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ABSTRACT: 

 

Mobile laser scanning systems (MLS) have been widely used in collecting three-dimensional point clouds for many applications, such 

as 3D mapping, road facilities inventory and high definition map. Although MLS is calibrated accurately to obtain precise locations of 

point clouds, it is still challenging to obtain precise locations of point clouds in the areas of GPS signal denied or narrow streets with 

high dense buildings, resulting in uneven position deviations of point clouds between the overlapping trajectory areas. In this paper, a 

marker-free calibration method is proposed to solve the above problems. The proposed method firstly partitions the trajectory into 

segments according to the error distribution while collecting the point clouds. Secondly, the features in each overlapped area are 

extracted and a kind of Locally Aggregated Descriptors are built for the matching. Thirdly, a coarse-to-fine pairwise point clouds 

alignment is applied on the overlapping areas. Finally, the global alignment of point clouds is fulfilled with minimizing the position 

deviations between the overlapping areas and the adjacent segments. The proposed method has been used to correct the point clouds 

from several different MLSs. Experiments show that this method automatically locates and corrects the uneven position deviations in 

terms of good robustness and efficiencies. Besides, it proves that the proposed method is also an easy-to-use tool for the automatic 

correction of MLS point clouds position and boresights. 

 

 

1. INTRODUCTION 

Mobile laser scanning system can efficiently and densely obtain 

three-dimensional geometry and texture information of the road 

environment, which provides a new technical means for high-

resolution earth observation. Mobile laser point cloud plays a 

very important role in national major engineering applications 

such as 3D mapping, road facilities inventory, high definition 

map (Kukko, 2013). However, due to the comprehensive 

influence of GNSS positioning error, IMU attitude determination 

error, scanner angle and distance measurement error, multi-

sensor installation error and so on, the position accuracy of MLS 

point clouds is difficult to meet the centimeter-level accuracy 

requirements, showing in Figure 1. Especially in high-rise urban 

areas, satellite signal occlusion is serious and positioning 

accuracy is poor, resulting in a decimeter or even meter-level 

deviation between mobile laser scanning system. The position 

inconsistency phenomenon occurs among the point clouds 

collected from the same area, which is difficult to meet the 

accuracy requirements of the above applications without making 

a registration pass. (Xu et al, 2015; Yang et al, 2017). More 

severely, it is quite difficult to automatically locate and correct 

the uneven position deviations from a long-distance trajectory 

(e.g., over 20 km). Directly align the MLS point clouds using the 

registration method such as Iterative Closest Point (ICP) or 

normal distribution transform (NDT) will not solve the 

inconsistency and even causing a bad matching result due to the 

non-rigid deformation inside the point clouds, the mimic 

geometry and context and the limited overlapped areas. In this 

paper, a series of approaches including point cloud partition, 

feature extraction and description, hierarchical pairwise 

registration and global optimization are designed to address this 
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issue and effectively produce a more consistency point clouds in 

the same areas. 

 

 
Figure 1. Position inconsistencies in MLS point clouds,  

the red and blue point clouds are collected by the back  

and forth scans in different temporal. 

 

Overall, the main contributions of this paper are three-fold: 

1) An adaptive partition method for MLS point clouds 

considering the error distribution characteristics of point clouds 

is proposed, which ensures the overlapping areas among the 

overlapping segments and improves the reasonableness of 

partition for MLS point clouds. 

2) A pairwise registration strategy of MLS point clouds from 

coarse to fine is designed, which effectively solves the large 

deviation and non-rigid deformation of MLS point clouds. 

3) The global alignment optimization of MLS point clouds is 

applied through optimizing the constructed objective function, 

which combines the distance of correspondence between 

overlapping sub-regions with the transformation smoothness 

between adjacent sub-regions. 

 

Before giving a detailed description of the proposed approach for 

solving the uneven position deviations from a long-distance 
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trajectory in Section 3, the outline of MLS position inconsistency 

correction and point cloud alignment is elaborated in Section 2. 

