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ABSTRACT: 

 

Airborne Light Detection And Ranging (LiDAR) point clouds and images data fusion have been widely studied. However, with 

recent developments in photogrammetric technology, images can now provide dense image matching (DIM) point clouds. To make 

use of such DIM points, a sample selection framework is introduced. That is, first, the geometric features of LiDAR points and DIM 

points are extracted. Each feature per point is considered a sample. Then we extend the binary TrAdaboost classifier into a multi-

class one to train all the samples. The classifier automatically assigns weights to the samples in the DIM points. The useful samples 

are assigned large weights and consequently impact the classification results largely and vice versa. As a result, the useful samples of 

the DIM points are kept to improve on the LiDAR points classification performance. Because only the samples are used, the 

registration between the DIM points and LiDAR points is not needed. Moreover, the DIM points capturing similar classes but not the 

same scene as the LiDAR points can also be used. By our framework, existing aerial images can be fully utilized. For testing the 

generation ability, the framework is applied in a super-voxel-based classification approach by replacing the points-based features 

with the super-voxel-based features. In the experiments, whether DIM points at the same places as those of LiDAR are used or not, 

the results after fusion show that, the LiDAR points classification performance has improved. Also, the better the quality of DIM 

points are, the better the classification performance achieves. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Airborne LiDAR can directly obtain high-precision, high-

density 3D coordinates, which is widely used for applications 

like 3D reconstruction and scene understanding (Sohn et al., 

2008; Sampath et al., 2010), in which point cloud classification 

plays a critical role.  

 

Many methods have been proposed for point cloud 

classification, ranging from point-based classification to object-

based classification. For point-based classification, Sun et al. 

(2014) extracted geometric features from point clouds and 

classified them using a random forest classifier (Fan et al., 

2013). Niemeyer et al. (2013) integrated a Random Forest (RF) 

classifier and a Conditional Random Field (CRF) (Niemeyer et 

al., 2012) for multi-class classification. Due to the high level of 

noise in point clouds, the point-based classification results often 

have a "pepper and salt" phenomenon. Therefore, many studies 

clustered the point clouds into objects. Kang et al. (2018a) 

voxelized a scene of point clouds and extract features from the 

voxels to recognize pole-like objects. Huang et al. (2016) turned 

the point clouds into 3D voxels and use a 3D Convolutional 

Neural Network (CNN) for classification. Ramiya et al. (2016) 

used a super-voxel for point clouds classification and showed 

that the super-voxel can improve the computational efficiency 

of dense point clouds. Ahmad et al. (2014) segmented point 

cloud into super-voxel by a link-chain method and used 

geometrical models and local descriptors of the super-voxel for 

classification. Zhang et al. (2016) divided the point cloud into 

hierarchical point clusters and used the sparse coding model 

(Yang et al., 2009) and latent Dirichlet allocation model (Blei et 

al., 2003) to extract and encode the shape features of the 

hierarchical point clusters for classification.  

 

To further improve classification performance, the fusion of 

optical images and point clouds has been given wide attention. 

Haala et al. (1999) combined multispectral images and laser 

altimeter data in an integrated classification for the extraction of 

buildings, trees, and grass-covered areas. Cao et al. (2012) fused 

point clouds with its co-registered images (i.e. aerial color 

images containing red, green and blue (RGB) bands and near-

infrared (NIR) images) and other derived features for accurate 

urban land-cover classification. Guo et al. (2011) proposed a 

multi-source framework by combining multi-echo LiDAR data, 

full-waveform LiDAR data and multispectral image data to 

classify dense urban scenes. 

