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ABSTRACT: 

 

In this paper, we discuss how to improve the quality of classification results when deep learning is applied for the filtering of 

airborne LiDAR point cloud. We introduce the baseline method which utilizes convolutional neural network (CNN) based on 

voxelization, and then we propose three methods to improve the quality of classification result. The first method is data pre-

processing that aims to exclude data in advance that is clearly not on the ground surface in order to efficiently extract the ground 

surface data. Data pre-processing can greatly reduce the number of target points and the subsequent processing can be performed 

efficiently. It also has the effect of preventing noise-like points floating in the air from being misclassified as the ground surface, as 

compared to the case without pre-processing. The second method is changing the network structure. In recent years, various 

networks have been proposed for classifying point clouds. In our study, the baseline is using very simple networks. In order to 

improve the classification result of the baseline method, the layer depth and the range size of convolution are changed, and we 

investigated about the improvements of the results. The current discussion can be used as a guidance when considering new networks. 

The third method is the integration of classification results from multiple networks. We integrated individual results from multiple 

networks with varying layer depths and convolution sizes, starting with the baseline, and investigated whether the results improved. 

We observed that even if the individual results were similar, the classification results can be improved by integrating the results. 
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1. INTRODUCTION 

Airborne LiDAR surveying is a technology that uses a laser 

scanner and a GNSS/IMU unit mounted on an aircraft to 

acquire elevations and shapes of a wide area of ground surface 

as point cloud data. A laser scanner emits laser beam pointing 

towards the ground, and measures the distance between the 

scanner and ground objects from the time until the laser reflects 

off the ground and returns. The GNSS/IMU unit measures the 

position and orientation of the laser scanner. 

 

This technology has been widely used in many fields, such as 

topographic mapping, forestry, flood control, and has become 

the most common method for acquiring extensive terrain data 

over the past few decades. Since the laser emitted from the laser 

scanner toward the ground reflects off everything on the ground, 

the obtained point cloud data (DSMs: Digital Surface Models) 

include anything like ground surface, vegetation, buildings, 

vehicles, and so on. Therefore, classification of airborne LiDAR 

point cloud data is essential for various applications. Especially, 

the ground-only point cloud (DTMs: Digital Terrain Models) 

are used in many applications and are very important data. 

DSMs are obtained directly by laser scanning, but filtering must 

be performed to obtain DTMs. This filtering process is the most 

time-consuming and manpower-intensive process in airborne 

LiDAR surveying. Even now, many operators are still 

performing manual task to obtain accurate DTMs. Therefore, it 

is necessary to improve the efficiency and accuracy of this 

process. 

 

In order to improve the efficiency of the filtering process, we 

have been trying to utilise deep learning based techniques. In 

recent years, examples of applying deep learning to filtering 

laser data have emerged and are indicating good results. 

However, deep learning based methods are not perfect and can 

misclassify.  In this paper, we propose several methods to 

improve the accuracy of deep learning based filtering, and 

report the results of our actual attempts to perform accordingly. 

 

 

2. METHODOLOGY 

2.1 Baseline method 

In recent years, there have been a growing number of examples 

of deep learning applied to the filtering of airborne LiDAR 

point clouds. Since deep learning has advanced in the field of 

image classification, many methods have been used to extend 

images, such as transforming three-dimensional point clouds 

into two-dimensional images and applying imaging methods 

(Marmanis et al., 2015, Hu et al., 2016, Rizaldy et al., 2018, 

Gevaert et al., 2018), or voxelizing a point cloud (Hackel et al., 

2017, Wang et al., 2018) to construct a regular neighborhood 

structure similar to the image. 

 

In this study, a voxel-based CNN is employed as the baseline 

method. Voxel-based CNNs are simple and easy to understand. 

In addition, voxel-based CNNs are very suitable for extending 

various networks proposed for image recognition to three 

dimensions. A voxel-based deep learning method was adopted 

in this study which is a slightly improved version of large-scale 

point cloud classification (Hackel et al., 2017). The basic 

procedure described in this paper as follows. 
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Figure 1. Occupancy Grid and Tensor Representation 

 

 
Figure 2. 16 x 16 x 16 voxels and resolution 

 

At each point in the airborne LiDAR point cloud, the 

distribution of other points around the point of interest in 3D 

space was represented as a tensor using an occupancy grid. This 

tensor was trained by a convolutional neural network (CNN) 

together with the label of the point of interest (ground surface or 

other), and a classification model was generated. The number of 

occupancy grid was 16 x 16 x 16 voxel area (Figure 2). The size 

of the occupancy grids (resolution) was set to five types (0.2m, 

0.4m, 0.8m, 1.6m, and 3.2m), and the tensors generated with 

each resolution were connected by a fully connected layer. 

Figure 2 shows the basic network configuration. We considered 

whether the quality of classification result could be improved by 

adding some ideas to the baseline method. To improve the 

quality, we adopted three methods: data pre-processing, 

changing the network structure, and integrating classification 

results from different networks. 