In Section 4 experimental results for correcting point clouds 

collected from different MLSs are described. The conclusion and 

feature work are drawn at the end of this paper. 

 

2. RELATED WORKS 

Alignment of point clouds is a long-standing problem in the field 

of computer vision and photogrammetry. The steps to deal with 

the inconsistency of point clouds are usually point clouds 

partition, local pairwise registration and global optimization.  

 

The MLS point clouds partition strategy is summarized into two 

categories: time-based partition (Han et al., 2014; Yan et at., 2018) 

and space-based partition (Takai et al., 2013). The former usually 

builds a time error model to refine the accumulation error from 

IMU drift and GPS signals loss. One assumption is that there is a 

consecutive changing relationship between pose error and time 

stamp, thus the error could be compensated by a pairwise low 

order Polynomial function. Once the errors in trajectory are 

corrected, the MLS point clouds could be recalculated with the 

pose parameter and sensor observation equation. Han et al. 

(2014), proposed a time-variant model of vehicle trajectory and 

calculated the coordinate of the point clouds using GCPs. Yan et 

al. (2018) sliced the MLS point clouds by a fixed period of time 

to solve the non-rigid registration of multi-strip MLS point 

clouds. The registration of MLS point clouds could usually obtain 

high precision but once the vehicle runs slowly or even stops at a 

traffic light, the MLS point clouds in this area will be very dense, 

and time-based partition will not work at all. The latter method 

directly corrects MLS point clouds by slicing the MLS point 

clouds along the trajectory into segments, assumes that the error 

in each segment is very small considering the IMU’s stability. 

The length of the segments is usually altered. Treat segment as 

process unit and then calculate the transformation relationship of 

overlapping areas’ point clouds through geometric and semantic 

features extracted from point clouds. Takai et al. (2013) 

partitioned the point cloud into segments according to the key 

points of the trajectory. After the registration the difference 

among point clouds are reduced to 50mm.  

 

The point clouds registration has been drawn considerable 

attention (Pomerleau et al., 2015; Cheng et al., 2018; Dong et al., 

2020). Coarse-to-fine is a common strategy employed. The 

coarse alignment approximately finds an initial transformation 

contains rotation and translation matrix in a relatively fast and 

accurate way, thus the fine registration approach such as the NDT 

and its variants (Magnusson et al,.2007; Das∗ and Waslander†, 

2012), and the ICP algorithm (Besl and McKay, 1992) and its 

variants (Tazir et al., 2018), are implemented to achieve the final 

transformation. Most of the fine registration algorithm have a 

bottleneck that the processing time is too long while the point 

clouds’ number is more than 0.1 million, but the dense point 

clouds are widely seen in MLS. Although there are also many 

tricks to accelerate the calculation, when the overlapping area is 

small and the context is similar, the result is poor and unstable. 

Recently the learning-based point cloud alignment methods 

developed rapidly, such as deep neural network (Choy et al.,2019; 

Lu et al., 2019), but the point clouds are more sophisticated and 

these methods have difficulties in handling this. 

 

Based on the point cloud partition strategy and point clouds 

registration method, Yan et al., (2018) split point clouds into 

segments uniformly according to scanning time, and obtained 

accurate homonymous correspondence through two-step ICP 

algorithm, finally corrected trajectory error by using the time-

variant error model. Yu et al., (2015) extracted the object of 

different scales in MLS point cloud and found correspondences 

between the objects by using multi-scale ICP, improving the 

quality of MLS point cloud data from coarse-to-fine. This method 

can solve the problem of position consistency correction of MLS 

point cloud in urban scale, but it depends heavily on the quality 

of an object and feature extraction of various types of objects and 

is less feasible in complex urban scenarios. Besides, Shiratori et 

al. (2015) detected loop closures in MLS point clouds, and used 

loop constraint to boost the overall quality of point clouds in the 

overlapping regions. Yang et al. (2018) proposed a method of 

urban point cloud mapping based on pose map. They combined 

the classifier and optimization method to eliminate the unstable 

local correction results, and the conditional random field is used 

to identify and prune the dynamic targets, preventing the negative 

impact from dynamic objects. 