 

Although a lot of research has been done on the classification of 

point cloud by fusing images and points, there is still room for 

improvement. Most of these studies focus on the spectral 

information in the images. However, currently, a large number 

of airborne images or especially the unmanned aerial vehicle 

(UAV) images can provide DIM point clouds via 

photogrammetric means (Rosnell et al., 2012). The DIM points 

have also been used for ground objects classification in some 

studies (Thiel et al., 2017; He et al., 2018; Zhao et al., 2018). In 

other words, images can not only provide spectral information, 

but also spatial information. In order to use this spatial 

information, in this study, a sample selection framework is 

presented to classify LiDAR points, by using the DIM points as 

the auxiliary data. The contributions of the framework are two-

fold. 
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(1) In the framework, a multi-class TrAdaboost algorithm is 

introduced to automatically select the samples from the DIM 

points based on the extracted features to improve the 

classification performance of the LiDAR points. Two widely 

used types of classification approaches, which are point-based 

classification, and super-voxel-based classification are used for 

testing the generation of the framework. The results show the 

framework can fuse DIM points with LiDAR points to improve 

the LiDAR points classification performance. 

 

(2) The framework only selects the features of DIM points 

which are useful for LiDAR points classification, so registration 

of the DIM points and LiDAR points is not needed. The images 

containing the classes in LiDAR point clouds can be used. This 

decreases the data required during the fusion process as other 

studies did and can make full use of the existing aerial images. 

 

2. METHOD 

The feature-based dense matching method can generate point 

clouds from airborne images or UAV images. However, the 

generation of DIM points needs to match the image, and the 

lack of image texture leads to the lack of DIM points (Feng, 

2014). Figure 1 shows an example of DIM points and LiDAR 

points. It can be seen that the two kinds of point clouds do not 

looks the same. The LiDAR points are more regular and have 

less data missing, compared to the DIM points. Also, there is a 

lack of data on the sides of buildings and the bottom of 

vegetation, as shown in the yellow boxes in Figure 1. 

 

In order to effectively mine the useful information from the 

DIM points, a sample selection framework is proposed, and the 

flow chart is as shown in Figure 2. First, the features are 

individually extracted from the LiDAR points and DIM points. 

Then they are fed into the TrAdaboost algorithm which selects 

useful information from the DIM points to classify the LiDAR 

points.    

 

2.1 Feature Extraction 

This study focuses on highlighting the use of the DIM points, so 

only the geometric features are used and the spectrum of images 

is not considered here. Thus, first, the support region is 

delineated. Let q be a point in the point cloud. Let Nq = {p | p is 

one of the k closest points of q} be the support region of point q 

and in this study, k = 90. Let us also assume p  to be the 

centroid of all points in Nq. Then the geometric features for q 

used in this paper are introduced as follows. 

  

1) Height-based features: The normalized height  

(Niemeyer et al., 2013) is expressed using the difference 

between the DSM and DTM, which can eliminate the effect of 

topographic relief. 

 

2) Eigenvalue-based features: The eigenvalues λ1, λ2, and λ3 

(λ1 ≥ λ2 ≥ λ3) are obtained by finding the covariance (Cp) of Nq 

(Weinmann et al., 2014): 

 

1
( )( )T

N
= − −p Pt=N i iC P P P P

      (1) 

 

where     T is the transpose operator 

 

The ranges of the eigenvalues computed for Cp of different 

points are different. To compare these eigenvalues of different 

covariance matrices, the eigenvalues of each covariance matrix 

 
(a)  LiDAR points 

 
(b)  DIM points  

Figure 1. Comparison between LiDAR points and DIM points 

 

 
Figure 2. The flow chart of this framework  

 

need to be normalized. That is 
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i
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Based on solving eigenvalues, we can derive features to 

distinguish planes, edges, lines and more. That is, anisotropy 

, planarity , sphericity , and linearity . 