 

2.2 Data pre-processing 

Our first method is to pre-process the data and consider pre-

empting points that is clearly not at the ground surface. The 

points on the ground surface (DTM) are usually located at the 

lowest level in the airborne LiDAR point cloud. Therefore, the 

upper points can be excluded at the beginning as non-ground 

points. The points floating in the air, such as power lines, are 

easily misclassified as points on the ground surface, but it can 

be prevented by excluding the upper points in advance. At the 

same time, the number of points that are subject to subsequent 

deep learning (training and classification) process can be 

significantly reduced, and the process can be more efficient. 

The pre-processing flow to exclude the upper points of the 

airborne LiDAR point cloud is described as below. 

 

1) To separate airborne LiDAR point cloud into grids of 

specific size (here, 1m x 1m) using the XY coordinates. 

2) To extract the lowest points in each grid and create a grid 

lowest point cloud. 

3) To retain the points within a certain distance (2 m in our 

case) from each point in the grid lowest point cloud, and 

exclude other points. 

 

2.3 Changing the network structure  

The second method is to change the network structure used in 

the baseline method. The baseline method of this study is a 

VGG-like network. In the image-targeted VGG-Net, it is  

reported that classification accuracy increases as the number of 

convolutional layers increases (Shimonan et al., 2015). Also, in 

general, the wider the range of convolution (i.e., the larger the 

receptive field), the wider the range of information can be taken 

into account, and the classification accuracy can be improved. 

In this study, we adopted this idea and tried to improve the 

classification accuracy for three-dimensional point clouds by 

changing the number of convolutional layers and the size of the 

convolutions among the network structures. 

 

The baseline network used in this study is shown in Figure 3. 

For the part enclosed by the dashed line, we created and used 

multiple networks with different number of convolution layers 

and convolution sizes. The number of layers and convolution 

size of the used network are shown in Table 1, A-G. In this case, 

A is the baseline method. 

 

Convolution (1, 16, 3×3×3, 1×1×1, 1×1×1)

Batch normalization

ReLU

Max pooling

Convolution (16, 32, 3×3×3, 1×1×1, 1×1×1)

Batch normalization

ReLU

Max pooling

Convolution (32, 64, 3×3×3, 1×1×1, 1×1×1)

Batch normalization

ReLU

Max pooling

Softmax layer

Fully connected layer (2560, 2048)

ReLU

Dropout

Fully connected layer (2048, 2)

Input 1 Input 2 Input 3 Input 4 Input 5

 
Figure 3. Network Structure 

 

ID
Size of

Convolution

No. of

Layers

A 3×3×3 3

B 3×3×3 6

C 3×3×3 9

D 5×5×5 3

E 5×5×5 6

F 7×7×7 3

G 7×7×7 6  
Table 1. Hyperparameters for the Networks 
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In each network, the same dataset (labeled airborne LiDAR 

point cloud) was used to train and classify the data differently 

from the data for training. Here, we used unprocessed airborne 

LiDAR point cloud to compare the results. 

 

2.4 Integrating classification results from different 

networks 

The third method is to integrate the classification results across 

multiple networks. We integrate individual results from multiple 

networks with varying layer depths and convolution sizes to see 

if the classification results improve. Subsequently, we use the 

results of the classification by the seven networks mentioned in 

section 2.3. The classification results of each network were 

integrated into three types of ground surfaces. 

 

1) Ground surface having one or more of the seven networks 

were classified as the ground surface (H) 

2) Ground surface with more than half (four or more) of the 

seven networks were classified as the ground surface (I) 

3) Ground surface of all seven networks were classified as the 

ground surface (J). 

 

These three types of ground surfaces are compared to the result 

of individual networks (A-G).  

 

3. EXPERIMENTAL RESULTS 

3.1 Dataset 

The method described in the previous section was applied to the 

actual airborne LiDAR point cloud data. The data used in this 

study was airborne LiDAR point cloud acquired for the forest 

area. The data was divided into two parts, one for training and 

the other for classification. The data for training and 

classification have the same topographical features. An 

overview of the data for the classification is shown in Figure 4. 

 

 
Figure 4. Overview of the classification data 

 

3.2 Data pre-processing 

Data pre-processing presented in section 2.2 was performed. 

The airborne LiDAR points with and without data pre-

processing is shown in Figure 5. It can be seen that the pre-

processed point cloud exists only in the lower part of original 

point cloud. The number of points in pre-processed point cloud 

has been reduced to about 27%. 

 

Next, we trained on the baseline network using the point cloud 

with and without pre-processing. Afterwards, we used the 

model of each network to classify the point cloud. The ground 

surface of the classified point clouds is shown in Figure 6, and 

the indices (Precision, Recall, F-measure, and Accuracy) are 

shown in Table 2. 