 

Global optimization has been a necessary step on point cloud 

position correction (Theiler et al. 2015, Yang et al. 2018 and Li 

et al. 2020) Especially in MLS point clouds registration mission, 

the individual point cloud segment pose could be tackled as nodes 

in a graph and the constraints between point clouds be formulated 

as edges. And to find a spatial configuration of the nodes means 

solving the MLS point cloud registration problem and achieving 

the global position consistency in overlapped areas. Theiler et al. 

(2015) formulated the TLS point clouds into a graph structure 

and conducted a global optimization to evenly spread the residual 

errors into all TLS point clouds after coarse-to-fine pairwise 

alignment.  

 

Although the above methods have achieved promising results in 

specific scenarios, there are still many limitations in robustness 

and large deviations correction. To address the challenging issues, 

this paper proposes a novel method to address the position 

inconsistency of MLS point clouds. 

 

3. METHODOLOGY 

The proposed method consists of four key steps: MLS point 

clouds partition, feature extraction and description, pairwise 

registration of overlapping point clouds, and global optimization, 

as illustrated in Figure 2. 

 

3.1 MLS Point Clouds Partition 

Inspired by the Takai et al. (2013), This paper slices the MLS 

point clouds into segments based on the error distribution. 

Specifically, the position inconsistency deviations in the MLS 

point clouds often occur to the places where the speed and 

direction of the moving vehicle change sharply, the position 

deviation in these places are non-linear distribution. Besides, to 

improve the adaptability in large deviation, symmetry, and sparse 

geometric features scenarios, the overlapping areas and 

crossroads should stay completion for the convenience of the 

further process. The proposed partition strategy could be 

summarized as the following four steps: selection of candidate 

segment points, overlapping points detection, segment points 

filter and MLS point clouds partition. 

 

3.1.1 Selection of Candidate Segment Points 

Based on the trajectory of vehicle, the acceleration and angular 

velocity of the trajectory will be calculated and the trajectory 

point whose acceleration or heading angular velocity is larger 

than the threshold 𝑎𝑡ℎ or 𝜔𝑡ℎ is treated as a velocity change point 

or angular changing point respectively. Let 𝑞𝑎𝑠𝑡𝑎𝑟𝑡
, 𝑞𝑎𝑒𝑛𝑑

, 𝑞𝑜𝑠𝑡𝑎𝑟𝑡
 

and 𝑞𝑜𝑒𝑛𝑑
 be the first, last velocity changing points, angular 

changing points of a continuous pose trajectory. The point 
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Figure 2. The workflow of the proposed method. 
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Figure 3. The pipeline of MLS point clouds partition. (a) find segment points by acceleration, (b) find segment points by angular 

velocity, (c) find segment points by intersections of vehicle trajectory, (d) insert new segment points if adjacent segment points are 

far away from each other, (e) candidate segment points, (f) find overlapping segment points, (g) filter candidate segment points, (h) 

obtain large segments by merging small sub-segments. 

 

selected by extending a certain distance 𝑑𝑡ℎ1 outward along the 

trajectory as the candidate segment point, dotted in red solid 

points in Figure 3(a), 3(b). Meanwhile, the intersection of 

trajectories 𝑞𝑐𝑟𝑜𝑠𝑠  is detected. Crossroad candidate segment 

point is found by extending a certain distance 𝑑𝑡ℎ2 outward along  

𝑞𝑐𝑟𝑜𝑠𝑠, shown in Figure 3(c). When the interval distance between 

adjacent candidate partition points is larger than 𝑑𝑒𝑞 , the 

trajectory points at the midpoint are taken as new candidate 

segment points, dotted in hollow red point in Figure 3(d). Then 

the candidate segment dotted in red solid points are found and 

illustrated in Figure 3(e). 

