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ABSTRACT: 

 

The technology of airborne laser scanning enables fast and accurate gathering spatial data containing also echoes from the terrain 

below the vegetation canopy that is beneficial for topographic mapping of wooded sandstone landscapes in Czechia, Poland, and 

Germany. The challengeable task is to determine the ground points in the point cloud because commonly used filtration methods do 

not successfully distinguish between vegetation and rock pillars and faces. In this paper, we replace filtration with classification 

approach using the features derived from characteristics of points within a neighbourhood of optimized sizes, such as 

eigenvalue-based features and echo ratio. Random Forest classifier is trained and tested on the manually labelled dataset with 

a density of almost 650 points/m2 from the Adršpach-Teplice Rocks. The overall accuracy reaches 87% but recall and precision of 

non-ground points are unsatisfactory. Misclassified non-ground points are located also within trees, thus we do not consider the 

result as suitable for DTM processing without further processing.  

 

 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

The sandstone phenomenon forms an unusual landscape in the 

northern part of Czechia and also extends beyond the borders of 

Germany and Poland (e.g. Bohemian and Saxon Switzerland, 

Stołowe Mountains, Adršpach-Teplice Rocks). In its wildest 

form, the landscape is called “rock cities” due to the similarities 

of steep walls and deep and narrow gorges with buildings along 

the streets in human-made towns. Intricately passable terrain 

together with the fact that in climatic conditions of the central 

Europe the sandstone areas are covered with dense vegetation 

complicate topographic mapping of these regions. 

 

The airborne laser scanning (ALS) is a suitable method for 

topographic mapping in wooded areas as it allows for gathering 

data about the shape of the terrain below vegetation. The more 

challengeable part of dealing with ALS data is the processing 

because the categorization of object types, which the echo 

comes from, is not a trivial task. A lot has been discussed about 

the filtration aiming to select the ground points but commonly 

used algorithms (Axelsson, 2000; Kraus and Pfeifer, 1998) tend 

to smooth the rock formations or imperfectly filter out the 

vegetation points, depending on parameter settings (Lysák, 

2016; Tomková, 2018).  

 

Thus, in our study in order to determine the terrain points, we 

apply a state-of-the-art approach for classifying ALS point 

cloud from a sandstone landscape instead of using the filtration 

algorithms. The goal is to evaluate whether it is beneficial to 

distinguish between terrain and off-terrain echoes in the 

classification algorithm according to the properties of point 

neighbourhood instead of using a widely-used filtration 

algorithm based strictly on a point position in the space. 

 

 

The extraction of relevant features is essential for classification. 

Adaptive neighbourhood selection is one of the approaches used 

to maximize the relevance of the features (Weinmann et al., 

2014). It is employed together with features describing shape of 

point cloud within the neighbourhood expressed mainly by 

eigenvalues (Jutzi and Gross, 2009; Weinmann, 2016). The 

Random Forest classifier is trained and used to predict point’s 

categorization.  

 

The point cloud used for this experiment captures a part of 

Adršpach-Teplice Rocks and was acquired in December 2019. 

Laser scanner was carried on a drone in low altitude with speed 

about 2.1 m/s, The density of all echoes reaches 640 points/m2, 

density of the last echoes 530 points/m2. There are no buildings 

inside the area of interest and other man-made objects (e.g. 

stairs and fences) are small and rare. Due to this fact, we 

discriminated only two classes of points: (i) ground points, i.e. 

echoes from terrain and rocks and (ii) non-ground points 

corresponding by far mostly to echoes from vegetation. 

 

The paper is organized as follows. Section 2 describes the 

methodology and it is further divided into subsections about 

point neighbourhood, extraction of features, selection of the 

relevant features and finally, the classification. As the acquired 

dataset is rather unique, its characteristics are more thoroughly 

discussed in Section 3. The results of our experiment are 

presented in Section 4 and Section 5 provides concluding 

remarks and suggestions for future research. 

 

2. METHODOLOGY 

For the experiment, a commonly structured workflow was used 

(e.g. Weinmann et al., 2014; Blomley et al., 2016), consisting of 

four components: neighbourhood definition (Section 2.1), 

feature extraction (Section 2.2), selection of relevant features 

(Section 2.3) and classification (Section 2.4). 
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2.1 Neighbourhood Definition 

The followed framework of point cloud classification requires 

knowledge of point characteristics derived from its 

neighbourhood (Weinmann, 2016). The neighbourhood of 

certain point allows to examine a part of or the whole object 

which the point belongs to and thus, to see the point in the 

context of the object. The neighbourhood can be defined using 

two different approaches: (i) as a number of k nearest 

neighbours or (ii) as a distance from the point either in 3D 

(spherical neighbourhood) or in 2D (cylindrical 

neighbourhood).  The advantage of k nearest neighbours lies in 

adaptation to varying point density in the dataset. However, in 

comparison to the distance neighbourhood, it does not 

necessarily preserve the relationship to a real object size and 

therefore, the context of the object might be lost. In both cases, 

determination of the parameters k or radius based on prior 

knowledge of the dataset is essential. 