 

 
Figure 5. Pre-processed points (white) and original point (red) 

 

Precision Recall F-measure Accuracy

 Baseline 0.769 0.993 0.867 0.947

 Pre-processing 0.649 0.669 0.659 0.554
 

Table 2. Indices of baseline method and pre-processing 

 

 

 
Figure 6. Resulting ground surface of baseline method (above) 

and process with pre-processing (below) 
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Table 3. Classification results by individual network (A-G) and integration (H-J) 

G 

F E D 

C B A 

Figure 7. Resulting ground surface by each network (A-G) 

J (Integration) I (Integration) H (Integration) 

Figure 8. Resulting ground surface by integration of multiple network results 

A B C D E F G H I J

Convolution Size 3×3×3 3×3×3 3×3×3 5×5×5 5×5×5 7×7×7 7×7×7 - - -

No. of Layers 3 6 9 3 6 3 6 - - -

Precision 0.769 0.776 0.771 0.772 0.770 0.771 0.783 0.758 0.773 0.790

Recall 0.993 0.991 0.993 0.993 0.993 0.993 0.989 0.996 0.993 0.986

F-measure 0.867 0.870 0.868 0.869 0.867 0.868 0.874 0.861 0.869 0.877

Accuracy 0.947 0.948 0.947 0.948 0.947 0.947 0.950 0.944 0.948 0.952
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3.3 Changing the network structure 

All networks (A-G) shown in Figure 3 and Table 1 were used to 

train and classify on a common dataset. The resulting ground 

surface is shown in Figure 7, and the indices are shown in Table 

3. The yellow circles in Figure 7 are notable examples of 

misclassification that other points (e.g., trees) being 

misclassified as ground surfaces. This is the same expression 

described in section 3.4. 

 

3.4 Integrating classification results from different 

networks 

Finally, we aggregated the seven classification results in the 

previous section and integrated them to create the three types of 

point clouds presented in section 2.4. The resulting ground 

surface is shown in Figure 8 and the indices are shown in Table 

3 (the table is merged with the results of the previous section). 

 

 

4. DISCUSSION 

The data pre-processing has completely removed the noise 

floating in the air (Figure 6). In addition, an overview of the 

ground surface shows that it is satisfactorily classified. However, 

observing the indices of classification results, the results are not 

as good as the baseline method. This may be due to the effect of 

the change in the distribution of points in the laser point cloud. 

To obtain better results, further consideration is needed. 

 

The classification results by each network show that accuracy 

ranges from 0.947 to 0.950 and F-measure ranges from 0.867 to 

0.874, all of which classify the ground surface significantly. 

Comparing the results with the number of layers in the networks, 

there is a slight increase in accuracy as the number of layers 

increases. Comparing the results with the size of the 

convolution, it can be observed that the accuracy slightly 

improved with increasing the size of the convolution. An 

overview of the resulting ground surface shows that the 

misclassification of other points as ground surfaces has almost 

disappeared in cases such as G, where the number of layers is 

large and the convolution size is large. 

 

When the A-G results were combined to create three different 

types of ground surfaces, the best results (J) were obtained by 

utilizing only the points classified as ground surfaces in all 

networks, Figure 8. The reason for this result is that each 

network has different classification features and therefore 

different points of misclassification are observed, but only those 

points that are reliable due to the integration of all the results 

that are present on the ground surface. An overview of the 

resulting ground surface shows that misclassification where 

other points that are classified as ground surface has almost 

disappeared. This suggests that the quality of ground surface 

data can be improved by integrating the results of different 

networks. 

 

 

5. CONCLUSION 

In this study, we proposed several methods to improve 

classification accuracy by performing deep learning methods to 

the filtering process of airborne LiDAR surveying data. We 

applied these methods to the actual classification of airborne 

LiDAR point clouds and reported the results. 

 

In the first method, we pre-processed the data by limiting the 

target point cloud for deep learning to the underlying point 

cloud. Although the indices of classification accuracy did not 

improve, an overview of the resulting ground surface data 

confirmed that misclassifications were removed noticeably. In 

addition, it was confirmed that the pre-processing can 

significantly reduce the number of target points and thus 

improve the efficiency of subsequent process. A suitable 

network for the point cloud of preprocessing results will be 

investigated in the future study. 

 

In the second method, we tried several patterns that changed the 

structure of the network, i.e., the number of convolutional 

layers and the size of the convolution. As a result, it was 

confirmed that a tendency to increase the number of 

convolution layers and the size of convolution, which are 

generally referred to in deep learning for images, improves the 

accuracy for 3D point clouds as well. 

 

Finally, in the third method, we tried to integrate the results of 

classification by multiple networks to produce ground surface 

data. Three different methods of integrating the results were 

attempted, and highly satisfactory results were obtained when 

only points classified as ground surface in all networks were 

used. The results were better than all the individual 

classification results, therefore we affirm that the integration of 

the classification results improve the quality of filtering. 
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