 

3.1.2 Overlapping Points Detection 

To correct the inconsistency in the overlapping areas, for each 

red point as dotted in Figure 3(e), the nearest trajectory point 

whose accumulated distance along the trajectory is large than 𝑑𝑖 

but also falls in a radius region are labelled as its overlapping 

point, as dotted in the hollow red point encircle by a rounded 

rectangle in Figure 3(f). And the candidate segment point who 

has the overlapping point will not be candidate segment point any 

more. The purpose of searching for overlapping segment points 

is to maximize the overlapping part between the overlapping 

segments and make subsequent registration more robust. 

 

3.1.3 Segment Points Filter 

The distribution of candidate segment points may be uneven, and 

the segment points near the intersection may be too dense. Hence, 

the final segment points need to be selected again from the 

candidate segment points. Firstly, the candidate segment point 

who has the overlapping point should be deleted; Secondly, 

candidate segment points in the middle of the intersection points 

should be deleted and then the trajectory is evenly segmented 

with a certain interval 𝑑𝑖, as shown in Figure 3(g). And the non-
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rigid deviation in each segment might be too small to ignore, the 

rigid transformation between small segments should be handled. 

3.1.4 MLS Point Clouds Partition. 

According to above three steps, the MLS point cloud could be 

segmented by the time stamp between trajectory and point clouds. 

With the small segments obtained, the small segments are then 

merged into bigger large sub-segments according to the 

accumulated length 𝑑𝑙𝑎𝑟𝑔𝑒, as shown in Figure 3(h). 

 

3.2 Feature Extraction And Description  

The small segments and the large segments are used as process 

units. A feature-based approach is applied to correct the position 

deviation of the overlapping areas in MLS point clouds. Binary 

Shape Context (BSC, Dong. et al, 2017) is adopted to extract the 

feature points descriptors in each small segment for matching the 

correspondence without artificial markers. The covariance matrix 

is constructed based on a point and its neighboring points in a 

certain radius, and the eigen vector and eigen value is calculated. 

Once a point’s curvature large enough, it is selected as a key point 

and then BSC feature descriptor is extracted around it. The BSC 

features in small segments are concatenated to form the large 

segments’ BSC features. After local feature descriptor is 

extracted, a common method Vector of Locally Aggregated 

Descriptor (VLAD, David et al., 2006) was adopted to leverage 

the function of the feature descriptors. Specifically, BSC features 

are clustered by K-means to build a visual word dictionary for 

large segments and small segments. 

 

3.3 Coarse-To-Fine Pairwise Registration 

For MLS point cloud data acquired in complex urban scenarios, 

the general pairwise registration algorithm is of poor robustness 

and is difficult to apply into complex scenarios with large 

deviations, symmetrical structures, and sparse geometric features. 

When the segment length is long, the non-rigid deformation may 

be large, but the geometric features are rich with a high precision 

in pairwise registration under the above mentioned hard scenarios. 

When the segments’ length is short, the deformation in the 

segment may be small, but the geometric features are relatively 

sparse, and the accuracy of pairwise registration is high in local 

region, but the robustness is relatively poor. Thus, a hierarchical 

coarse-to-fine method combining long segment and short 

segment is proposed to complement each other in pairwise 

registration. The approach includes three parts: visual words 

accelerated large segments registration; initial pose information 

assisted small segments registration and mismatch removal. 

 

3.3.1 Large Segments Registration 

When 𝐼𝑂𝑈1 between two large segments is larger than 𝐼𝑂𝑈𝑙𝑎𝑟𝑔𝑒, 

the two large segments are considered as revisit. For the sub-

segments contained in the large overlapping segments, the 𝐼𝑂𝑈2 

between the possible overlapping sub-segments is calculated. 