 

To avoid assumptions and combine benefits of both approaches, 

the optimal parameters can be estimated automatically for each 

point of the dataset. According to Weinmann et al. (2014), it 

results in more relevant features and thus better performance of 

classification. Blomley et al. (2014) proposed a method for the 

optimization of cylindrical neighbourhood based on shape 

distribution features known from object recognition. Demantké 

et al. (2011) used the dimensionality features derived from 

eigenvalues for the selection of optimal radius of spherical 

neighbourhood. By minimizing the Shannon entropy of 

dimensionality features, this method looks for the 

neighbourhood which favours one dimensionality the most. 

Weinmann et al. (2014) followed up with finding optimal 

k nearest neighbours by minimizing the Shannon entropy E of 

relativized eigenvalues ei: 
  

 𝐸 =  −𝑒1 ln(𝑒1) − 𝑒2 ln(𝑒2) − 𝑒3 ln(𝑒3) (1) 
  

Although Weinmann et al. (2014) proposed it as a more general 

approach than used by Demantké et al. (2011) because of 

avoiding assumptions on the dataset for determining minimal 

and maximal possible values, adjustment of the upper limit of 

k nearest neighbours is necessary in our research. It is described 

in detail in Section 4.1.  

 

2.2 Feature Extraction 

When designing the experiment, all potentially useful features 

are calculated and afterwards, only those that have been proven 

being truly relevant and suitable for the classification, are 

selected. A lot of features have been developed for describing  

the local neighbourhood of a point, e.g. shape distribution 

features (Blomley et al., 2014), SHOT descriptors (Tombari et 

al., 2010), point feature histograms (Rusu et al., 2009). In the 

proposed experiment, we largely followed a strategy of 

combining interpretable 3D and 2D features (Weinmann et al., 

2013; Hackel et al., 2016). In total, the employed feature vector 

consists of 18 features divided into 5 categories as shown in 

Table 1. The 3D eigenvalue-based features are derived from the 

normalized eigenvalues e1, e2, e3 of 3D structure tensor 

representing the covariance matrix of neighbouring points (Jutzi 

and Gross, 2009). Similarly, the 2D eigenvalue-based features 

are based on normalized eigenvalues e1, e2 of neighbouring 

points projected onto a ground plane. The echo ratio is the ratio 

of the number of points within a spherical neighbourhood and 

points within a cylindrical neighbourhood with the same radius 

and infinite height (Höfle et al., 2009). Higher values indicate 

a flat surface while lower values correspond to a vertically 

scattered object.  

Neighbourhood features Height descriptors 

Number of 

points 
𝑘 Height 𝑧 

Radius 𝑟 
Difference of 
heights 

Δ𝑧 

Local point 

density 
𝐷 =

𝑘 + 1

4/3(𝜋𝑟3)
 

Variance of 

heights 
𝜎𝑧 

2D eigenvalue-based features Verticality 𝑣 = 1 − 𝑛𝑧 

Sum of ei 𝑆2𝐷 =  ∑ 𝑒𝑖 Echo ratio 

Ratio of ei 𝑅2𝐷 =  
𝑒2

𝑒1

 Echo ratio 𝐸𝑐ℎ𝑜 =
𝑘

𝑘𝑐𝑦𝑙𝑖𝑛𝑑𝑟.

 

3D eigenvalue-based features 

Linearity 𝐿 =
𝑒1 − 𝑒2

𝑒1

 Anisotropy 𝐴 =
𝑒1 − 𝑒3

𝑒1

 

Planarity 𝑃 =
𝑒2 − 𝑒3

𝑒1

 Eigenentropy 𝐸 = − ∑ 𝑒𝑖 ln(𝑒𝑖) 

Sphericity 𝑆 =
𝑒3

𝑒1

 Sum of ei 𝑆3𝐷 = ∑ 𝑒𝑖 

Omnivariance 𝑂 = √𝑒1𝑒2𝑒3
3  

Change of 
curvature 

𝐶 =
𝑒3

𝑒1 + 𝑒2 + 𝑒3
 

Table 1. 18 values of a feature vector; ei is the ith eigenvalue 

(downwardly ordered) and nz is the third component of the 

normal vector n. 

