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ABSTRACT:  

 

Mobile Mapping System (MMS) equipped with a high-density LiDAR scanner is widely used for mapping. Various automatic mapping 

methods have been proposed for point clouds measured by the high-density LiDAR scanner on the MMS. However, careful parameter 

tuning is often required according to measurement conditions. In this paper, we propose a method to generate normalized scanlines 

from point clouds captured using the MMS. Normalized scanlines are useful to avoid parameter tuning depending on the measurement 

conditions. In order to evaluate the validity of our method, we extracted road boundaries with the same parameters from two point 

clouds measured under different conditions. In our evaluation, our method could detect almost the same road boundaries from the two 

point clouds using the same parameter settings. 

 

 

1. INTRODUCTION 

 

Mobile Mapping System (MMS) equipped with a high-density 

LiDAR scanner is widely used for mapping. MMS allows us to 

make maps more accurately than conventional aerial 

photogrammetry and more efficiently than on-site survey. 

 

The demand for mapping road edges has been very high due to 

the development of road ledger maps or autonomous driving 

maps, which are an important factor of the autonomous driving 

technology. Although these maps are drawn by human operators 

conventionally, there has been a problem of low productivity and 

variation in accuracy depending on operators’ skills. Considering 

the growing need for high precision mapping, automation of the 

mapping of the road boundary is inevitable. 

 

Serna, et al. rasterized point clouds as images, in which the 

maximum and minimum heights were maintained as pixel values 

(Serna, 2013). Then, they detected road curves using the smallest 

elevation images. Kumar et al. rasterized the heights, reflectance 

values, and pulse ranges of a point cloud as an image, and 

extracted road boundaries from the image by using the snake 

model (Kumar, 2013). 

 

However, in these methods, pixel sizes have to be carefully 

determined, because the quality of the image largely depends on 

the pixel size. While large pixel sizes lose detail shapes, small 

sizes lead to highly fragmented images and large computational 

cost. 

 

To solve these problems, scanline-based approaches can be 

applied. In scanline-based approaches, Miyazaki et al. segmented 

a point cloud into scanlines using the angles of sequential points. 

Then, they detected road curves by applying region growing to 

line segments (Miyazaki, 2014). Cabo, et al. also generated 

scanlines from point clouds using time stamps. The scanlines 
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were simplified into straight lines using the method proposed in 

Douglas and Peucker (Douglas, 1973), and segmented the 

straight lines into neighbour groups (Cabo, 2016). Line groups 

were filtered to obtain groups of road lines, and road edges were 

detected from the road line groups. They reported the success rate 

was over 99%. 

 

However, methods based on scanlines largely depend on 

intervals of scanlines. The resolutions of point clouds obtained 

by the MMS are typically very high on scanlines, but low 

between scanlines, as shown in Figure 1. The resolutions vary 

depending on several factors, such as scanner specifications, 

vehicle speed, and distances. The intervals of scanlines become 

large as the rotational frequency becomes large, the 

pulse repetition frequency becomes small, or the vehicle speed 

becomes large. In addition, the point density becomes low as the 

 
 

Figure 1. Point cloud measured under different conditions 
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distance from the laser scanner is large. The point density also 

varies by the angles between laser beams and surfaces.  

 

Since the interval of scanlines varies due to many factors, it is 

difficult to specify particular thresholds for scanline-based 

methods. Therefore, in previous methods, it was necessary to 

fine-tune parameters according to measurement conditions in 

order to obtain stable mapping results.  

 

In this study, we propose a method to generate normalized 

scanlines from point clouds obtained under various measurement 

conditions. The proposed method enables us to generate 

scanlines with arbitrary intervals. 

 

In this paper, Section 2 describes the outline and applications of 

the proposed method. In Section 3, we describe our method for 

extracting road curbs. Section 4 describes the evaluation 

methodology, and Section 5 shows the evaluation results. Section 

6 concludes our paper and discuss future work. 

 

 

2. NORMALIZED SCANLINE 

 

2.1 Methodology 

 

Normalized scanlines are generated from point clouds with 

arbitrary intervals. Our method consists of the following steps.  

(a) Mesh models are created from point clouds. 
(b) Section planes perpendicular to the MMS trajectory are 

placed at equal intervals.  

(c) The normalized scanlines are calculated as intersection lines 

between mesh models and section planes. 

 

 

 

 
 

Figure 2. Process for creating normalized scanlines 

 

Figure 2 shows a process for creating normalized scanlines. 

Normalized scanlines can be generated at any interval by 

changing the intervals of section planes.  