When 𝐼𝑂𝑈2 is larger than 𝐼𝑂𝑈𝑠𝑚𝑎𝑙𝑙, the two small segments are 

considered as revisit. For a large segment 𝑆𝑒𝑔𝑖 , a set 𝛺 =

{𝑆𝑒𝑔𝑗  |IOU𝑆𝑒𝑔𝑖𝑆𝑒𝑔𝑗
>  IOU𝑙𝑎𝑟𝑔𝑒 , j < i} , containing its’ 

overlapped segments 𝑆𝑒𝑔𝑗 , is built. IOU𝑆𝑒𝑔𝑖𝑆𝑒𝑔𝑗
 is the overlap 

value between the 𝑆𝑒𝑔𝑖 and 𝑆𝑒𝑔𝑗 . And the segments in 𝛺 whose 

unique id is consecutive are grouped as sub-segments. That is, for 

instance, 𝑆𝑒𝑔𝑘  is an element in 𝛺, 𝑆𝑒𝑔𝑘  and its adjacent large 

segments consist of 𝛺𝐴 = {𝑆𝑒𝑔𝑚 |𝑆𝑒𝑔𝑚 ∈ 𝛺, |k − m| <  ε} , 

shown in Figure 4. BSC features of all sub-segments contained 

in 𝛺𝐴 are grouped to get a feature set 𝐹Ω𝐴
, while BSC features of 

sub-segments in 𝑆𝑒𝑔𝑖 forming a feature set 𝐹𝑆𝑒𝑔𝑖
. Then the visual 

word dictionary is used to search the correspondence of 𝑆𝑒𝑔𝑘, for 

further eliminating completely dissimilar features and improving 

the efficiency of feature matching. The root mean square error 

(RMSE) then are spread to the inside small segments. 

 
Figure 4. Pairwise registration of large segments. Segi is the 

target point cloud segment, and Segk−1, Segk, Segk+1 are its 

overlapping segments. 

 

3.3.2 Small Segments Registration 

According to the pairwise registration result of large segments, 

the search range could be narrowed during the small segments 

registration. Searching radius boosts the BSC feature matching 

considering not only the similarity between features, but also the 

location constraints of feature points. However, because of the 

feature representation capabilities, there are mismatch segments 

in the registration, thus, a mismatch removal is essential. 

 

3.3.3 Mismatch Removal  

The mismatch removal includes: the number of the feature 

matching, self-rotation of each segment and the relative 

transformation relationship between consecutive adjacent 

segments. Apparently, the more the number of the homonymous 

features among the segments, the more reliable the registration 

results are. The feature matching number which is smaller than a 

certain threshold is pruned. The POS system carried by the 

mobile laser scanning system generally has high accuracy, and 

the attitude deviation of the acquired point clouds in the 

overlapping area should be small. Therefore, when the relative 

rotation (roll, pitch, yaw) is greater than 𝑅𝑜𝑡𝑡ℎ , the pairwise 

registration result is considered unreliable. 

 

T-test is utilized to eliminate pairwise registration results of 

abnormal relative transformation in the consecutive adjacent 

segments. Formulating the moving distance of bounding box 

center after registration as statistical variables. For segments Segi 

and Segj, the bounding box center’s local coordinates are Oi and 

Oj, corresponding pose in the global coordinate system separately 

are Ti  and Tj , and the relative pose obtained by pairwise 

registration is 𝑇𝑅𝑒𝑔𝑖𝑗
. The distance that Segj  moves after 

registration could be calculated by the equation as: Distij =

|TjOj − TRegij

−1 TiOj|. Mean value, D̅ and the standard deviation, σ, 

could be calculated from all overlapping segments’ moving 

distance. Once a sampled 𝐷𝑖𝑠𝑡 , its corresponding t value 

calculated using t =
Dist−D

σ

n−1

 is greater than the critical value, its 

corresponding feature matching is discarded.  