 

2.3 Feature Selection 

The effect known as Hughes phenomenon, confirmed by e.g. 

Weinmann et al. (2013), declares that more features as input 

into classification do not ensure better performance. The 

selection of relevant features is therefore a part of our 

workflow. Feature selectors can be divided into three 

categories: filter-based, wrapper-based and embedded. In 

contrast to the other categories, filter-based selectors are 

classifier-independent. It determines slightly lower resulting 

performance of classification but it also implies better 

robustness and less time-consuming processing. 

 

The univariate filter-based strategies evaluate the most suitable 

features according to their scores in metrics that address 

properties like information, consistency, or dependency in 

feature-class relation. In addition, the multivariate strategies 

take into consideration also the correlation between features, so 

apart from irrelevant features, they also remove those that are 

redundant. As examples of multivariate filter-based selectors, 

Correlation-based Feature Selection algorithm (CFS) (Hall, 

1999) and Fast Correlation-based Filter (FCBF) (Yu and Liu, 

2003) can be mentioned. For a simple and fast selection of the 

generally relevant features, the univariate filters are satisfactory. 

In our work, we intend to evaluate normalized features based on 

the correlation and information gain. 

 

2.4 Classification 

Finally, the feature vector serves as an input into the 

classification which results in labelled points. Supervised 

classification methods require to be learned using training 

dataset with known labels. For the 3D scene analysis, 

approaches like Nearest Neighbour classifier (Jutzi and Gross, 

2009), Maximum Likelihood classifier (Bartels and Wei, 2006), 

Support Vector Machine (Lodha et al., 2006), and Random 

Forest (Chehata et al., 2009) are extensively employed 
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(Weinmann, 2016). Those classifiers evaluate each point 

separately and therefore their results might be spatially 

inhomogeneous and noisy. It does not meet the reality where for 

example the existence of vegetation point surrounded by ground 

points has the low probability. Contextual classification can 

improve this drawback by taking into consideration apart from 

the feature vector also class labels of neighbouring points. 

Conditional Random Fields (Niemeyer et al., 2012) and Markov 

Networks (Shapovalov et al., 2010) can be mentioned as 

representatives of the contextual classification. The 

disadvantage of these approaches lies in the increasing 

computational effort and exactness and completeness of 

modelling the relationships. 

 

In our experiment, we decided to use Random Forest classifier 

due to the simple interpretability of trained trees and decision 

rules. The performance and computational efficiency of 

Random Forest together with the optimal neighbourhood 

selection was emphasized by Weinmann (2015). The Random 

Forest consists of certain number of independently trained 

decision trees and the resulting class is chosen by major voting 

by all of these trees. While decision tree is considered as a weak 

classifier due to high sensitivity to small changes in training 

dataset, the Random Forest utilizes the ensemble of decision 

trees to be a robust and stable classifier. Each tree is trained 

using the randomly selected sample of training data with 

replacement, resulting in the same number of observations as 

the whole training dataset. This method is called bagging 

(bootstrap aggregating). In each sampling run, also a subset of 

features is randomly selected. Not only for this reason, it is 

important to select suitable features as an input for the classifier, 

otherwise it might happen that some trees will be trained using 

mainly or only inconsistent and irrelevant features. 

 

3. DATASET 

As the research is focused on specific type of landscape and 

highly dense point cloud, it is appropriate to mention the 

characteristics of used dataset in detail. While the study area is 

briefly described in Section 3.1, the circumstances of 

acquisition of the point cloud are presented in Section 3.2, and 

Section 3.2 aims to clarify the process of preparing the point 

cloud to be used as training and testing sets in the classification. 

More details about the dataset can be found in Tomková, Lysák 

(2020). 

 

3.1 Location of Interest 

The location of interest is situated in the Adršpach-Teplice 

Rocks in Czechia, around the highest rock pillar Milenci 

(50°36'39.112"N, 16°6'49.084"E, and 81.4 meters high), see 

Figure 1. The area is protected since 1933 because of unique 

landscape as well as isolated occurrence of plant and animal 

species. With its 18 km2, it is the most extensive region of this 

kind in Europe. The local touristic circuit through the rock 

features is visited by more than 300,000 people every year. The 

shapes are results of erosion of about 130 meters heavy compact 

sandstone plateau sedimented in Late Cretaceous and lifted 

during Alpine orogeny. 