 

                (3) 

 

                (4) 

 

                   (5) 

 

                (6) 

 

3)  The normal vector: A plane can be fitted bases on the 

points in Nq as Equation (7). Then the normal direction (n) of 
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(a)  LiDAR points of scene I            (b)  LiDAR points of scene II            (c)  LiDAR points of scene III 

   
(d)  DIM points of scene I              (e)  DIM points of scene II             (f)  DIM points of scene III 

Figure 3. Test data (blue is the building point, green is the ground point, and red is the vegetation point) 

 

  Building  Ground  Vegetation  Total 

Scene I 
LiDAR points  127386 43148 91148 261682 

DIM points  125027 104551 120577 350155 

Scene II 
LiDAR points  44627 24719 66324 135670 

DIM points  122651 46359 85924 254934 

Scene III 
LiDAR points  56801 41505 101174 199480 

DIM points  131402 90846 138996 361244 

Table 1. The number of the two kinds of point clouds of each class in each scene 

 

 Test 1 Test 2 Test 3 

Train set 
LiDAR points and DIM 

points in scene I 

LiDAR points and DIM points 

in scene II 

LiDAR points and DIM points 

in scene III 

Test set LiDAR points in scene II LiDAR points in scene III LiDAR points in scene I 

Table 2. Train set and test set in three tests 

the plane is taken as the normal vector of q, which can be 

expressed in three directions (nx,ny,nz) as:   

 
2

1
),(

)(minarg),( ddp
k

i
d

−=  = i
n

pnn     (7) 

 

where     d is the distance to the origin of the coordinates 

 

4) Curvature, Roughness (Zhao et al., 2018): Curvature ( ) 

reflects the shape and plane characteristics of the point cloud, 

which can effectively distinguish building points and vegetation 

points. Roughness ( ) refers to the average value of the 

distances from all points in the support region to the local 

geometric plane.  

 

In this paper, the required geometric feature variables are 

combined into a 13-dimensional feature vector Fv as Equation 

(8). 

 

  (8) 

 

2.2 The Multi-class TrAdaboost Algorithm 

After the Fv of all the points in the DIM points and the LiDAR 

points are calculated, a classifier is used to classify the LiDAR 

points. Here, RF, which has been widely used and shows good 

performance for classification (Chehata et al., 2009) is used. 

However, RF cannot integrate the information in the DIM 

points into the training. 

 

Thus the TrAdaboost algorithm (Dai et al., 2007), which can 

automatically select useful samples from the DIM points is 

employed. However, the classical TrAdaboost algorithm is 

usually only applicable to binary classification problems (Chen 

et al., 2019). Thus in this paper, the binary TrAdaboost is 

extended into a multi-class TrAdaboost. The details of the 

algorithm are shown as follows: 

 

1) Initialize the weights (w) for all the samples to 1.  
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(a)                                 (b)                                  (c) 

   
(d)                                 (e)                                  (f) 

Figure 4. Point-based classification results. (a) - (c) are the results by using LiDAR points for scene II, III and I. (d) - (f) are the 

results by using LiDAR points and DIM points for scene II, III and I. Buildings, ground, and vegetation are colored in blue, green, 

and red. 

 

category Building(%) ground(%) vegetation(%) Accuracy(%) 

Test 1, Scene II 
LiDAR   57.21/83.20/67.80  97.53/86.41/91.63 91.20/78.47/84.36 81.17 

LiDAR + DIM  52.01/92.29/66.53 97.69/87.58/92.36 96.36/77.05/85.63 82.01 

Test 2, Scene III 
LiDAR 73.33/78.28/75.72 97.81/94.04/95.89 88.61/86.96/87.78 86.17 

LiDAR + DIM   73.12/81.40/77.04 98.18/92.94/95.48 90.22/87.25/88.71 87.01 

Test 3, Scene I 
LiDAR 62.26/87.25/72.66 66.75/98.14/79.46 93.36/60.17/73.18 73.83 

LiDAR + DIM   79.12/94.20/86.00 91.27/93.50/92.37 93.47/75.69/83.65 86.12 

Table 3. precision/recall/F1score and accuracy of both using the LiDAR points and both LiDAR points and DIM points based on the 

point-based classification. 

 

2) Normalize the weight of each sample and each sample here 

is a point. 
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where      
tw  is the weight of the i-th sample at t-th step 

n is the number of samples in the DIM points set 

m is the number of samples in the LiDAR points 

set 

 

3) The features of all samples in the LiDAR points and DIM 

points sets are combined to form an input to a weighted random 

forest model. where ht is the weighted random forest model at 

the t-th step. 