 

3.4 Global Optimization 

After correcting the local position of the MLS point cloud from 

coarse-to-fine pairwise registration, the relative transformation 

relationship between the segments of the overlapping point cloud 

is obtained, but the transformation relationship between the 

segments is complex and inconsistent. Therefore, these 

transformation relationships need to be adjusted globally so that 

the position deviations are evenly distributed in the point clouds. 

The small segments and correspondence between segments are 

··· ···
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described as a graph structure, and are optimized by solving a 

non-linear least square equation through Levenberg-Marquardt 

method (Hartley et al., 2003). When there are many overlapping 

areas, the optimization will loop more iterations and consume too 

much time. Thus, a simple graph is firstly constructed based on 

the relative transformation in adjacent segments to get a finer 

pose, then construct the graph with additional constraint to get 

the optimal pose transformation. 

 

3.4.1 First Stage Optimization 

The overlapping small segments are constrained with small 

variance before and after optimization, while maintaining the 

transformation between the adjacent segments. Based on this idea, 

an object function is formulated which could be divided into data 

term and smooth term, as equation 1: 

 

( ) ( )

( )| | | | | |
1 1( , ) ( ) ( )

i

i j i j i N S i N Si j i j

N SS S S

i j S S S S S S S S

i j i j

E S S d T T d T T− − =  +   (1) 

 

where  S and |S| = the segments and the total number of small 

segments 

 Φ(Si, Sj) = the relationship between segment Si and Sj 

 𝑇𝑆𝑖
 = the transformation matrix corresponding to Si 

 𝑇𝑆𝑖𝑆𝑗
, 𝑇𝑆𝑖

𝑇𝑆𝑗

−1  = the transformation matrix between 

segment Si and Sj 

 TSiSj

′  = the transformation matrix between segment Si 

and Sj after global optimization 

 d(TSiSj

−1 TSiSj

′ ) = the variance of relative transformation 

matrix between Si and Sj before and after global optimization, 

 N(Si) = set of adjacent segments of Si. 

 

Φ(Si, Sj) is an indicator, that is, equal to 1 when the segment is 

an overlapping segment, otherwise 0. Data term forces the 

variance during iteration will not be too large but just a slight 

adjustment of the pair-wise registration. And the smooth term 

keeps the transform consistency of the adjacent segments. In case 

of multi overlapping segments, the pairs that have the most 

numbers of feature correspondence are remained, ensuring the 

high precision of correspondence. Here, the weights are set to be 

equal between data term and smooth term.  

 

3.4.2 Second Stage Optimization 

Rely on the fast convergence of the first stage optimization, each 

overlapping segment has a better initial pose. Then, a more 

powerful constraint is designed to cover all the segments with 

adding an inertial term, representing as equation 2. The new 

object function consisting of data term Edata , smooth term 

Esmooth, and inertial term Einertial. 

 

 
1

1

( , )
| ( , )|| |

| |

d( ( ), ( ))

( ( ), ( ))

( , )

t t

i i

i i

i i

i i
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F F C
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i j
S
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i
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+



 


= +
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



 



   (2) 

 

where C = the set of the homonymous correspondence 

 (Fi, Fi
′) = a pair of homonymous features 

 TFi
 and TFi

′  = transformation matrices associated with 

Fi and Fi
′ 

 TFi
(Fi) and TFi

′(Fi
′) = means transform the Fi and Fi

′ to 

target coordinate system 

 d(TFi
(Fi), TFi

′(Fi
′) = distance residuals 

 φ(Si,Si+1) and |φ(Si,Si+1)| = homonymous points and 

size between adjacent segment 𝑆𝑖 and 𝑆𝑖+1 

 𝜑𝑗 and 𝜑𝑗
′ = jth pair of homonymous points 

 𝑇𝑆𝑖
 = pose of segment 𝑆𝑖 

 𝑑(𝑇𝑆𝑖
(𝜑𝑗), 𝑇𝑆𝑖+1

(𝜑𝑗
′) = Euclidean distance residuals of 

homonymous points in adjacent segments 𝑆𝑖 and 𝑆𝑖+1  

  𝑑(𝑇𝑆𝑖
, 𝑇𝑆𝑖

′ ) = variance of transformation of segment 𝑆𝑖  

 