 

3.2 Point Cloud Acquisition 

The study area of approx. 100 × 100 m2 is a part of a larger 

region which was scanned with the RIEGL’s miniVUX-1UAV 

scanner carried on a hexacopter DJI Matrice 600 Pro. The 

acquisition was held in the middle of December 2019 in the  

 
Figure 1. Adršpach rocks with Milenci rock formation in the 

middle and smaller Uhlířská rock pillar on the right 

 

period without snow cover. To obtain a high density point 

cloud, the drone was flying about 40 meters above the highest 

point in the location with speed of 2.1 m/s. It resulted in the 

point cloud with 640 points/m2 and 530 last returns/m2. In total 

there are 6.6 million points in the location of interest. Almost 

70% of points in the dataset are the single returns, 84% last 

returns. Although it is common practice to search for the ground 

points only in last returns, it is not suitable for this kind of 

landscape because also many of first or intermediate echoes 

might come from rock faces due to their steepness and height 

variance. The purpose of obtaining the point cloud with such 

a high density is to evaluate the effect of data density on the 

rock shapes in the resulting digital relief model (DTM) within 

our future research. 

  

3.3 Pre-processing 

The pre-processing consisted of two steps. The aim of the first 

one was to derive a high-quality point cloud. The second goal 

was to manually assign the class to each point in order to 

prepare the training and testing sets for the points cloud 

classification. A part of the first step was a relative alignment of 

flight strips that locally left residuals due to difficulties with 

finding planes on uneven surfaces. 

 

As it was already mentioned, the commonly applied filtration 

methods do not produce satisfactory results in the studied 

landscape. Thus, the reference dataset needs to be prepared 

manually. The functions of the toolbox LAS Dataset in ArcGIS 

Desktop (Esri, 2019, Figure 2) was used for this purpose. Each 

point was classified as ground or non-ground according to the 

interpretation of the profile and 3D view of the data and 

knowledge of the location. Despite the point cloud density, 

in the cases of low vegetation and thickets, the separation 

between the two classes might not be absolutely reliable. 
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To train the classification algorithm in acceptable computational 

time, the whole dataset was thinned. A random point within 

a cube of size 0.08 meters was selected resulting in dataset of 

about 1 million points. For the neighbourhood selection and 

calculation of features, the original dataset was used. Thus, the 

mentioned point density and other characteristics of the dataset 

remain valid. 

 

    
Figure 2. Profiles of manually filtered thinned data. Brown dots 

correspond to ground points and green dots to non-ground. In 

the images, Uhlířská rock pillar (Figure 1) with the tree growing 

from its face can be seen on the left and a high spruce between a 

rock face and a smaller rock formation on the right. 

 

4. EXPERIMENT AND RESULTS 

In the following part, we focus on a performance of our 

workflow. First, statistics of the optimal neighbourhood search 

are introduced in Section 4.1, followed by the feature selection 

presented in Section 4.2. Finally, the results of the established 

classification pipeline are shown in Section 4.3. 

 

4.1 Optimal Neighbourhood 

The optimal neighbourhood is searched by minimizing the 

entropy of eigenvalues derived from the neighbouring points, 

based on approach of Weinmann et al. (2014). Because the goal 

is to take into consideration the context of neighbouring points, 

we determine the minimal radius of neighbourhood to 0.1 m. 

Instead of 100 nearest neighbours at most as Weinmann et al. 

(2014) proposed, the upper limit is set to 2 000 due to the high 

density of the point cloud. Also, the step between 10 and 2 000 

points is adapted to 30 intervals due to a higher computational 

effort with increasing number of choices. The intervals are 

growing logarithmically because we suppose that there is 

a higher probability of capturing relevant context within smaller 

numbers of points that tend to be closer to each other. 

 

For the evaluation of results of this step, we consider the radius 

as a more intuitive indicator than number of neighbouring 

points. Figure 3 shows the distribution of the optimal 

neighbouring radius. It is obvious that there is no observable 

trend in the size of the optimal neighbourhood with respect to 

the classes. The lower the radius, the higher the frequency of  

 
Figure 3. Distribution of radius of the optimal neighbourhood 

with respect to the manually labelled classes. The points with 

bigger neighbourhood than 2.0 m (only 3.5% of all) are not 

shown in the graph. 

 

occurrence is registered. In contrast to figures in Weinmann et 

al. (2015), the graph does not show the trend with increasing 

frequency at higher values because of the higher upper limit 

used in our experiment. Mean of radii computed from the 

dataset equals to 0.75 m, however, it is distorted by outliers 

with the maximum of 7.4 meters. For the half of the points, 

smaller radius than 0.6 m is chosen. 