 

2.1.1 Mesh generation: Point clouds are converted into 

triangular meshes by connecting neighbour points. Each point 

cloud can be mapped onto an 2D image using the method 

proposed by Kohira, et al (Kohira, 2017). In this method, each 

point is mapped onto a pixel of a 2D image using the GPS time, 

the rotational frequency, and the pulse repetition frequency. In 

order to generate a mesh model, triangles are generated by 

connecting adjacent points on the image if the distances are 

smaller than a threshold.  This method is suitable for point clouds 

captured using the MMS. Conventional neighbor search methods, 

such as kd-tree (Jon, 1975) and octree, often fail to connect points 

on different scanlines because of sparse point density in the 

region between scanlines. 

 

2.1.2 Section planes: In MMS data, the trajectory of the MMS is 

maintained as a sequence of coordinates. The trajectory can be 

represented as a polyline by connecting coordinates in order. 

Then, points are sampled from the trajectory polyline at equal 

intervals. The intervals can be arbitrary specified. Next, a section 

plane is generated at each point so that the normal vectors are 

perpendicular to the trajectory polyline. The interval between 

section planes becomes the interval of normalized scanlines. 

  

2.1.3 Normalized scanlines: The intersection between a section 

plane and each triangle becomes a line segment. Line segments 

can be obtained by calculating intersections between all triangles 

in the triangular mesh and each section plane. Normalized 

scanlines are generated as polylines by connecting line segments 

on each section plane. 

 

2.2 Properties of normalized scanlines 

 

Normalized scanlines have useful properties for applications 

such as object detection and segmentation. We discuss properties 

of normalized scanlines. 

 

2.2.1 Perpendicular property: Normalized scanlines are 

perpendicular to the MMS trajectory, regardless of the 

installation angle of laser scanners. Figure 3 shows the top views 

of the original scanlines and the normalized scanlines. The red 

line is the MMS trajectory. The perpendicular property is useful 

for extracting features arranged along the roads.  

 

 

 

 
(a) The original scanlines               (b) Normalized scanlines 

 

Figure 3. The original scanlines and normalized scanlines 

 

 

2.2.2 Constant scanline intervals: The intervals of normalized 

scanlines can be arbitrarily specified, regardless of measurement 

conditions. While the intervals of original scanlines vary 

depending on the vehicle speed during measurement, the 

MMS point clouds
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intervals of normalized scanlines are constant. Therefore, it is 

possible to avoid parameter adjustments for feature extraction. 

 

2.2.3 Up-sampling of points: By setting small intervals for 

normalized scanlines, points can be up-sampled in regions with 

low point density. This property makes it easier to develop 

feature extraction algorithms. 

 

 

3. ROAD BOUNDARY DETECTION 

 

The properties of normalized scanlines are useful for extracting 

roadside features such as curbs, gutters, guardrails, planting, 

fences, electric wires, road markings, and buildings.   

 

In this paper, we discuss methods for identifying the road 

boundaries by detecting road curbs from point clouds measured 

under different conditions.  

 

Figure 4 shows a process for detecting the road boundary. In 

Figure 4(a), the point closest to the the MMS trajectory is selected 

from each normalized scanline. The selected point is referred to 

as the seed point.  

Then, height changes are detected along each normalized 

scanline, as shown in Figure 4(b). The height change points are 

regarded as curb candidates. The threshold for height change is 

specified based on the height of curbs. Since curbs are lower than 

other roadside features such as guardrails, curb candidate points 

are searched only from points near road surfaces. The road 

surface height can be obtained using the MMS trajectory and the 

installation height of the laser scanner. The thresholds used in this 

paper are summarized in Table 1. 

 

In Figure 4(c), points near curb candidates are extracted from 

each normalized scanline. The range for neighbour points is 

shown in Table 1. Then, planes are extracted from the curb 

candidate regions using the RANSAC method (Martin, 1981), as 

shown in Figure 4(d). If three planes are detected, they are 

regarded as the two horizontal parts and one vertical part of a 

curb. The thresholds for plane detection are shown in Table 1. 

Criteria for horizontal and vertical planes are specified as the 

angles from the Z axis. 

 

Section planes for normalized scanlines are selected in the range 

of curb regions, as shown in Figure 4(e). The section planes are 

perpendicular to the MMS trajectory. Then, as shown in Figure 

4(f), points on the road boundary are calculated as the 

intersection points among the detected planes and the section 

planes. The bottom and top points of the curb are detected in this 

step. Points on the road boundary are connected in order so that 

continuous curves can be obtained, as shown in Figure 4(g). The 

threshold for connection was specified as 2.5m. Finally, the road 

boundary is obtained, as shown in Figure 4(h). 