Note that, ωsmooth and ωinertial are the weights of the smooth 

term and inertial term, ωsmooth =  Edata/ Esmooth , ωinertial  is 

very small and is generally set to 10−3. The data term is the sum 

of Euclidean distance residuals of the homonymous points inside 

the overlapping segment. The data term minimizes the gap in 

geometry space between point clouds scanned in the mostly same 

area. Due to the mismatch in hard scenarios, the smooth term is 

used to punish the abnormal transformation at a local scope of 

adjacent segments, controlling the distance residuals of the 

homonymous point and the third inertial term forces the variance 

of each segment limited in a small scope during the optimization 

process. Both smooth and inertial term compact the segments and 

relief the gap between segments. The graph is constructed 

incrementally along the vehicle trajectory. If there are 

overlapping between the current and previous segments, both 

data term and smooth term are updated. If there are no 

overlapping detected, only the smooth term will be updated.  

 

4. EXPERIMENTS 

4.1 Dataset 

The MLS point clouds partition performance is evaluated on 

point clouds acquired from a RIEGL scanner in Shanghai 

including 1 billion points. The total trajectory is about 20km, 

shown in Figure 6. And small point clouds, as listed in Table 1 

and shown in Figure 5, are used to demonstrate the result of the 

position inconsistency correction.  

 

 
Trajectory 

Length (km) 

The number of 

points (billion) 

Description of 

scene 

Data 1 1.1 1.2 
Symmetrical 

structure 

Data 2 0.85 1.57 

Large 

inconsistency & 

hard scenario 

Data 3 0.65 1.57 

Large 

inconsistency & 

intersections 

Table 1. MLS point cloud information. 

 

 
 (a)        (b)        (c) 

Figure 5. The overview of point clouds Data 1-3.  

(a) Data 1, (b) Data 2, (c) Data 3. 
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4.2 Result and Evaluation 

4.2.1 Point Clouds Segments 

We set the segment length separately from 5m to 40m and the 

result is displayed in Figure 6. It can be seen that no matter how 

long the sub-segment is, the MLS point clouds are basically in 

the same position, there is adequate overlap between the 

overlapping segments. The MLS point clouds are completely 

preserved at intersections and bends. Other parameter we set is 

similar to Takai et al. (2013), but adjusted according to our real 

data. And we find there are slight effect on choosing parameters 

except the 𝑑𝑒𝑞 , which dominates the length of the segments, the 

𝑑𝑐 , which enlarges the possibility of detecting overlapped and the 

𝑑𝑖 which keeps the even distribution of segment points. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Result of point cloud partition, segment length is (a) 

5m, (b) 10m, (c) 20m, (d) 40m. The left column is top view of 

segments; the upper center shows the segments at round-trip; 

the down center shows the segments at crossroads, and the right 

column shows the segments at bend. 

 

4.2.2 Position Deviation Correction  

Given no ground truth provided. the manually labelled 

homonymous points in the overlapping point cloud are used as 

the ground truth to evaluate the relative position accuracy. RMSE 

of homonymous points between overlapping segments is used to 

evaluate the relative position accuracy of overlapping segments, 

and RMSE of virtual homonymous points between adjacent 

segments is used to evaluate the relative position accuracy. 

Shown in Table 2. 