 

4) Calculate the model error rate (
t ). Because the TrAdaboost 

algorithm is used to classify the LiDAR points, DIM points do 

not participate in the calculation. 

 

  
1
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x
            (10) 

 

In the formula, k represents the label of the sample xi. ht
k(xi) is 

the probability of xi to be the label k calculated by ht. 

 

5) Set 
t  and   as the weights of ht for samples in LiDAR 

points and DIM points, respectively. To avoid overfitting, in 

iterations, 
t ≤1/2. 

 

  / (1 )t t t  = −     (11) 

 

  )/ln21/(1 Tt+=            (12) 

 

where      T is the total number of iterations, and T = 20 in 

this paper.  

 

6) Update w. 
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7) Calculate the total probability by the second half of the 

random forest classifiers. 

 
( )

/2

k
thN

tt N
probability  −

=  
=

x        (14) 

 

The output is the final probability of each class, and a sample is 

labeled by the class with the highest probability. 

 

From step 4 and step 7, it can be found that our method can 

classify the data into multiple categories. From step 6, it can be 

seen that if some samples of the DIM points are misclassified, 

the weights of the samples will be smaller in the next iteration. 

After multiple iterations, the weights of the samples that cannot 

help the point cloud to improve accuracy will be smaller and 

smaller, and the samples that can help the LiDAR points to 

improve accuracy will be retained. Therefore, the multi-class 

TrAdaboost algorithm can be used to fuse the two kinds of 

point cloud. 

 

2.3 Super-voxel-based classification 

Super-voxel-based approaches have been proposed in many 

present studies (Akwensi et al., 2020) and show better results 

than point-based classification. To test the generation of our 

framework, the super-voxel approach is also been considered 

here. The constructions of super-voxel are based on the study 

(Kang et al., 2018b). 

 

First, the bounding box for the whole point cloud is obtained. 

Then, the bounding box is divided into small voxels whose 

sizes are 0.4m×0.4m×0.4m. After the voxels have been 

generated, a super-voxel is generated by a three-dimensional 

simple linear iterative clustering algorithm. Thus first, all the 

voxels containing points are found and the points which are the 

closest to the centers of the voxels are used as seeds. The points 

whose distances to a seed are smaller than 0.8 m are seen as the 

neighboring points. If a point is the neighbor points of more 

than one seed, the point belongs to the closest seed. After all 

the points are assigned to the seeds, the seed position is updated. 

The point closest to the center of the neighbor points of a seed 

is the new seed. If the seeds are closer than 0.2m, the seeds are 

combined to one seed. After ten iterations, the point clouds are 

segmented to super-voxel. 

 

After super-voxels have been done for the DIM points and the 

LiDAR points, the features of the super-voxel are extracted. 

The points in the super-voxel are used as the support region to 

calculate the Fv except for . We use the average normalized 

height of the points in the super-voxel as the height feature  

of the super-voxel. The corresponding Fv are the features of the 

super-voxel. Each feature of a super-voxel is a sample in the 

multi-class TrAdaboost algorithm. After the super-voxel of the 

LiDAR points have been classified, all the points in each super-

voxel are given the same label with the super-voxel.    

 

3. EXPERIMENTS AND RESULTS 

3.1 Dataset Description 

The LiDAR points and DIM points used in this paper were 

obtained by the WHU Kylin Cloud-I system which was 

developed by Professor Yang Bisheng's team at Wuhan 

University. The system was equipped with a Velodyne 16-line 

laser scanner and a consumer video camera. The scene is the 

playground of Wuhan University. The datasets obtained for this 

classification task are as shown in Figure 3. The three datasets 

contained ground, buildings with different sizes, isolated trees, 

and clusters of vegetation. The detailed statistics of the two 

kinds of point clouds are as shown in Table 1. 

 

In this paper, we divide the dataset into three groups for the 

experiment. Table 2 shows the train set and the test set we used 

for each experiment. 