 

 

Step Parameter name Value 

(b) 

Max search width 0.1 m 

LiDAR sensor height 2.6 m 

Clipping height from road 45 cm 

Minimum curb height 3 cm 

(c) 
Max distance along scanline 50 cm 

Max distance along trajectory 40 cm 

(d) 

Max Distance for RANSAC 5 mm 

Vertical plane (angle from Z axis) 30 deg 

Horizontal plane (angle from Z axis) 70 deg 

(g) Max distance for connection 2.5 m 

 

Table 1. Parameter values 

 

 

4. EVALUATION METHOD 

 

4.1 MMS Data 

 

We evaluated our method using actual MMS data. The MMS was 

the MX-8, which was developed by Trimble (Trimble websites, 

2020). This MMS has two VQ-250 LiDAR scanners on the right 

and left of the vehicle. The MMS with MX-8 is shown in Figure 

5. The specifications of the LIDAR scanner (RIEGL websites, 

2020) are listed in Table 2. 

 

Although this MMS is equipped with two LiDAR scanners, only 

the left side LiDAR scanner was used for evaluation. The reason  

 
Figure 4. Drawing procedure of road boundary 
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is to avoid measurement errors caused by the difference in 

measurement timing between the left and right LiDAR scanners. 

 

Point clouds were captured in Inagi City, Tokyo, Japan. In this 

measurement, point clouds were captured twice with different 

vehicle speeds on the same route. Therefore, the two point clouds 

contain the same curbs, but their measurement conditions are 

different. We use these point clouds for evaluating our method. 

 

4.2 Evaluation method 

 

We evaluated our method in qualitative and quantitative ways. In 

the qualitative evaluation, we displayed extracted curbs on the 

screen, and investigated locations of successful and failed curb 

detection. Then, we evaluated the deviation between extracted 

and actual curb corners on the section view. In the quantitative 

evaluation, we divided point clouds along the MMS trajectory at 

intervals of 2m, and evaluated extracted curbs in each divided 

range. This evaluation was applied to the two point-clouds 

captured with different measurement conditions.  

  

The following criteria were used to determine success or failure 

in curb extraction. First, we excluded devaluation parts from 

evaluation, whether such parts were extracted as curbs or not. 

Secondly, undetected curbs were evaluated as failures even when 

points on curbs were missing due to parked or running vehicles. 

Thirdly, when the curb location was different from actual one, it 

is evaluated as erroneous extraction. 

 

 

 

5. EXPERIMENT RESULTS 

 

5.1 Qualitative evaluation  

 

Figure 6 shows a curb extracted using normalized scanlines. 

Black points indicate vertices on normalized scanlines. In Figure  

6(a), two corner points are calculated as intersections among a 

section plane and extracted planes. In Figure 6(b), corner lines 

are also extracted by connecting corner points. 

 

Figure 7(a) shows point clouds captured twice on different 

measurement conditions. We extracted curbs from the two point-

clouds using the same extraction thresholds. We denote these two 

point-clouds as A and B. We generated normalized scanlines and 

detected curbs from each point-cloud. The extraction results are 

shown in Figure 7(b) and 7(c). Almost the same results could be 

obtained in both point clouds without threshold adjustment. Our 

method could stably detect straight and curved curbs, as shown 

in Figure 8. 

 

We have found that extraction fails in some cases. The causes of 

failure cases can be categorized into five categories. The first is 

occlusion by vehicles. The second is the occurrence of 

unmeasured area due to right and left turns. The third is small 

steps of curbs. The fourth is the false extraction of steps other 

than curbs. The fifth is duplicated measurement from different 

directions. We describe the details of each case as follows. 

 

 
 

Figure 5. MMS with MX-8 

 

 

Scanner Model VQ250 

Vendor RIEGL 

Range of Scanning 

angle 
360 degrees 

Max LIDAR pulse 300 kHz 

Scanning rate 100 Hz 

Measurement range 300 m (Max) 

Measurable distance 
75 m (10% Intensity) 

200 m (80% Intensity) 

Measurement error 10 mm (150 m Distance) 

Angular resolution 0.001 degrees 

Distance between two 

points (5 m Distance) 

7 -15 cm (traveling 

direction) 

2 cm   (right angle 

direction) 

 

Table 2. Specification of the LIDAR scanner 

 

            
(a) Corner points on section plane  (b) Corner lines 

 

Figure 6. Extracted road curb 

 

 

 

 
(a) Point clouds on the survey area 

 

 

 
(b) Road boundary extracted from point cloud A 

 

 

 
(c) Road boundary extracted from point cloud B 

 

Figure 7. Road boundaries extracted from point clouds captured 

under different conditions 
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(1) Occlusion by vehicle: When curbs are occluded by parked or 

running vehicles, points on curves are missing. The boundaries 

of the ground and vehicles are often incorrectly extracted as curbs, 

as shown in Figure 9 and 10. Figure 9(a) shows point clouds 

including an on-street parking vehicle. Figure 9(b) shows the 

road boundary extracted from point clouds. The curb occluded by 

the parked vehicle could not be detected. Figure 10(a) shows 

point clouds including a vehicle running in parallel with the 

MMS. Figure 10(b) shows the extracted road boundary. 