 

From considerable experiments, we find that 20m is almost the 

optimal length for the MLS point clouds in Shanghai. When the 

segment length is small, such as 5m, or even smaller, mismatch 

results in registration stage are too many to obtain a good 

optimization result, although the smoothing terms of adjacent 

segments are the largest. These mismatch makes the optimization 

convergence very slow, even failure, as shown in Table 2. When 

the segment length is 40m, or even larger, the non-rigid 

deformation inside the segment is relatively large, and there is 

still a relatively large position inconsistency after position 

consistency correction. But larger segments we merged from 

small segments stabilize the registration result, preventing many 

gross errors and the final result is also acceptable. When the 

segment length is between 10 and 20m, the registration results of 

pairwise registration are still reliable, with negligible non-rigid 

deformation inside the segments. Meanwhile, the global 

optimization succeeds as expecting.  

 

Figure 7 shows the location changings during the process, and 

the adjacent segments’ consistency is qualitatively demonstrated. 

The position inconsistency in the same areas after processing by 

our algorithm could be reduced to cm level depending on the 

origin point cloud, for example, the beam parameter calibration 

value. If enough GCPs are available, the MLS point clouds could 

be easily transformed into absolute coordinate. Figure 8 shows 

more position correction result. 

 

5. CONCLUSION 

A marker-free MLS point clouds position inconsistency 

correction method is proposed in this paper. The point clouds 

collected from different sensors were used to verify the 

effectiveness and robustness of the proposed method. The 

adaptive hierarchical partition considering the error distribution 

characteristics of point clouds guarantees the overlapping 

segments and improves the reasonableness of MLS point clouds 

partition. Visual word and prior pose information acceleration 

matching strategy ensures the efficiencies of the matching, and a 

coarse-to-fine hierarchical registration method guarantees the 

robustness of point clouds alignment, leading to effective 

correction of large deviation in the overlapping MLS point clouds. 

In the future, learning-based methods will be evaluated on the 

large urban scene point cloud alignment and pruning the moving 

object to relieve the mismatch.  
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Segment 

Length 

(m) 

Origin Point 

Clouds 

After Pairwise 

Registration 

After Global 

Optimization 
Optimization 

Time 

Consuming 

(s) 

data 

term 

(m) 

smooth 

term 

(m) 

data 

term 

(m) 

smooth 

term 

(m) 

data 

term 

(m) 

smooth 

term 

(m) 

Data 

1 

5 0.188 0 0.068 0.184 0.329 0.544 11.534 

10 0.191 0 0.052 0.184 0.007 0.104 0.664 

20 0.199 0 0.039 0.193 0.064 0.022 0.156 

40 0.182 0 0.066 0.177 0.067 0.033 0.066 

Data 

2 

5 0.396 0 0.091 0.387 0.99 0.166 6.321 

10 0.422 0 0.083 0.399 0.093 0.113 0.268 

20 0.459 0 0.092 0.386 0.093 0.06 0.168 

40 0.403 0 0.09 0.378 0.103 0.029 0.105 

Data 

3 

5 0.737 0 0.093 0.736 0.154 3.135 4.407 

10 0.729 0 0.91 0.736 0.124 0.089 0.743 

20 0.765 0 0.084 0.752 0.097 0.061 0.129 

40 0.771 0 0.103 0.759 0.111 0.065 0.086 

Table 2. Position inconsistency correction result of MLS point clouds 
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Before Correction

Adjacent Segments 1 Adjacent Segments 2

After Optimization

 
(a) 

Before Correction After Optimization

Adjacent Segments 1

Adjacent Segments 2

 
(b) 

Before Correction After Optimization

Adjacent Segments 1 Adjacent Segments 2

 
(c) 

Figure 7. Data 1-3 (segment length is 20m) after position 

consistency correction. (a) Data 1, (b) Data 2, (c) Data 3. In 

each sub-figure shows the original point clouds before position 

inconsistency correction, sectional view after optimization, and 

sectional view of adjacent segments along the trajectory 

respectively. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Position correction result of MLS point clouds in: (a) 

Shanghai, China (b) Wuhan, China, (b) Tallinn, Estonia 
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