 

3.2 Results and Analysis  

In order to evaluate the performance of the classification, four 

quantitative indexes are used, which are precision, recall, 

accuracy, and F1 score. 

 

  tp
precision

tp fn
=

+
        (15) 

 

     tp
recall

tp fp
=
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        (16) 

 

   tp tn
overall accuracy

tp fp tn tf

+
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   (17) 

 

  
recallprecision

recallprecision
F

+


=

2
1       (18) 

 

where     tp, fp, tn, and fn represent true positives, false 

positives, true negatives, and false negatives in the 

confusion matrix, respectively 

 

The experiments were performed by point-based, and super-

voxel-based classification approaches, and the results are as 

shown in Figure 4, and 5, respectively. The points on trees, 

buildings, and ground are colored in red, blue, and green 

respectively. The quantitative results are listed in Table 3, and 

4. It can be found in Table 3, and 4, the performance values 

obtained by using both the LiDAR points and the DIM points is 

good. And the accuracy attained by using our method is all 

higher than 80%. Among the three different categories, the 

accuracy of grounds and trees is high. This is mainly because 

the geometric characteristics of the two classes are more 

obvious. However, the accuracy of points on buildings is low. 

The main error areas in the three datasets are the top part of 

buildings, as well as the edges of the building. It can be seen 

from Figure 4, and 5, that many of the building points are 

misclassified to be vegetation. The main reason is that the 

distributions of points in the two places are between clutter and 

regular planes, which are easily confused. 

 

In comparison to the results of only LiDAR points, most of the 

F1 scores and accuracies of each class using both the LiDAR 

points and DIM points listed in Table 3, and 4 achieve better 

results. The main misclassified areas are highlighted by yellow 

boxes. The results show our framework can effectively fuse the 

two kinds of point clouds, and the DIM points are helpful in the 

LiDAR points classification. It was observed that, after the 

fusion process, the overall precision of the vegetation class 

increased but that of the building class decreased. This is 

because the laser can penetrate the vegetation and there are 

points under the canopies of trees which are non-vegetation. 

However, the DIM points only located on the canopies. The 

two distributions are quite different. The DIM points provide 

more complete surface morphological information for the 

LiDAR points, so they are good supplements. For buildings, 
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(a)                                 (b)                                  (c) 

   
(d)                                 (e)                                  (f) 

   
(g)                                  (h)                                  (i) 

Figure 5. Super-voxel-based classification results. (a) - (c) are the results by using LiDAR points for scene II, III and I. (d) - (f) are 

the results by using LiDAR points and DIM points at the same regions for scene II, III and I. (g) - (i) are the results by using LiDAR 

points and DIM points in the different regions for scene II, III and I. Buildings, ground, and vegetation are colored in blue, green, and 

red. 

 

category Building(%) ground(%) vegetation(%) Accuracy(%) 

Test 1, Scene II 

LiDAR  76.04/96.99/85.24 99.76/88.58/93.84 96.87/88.34/92.41 90.61 

LiDAR + DIM  

(the same regions) 
74.03/98.38/84.48 99.42/92.00/95.56 98.42/86.60/92.14 90.63 

LiDAR + DIM  

(different regions) 
75.46/96.96/84.87 99.31/92.05/95.54 97.68/87.24/92.16 90.72 

Test 2, Scene III 

LiDAR  76.79/81.40/79.03 97.81/92.89/95.29 89.50/88.44/88.97 87.43 

LiDAR + DIM  

(the same regions) 
76.08/83.22/79.49 94.33/94.41/94.37 91.77/87.22/89.44 87.62 

LiDAR + DIM  

(different regions) 
79.27/83.09/81.13 94.00/94.87/94.43 91.26/88.46/89.84 88.25 

Test 3, Scene I 

LiDAR  82.29/69.77/75.56 58.02/99.45/73.28 95.75/85.61/90.40 82.95 

LiDAR + DIM  

(the same regions) 
81.41/85.89/83.59 87.74/98.06/92.61 95.36/88.37/91.73 89.96 

LiDAR + DIM  

(different regions) 
78.94/83.93/81.36 82.73/99.10/90.18 96.49/86.71/91.34 88.65 

Table 4. Precision/recall/F1score and accuracy of both using the LiDAR points and both LiDAR points and DIM points (at the same 

regions and different regions) based on the super-voxel-based classification approach 