Occluded curbs could not be detected, and the incorrect road 

boundary was detected from points of the vehicle. 

 

(2) Unmeasurable regions at crossroads: When the MMS turns 

left or right at the crossroad, roadsides cannot be measured. An 

example is shown in Figure 11. The red line shows the MMS 

trajectory. There are unmeasurable regions in the yellow dashed 

line. 

 

(3) Small steps: The heights of curbs become small at the 

crossroads and the entrances of buildings. In this evaluation, the 

height threshold was set to 3 cm. Then, curbs with small steps 

partially failed to be detected. Figure 12 shows successful and 

failure cases for curbs with small steps. 

 

 
(a) Extraction of straight curbs 

 

 
(b) Extraction of curved curbs 

 

Figure 8. Closeups of straight and curved curbs 

 

 

 
(a) Point clouds 

 

 
(b) Incorrect extraction of a parked vehicle 

 

Figure 9. Mistakenly extracted due to a parked vehicle 

 

 

 
(a) Point clouds 

 

 
(b) Incorrect extraction of parallel running vehicle 

 

Figure 10. Mistakenly extracted due to running parallel 

vehicle with a MMS 

 

 

 

 
 

Figure 11. Missing LiDAR due to MMS turning left or right 
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(4) Steps other than curbs: The borders of private lands or 

planting areas may be extracted as steps.  

 

(5) Duplicated measurement: When points of the same object 

are measured from different sides, measured points may be 

misplaced, as shown in Figure 13. Figure 13(a) shows point 

clouds and Figure 13(b) shows a section view. In this case, points 

measured from different sides were not correctly aligned, and the 

differences were detected as steps. 

 

5.2 Quantitative evaluation 

 

Table 3 shows the results of quantitative evaluation. Precision, 

recall, and F measure are shown in this table.  

 

The accuracy of extracted boundary from point cloud A and B 

were almost the same. Most of the differences were due to on-

street parking vehicles and parallel running vehicles. In other 

words, no difference was observed depending on the vehicle 

speed of measurement and the distance to the target. This result 

shows that normalized scanlines are effective for extracting 

features from point clouds captured under different conditions.  

 

Overall F measure is 93.94. The extraction accuracy at left side 

is more accurate than the accuracy at the right side. This is 

because there were many parallel running vehicles on the right 

side. According to the Japanese road traffic rules, vehicles are 

driving on the left. Therefore, it is considered that the extraction 

rate of curbs on the right side was low.  

 

 

6. CONCLUSION 

 

In this paper, we proposed normalized scanlines for enabling 

feature extraction without parameter tunings. In our method, the 

MMS point clouds were converted into mesh models, and 

normalized scanlines were generated as intersections between 

section planes and the mesh models. Section planes were planes 

perpendicular to the MMS trajectory. The intervals of normalized 

scanline can be arbitrary determined,  regardless of the running 

speed of the MMS and the distance from the MMS trajectory.  

The normalized scanlines are suitable for extracting features 

parallel to the road like curbs, guardrails, etc. 

 

We also proposed a method to extract the road boundaries using 

normalized scanlines. In our evaluation, the success rate was 94%. 

We also investigated failure cases for curb detection. The main 

causes were not point processing but the failure of measurement. 

 

In future work, we would like to improve feature extraction. 

Since we investigated the causes of failure cases in detail, 

exceptional procedures could be developed for each case. In 

addition, some steps were incorrectly detected as curbs. Deep 

learning approaches could be used to classify various tpes of 

steps  
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(a) Point clouds                           (b) Section view 

 

Figure 13. Duplicated measurement from different sides 

 

 

Condition 
Road 

side 
Precision Recall 

F 

measure 

A 
Left 95.37 93.71 94.53 

Right 94.96 93.62 94.29 

B 
Left 96.50 92.45 94.43 

Right 92.80 92.41 92.60 

Total 94.89 93.01 93.94 

 

Table 3. Quantitative evaluation of curb detection 

 

 
        (a) Success 

 

 
 (b) Failure 

 

Figure 12. Extraction results of curbs with small steps 
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