = 0, (b) shift-y = 1 cm, (c) shift-y

= 2 cm, (d) shift-y = 3 cm (x-axis: dv in meters)
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0 cm

3 cm

-3 cm
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6 cm
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0 cm

3 cm
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b

Figure 10. Point cloud of BB 1, Test E9: (a) original trajectory,
(b) trajectory shifted by 3 cm in x-direction: the shift leads to
positive discrepancies (yellow-red colors) on one facade and
negative discrepancies (green-blue) on the opposite facade

7. CONCLUSION AND OUTLOOK

We were able to confirm all our hypotheses and have shown
that our maps are suitable for precise localization and include
seasonal effects. The seasonal maps closest in time to the test
set give the best results. We conclude that our dataset is well
suited for the creation of high-precision long-term maps and
for the future want to improve our mapping method.

As next steps, we want to combine the benefits of the seasonal
maps with those of the comprehensive map created from all
measurement epochs. To this end we want to cluster the meas-
urement epochs in a meaningful way, so that a seasonal map is
composed of several epochs of this season.

In this work we only used a small subset of our data. For the
future we want to use the complete temporal extent of our data
set. In addition to season effects we will then see dynamics
with other periods, e.g. weekly or daily changes, which will
occur for different objects. While in this work for the tree in
BB 2 the most suitable map is the one from the same season,
for other objects it may be useful to apply a map from the same

a b

c d

Figure 11. Distance histograms of bounding box BB 2: Test E9
in Map E8, shift-y = 0, (a) shift-x = 0, (b) shift-x = 1 cm,

(c) shift-x = 2 cm, (d) shift-x = 3 cm (x-axis: dv in meters)

a b

c d

Figure 12. Distance histograms of bounding box BB 1, original
trajectory, (a) Map E1, (b) Map E8, (c) Map E14, (d) Map All

(x-axis: dv in meters)

hour (pedestrians waiting at a bus stop) or day of the week
(garbage bins, market stands). In order to find the correct map
for every object, we want to combine the temporal maps with
a semantic segmentation and learn the temporal behavior of
different object classes.
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Figure 13. Distance histograms of bounding box BB 2, original
trajectory, (a) Map E1, (b) Map E8, (c) Map E14, (d) Map All

(x-axis: dv in meters)
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Figure 14. Point cloud of BB 2, original trajectory in Map E1:
low amount of information in treetop in March
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Figure 15. Point cloud of BB 2, original trajectory in Map E8:
comparable amount of vegetation points
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Figure 16. Point cloud of BB 2, original trajectory in Map E14:
comparable or slightly different amount of vegetation points in

slightly different places

6 cm

-6 cm

0 cm

3 cm

-3 cm

Figure 17. Point cloud of BB 2, original trajectory in Map All:
very high voxel density in the treetop, overlapping vehicles on

the parking lane
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Figure 18. Distance histograms of bounding box BB 1: Test E9
in Map All, shift-y = 0, (a) shift-x = 0, (b) shift-x = 1 cm,

(c) shift-x = 2 cm, (d) shift-x = 3 cm (x-axis: dv in meters)

a b

c d

Figure 19. Distance histograms of bounding box BB 2: Test E9
in Map All, shift-y = 0, (a) shift-x = 0, (b) shift-x = 1 cm,

(c) shift-x = 2 cm, (d) shift-x = 3 cm (x-axis: dv in meters)
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