 

4.2 Feature Selection Assessment 

The relevance of features is evaluated using two metrics – 

correlation and mutual information. Based on the results, only 

eight features are finally employed as an input into 

classification task - all the eigenvalue-based features except for 

the sum of eigenvalues, plus echo ratio. These features reach the 

best rating in both evaluation methods (Figure 4). A high value 

of mutual information is gained in case of height. But according 

to the correlation and also our knowledge of the dataset, height 

cannot predict the class because trees and rock pillars can be 

similarly high. 

 

 
Figure 4. Relevance of features according to the correlation and 

mutual information values converted to 0 – 1 interval. See Table 

1 for explanation of feature abbreviations. 

 

4.3 Classification Results 

Before the classification is trained, several parameters including 

number of trees and their maximal depth is tuned using the Grid 

Search approach. The dataset is randomly split into training and 

testing sets in ratio 7:3. There are about 80% of ground and 

20% of non-ground points in each dataset that shows the 

imbalanced mixture of classes. The confusion matrix showing 

the percentage of correctly and incorrectly classified points in 

terms of classes and also class-wise recall and precision are in 

Table 2. The overall accuracy of testing set reaches 86.7% but 

due to the prevalence of ground points, the metric is distorted. If 

all the points are classified as ground, the overall accuracy will 

be 80%. Thus, Weinmann et al. (2015) proposed to consider 

class-wise precision and mainly recall. While these metrics for 

ground points are satisfactory, the classification of non-ground 
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class is less successful. Only 64.0% of real non-ground points 

are identified and the rest is categorized as ground. As can be 

seen in Figure 5, these misclassified points (orange dots) are not 

just small thickets that are too hard to recognize but also 

isolated points within the trees. On the other hand, the error of 

almost 29% (complement to recall) of predicted non-ground 

points that should be in the ground class, is more acceptable. 

Moreover, a part of them are probably very low thickets and 

herbal cover which is difficult to separate from the ground even 

manually because there are no echoes from the ground below 

them. Other part of these misclassified points is correlated with 

occurrence of steep rock faces. 

 

 
Ground 

(reference) 

Non-ground 

(reference) 
Recall 

Ground 
(predicted) 

73.0% 7.7% 90.5% 

Non-ground 

(predicted) 
5.6% 13.7% 71.1% 

Precision 92.9% 64.0%  

Table 2. Confusion matrix showing the percentage of classified 

points together with values of precision and recall for both 

classes. 

 

 
Figure 5. 3D view of a part of testing data. Brown and green 

dots remark correctly classified ground and non-ground points, 

orange dots are misclassified non-ground and purple 

misclassified ground points. 

 

5. DISCUSSION AND CONCLUSIONS 

The experiment presented in this paper mostly follows 

a traditional approach of point cloud classification, but applied 

on the unusual dataset. The primary motivation for this research 

is to test whether the classification can substitute filtration 

which is often not successful in determining the ground points 

in this kind of landscape, where the mixture of rock pillars and 

vertical faces together with high-grown trees and thickets is 

present. As the results show, the classification reaches high 

performance in total (comparable to Weinmann et al., 2017) but 

according to the imbalanced dataset, class-wise metrics are 

more explainable. The precision and recall of ground points are 

satisfactory. The lower precision of non-ground class means 

that a significant number of vegetation points remain in the 

ground class which might be an effect of low ratio of 

non-ground points in the dataset. When looking deeper into the 

spatial distribution of these points, it is evident that these 

misclassifications are among others single points of trees. These 

errors would result in non-existent shapes in modelling of 

DTM. On the other hand, the occurrence of the misclassified 

ground points is slightly more acceptable from the perspective 

of further processing, because these points would not 

significantly affect the shape or even the appearance of rock 

pillar in DTM due to the high density of the point cloud and 

relative spatial isolation of these misclassified points. 

 

The isolation of misclassified points in general leads us to an 

idea of future work with using the contextual classifiers instead 

of point-wise approach. The other modification of the workflow 

that might increase the performance of classification in the case 

of steep faces is to pull out these points as another class. 

Concerning the isolated ground points on trees, an idea for 

future research is that an increased minimal size of the 

neighbourhood may result in the characteristics that better 

reflect the context and thus, better distinguish between classes. 

Our future work will also focus on classification of thinned 

point cloud to explore the effect of lower point density on the 

feature relevance and separability. 
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