 

the places where most of the points are misclassified are place 

with the lack of texture in the image. There is data missing at 

these places, so the DIM points are not useful in 

complementing the buildings. However, comprehensive 

consideration of the precision and recall, and the F1 score of 

the two classes are still shown improvements. For the ground in 

scene II and III, most points on the ground are classified right, 

so the effect of fusion is not obvious. In the scene I, the 
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category Building(%) ground(%) vegetation(%) Accuracy(%) 

Test 1, Scene II 

The proposed method   74.03/98.38/84.48 99.42/92.00/95.56 98.42/86.60/92.14 90.63 

SVM 72.87/95.79/82.77 99.57/87.69/93.25 96.25/86.81/91.29 89.24 

Adaboost 54.89/96.81/70.06 100/87.34/93.24 96.73/78.19/86.48 83.67 

Test 2, Scene III 

The proposed method   76.08/83.22/79.49 94.33/94.41/94.37 91.77/87.22/89.44 87.62 

SVM 71.53/76.26/73.53 96.05/91.78/93.87 86.73/85.21/85.96 84.13 

Adaboost 57.29/90.50/70.16 99.17/90.92/94.87 95.91/81.03/87.84 85.05 

Test 3, Scene I 

The proposed method   81.41/85.89/83.59 87.74/98.06/92.61 95.36/88.37/91.73 89.96 

SVM 68.40/84.57/75.63 89.15/98.80/93.86 95.43/83.44/89.04 87.15 

Adaboost 55.31/46.30/50.40 38.09/99.33/55.07 96.58/79.69/87.33 71.59 

Table 5. Precision/recall/F1score and accuracy between different classifiers based on the supervoxel-based classification  

 

performance of the ground is significantly improved. It is 

because in the ground of scene III, the LiDAR points have a 

missing part due to building occlusion, and the DIM points 

make up for this part. Fusion with the kind of DIM points will 

improve the classification performance. 

 

To further evaluate the performance of our proposed model, 

frequently-used classifiers (Adaboost (Wang et al., 2015), 

SVM (Ramiya et al., 2016)) were compared to the proposed 

model using the three datasets. Table 5 lists the comparison 

results of the three datasets and Table 6 indicates the 

processing time. Although the proposed method required more 

processing time than other classifiers, it achieved the highest 

overall accuracies in terms. Furthermore, compared with other 

classifiers, the proposed model has better precision in the 

classification of buildings. 

 

For the fusion of optical images and point cloud, the two data 

sources need to be registered. However, in our frameworks, 

only samples are used, which means no registration is needed. 

A big advantage of no registration is that the DIM points in 

other regions can be used to improve the LiDAR points in the 

region. This decreases the requirement of images in the same 

area during the fusion process. To show the performance, DIM 

points in another region is used as auxiliary data. Figure 6 

shows the DIM points of a village in Zhengding City, Hebei 

Province obtained by a UAV with the Nikon D300 camera. 

Buildings, vegetation, and grounds are also contained in the 

DIM points. As the super-voxel classification approach obtain 

the best results in the fore experiments, here only the approach 

is used. Table 4 shows the results. It can be seen that after 

fusion with the DIM points in different regions, the 

classification performances are still better than those using the 

LiDAR points alone. But lower than fusion with the DIM 

points in the same regions. This is because the environment is 

different, the DIM points in Hebei cannot be well assisted. 

 

However, in scene I, the precision of vegetation is higher than 

using DIM points in the same regions. Because in scene III, the 

DIM points of vegetation have missing, and the vegetation 

points in Hebei are more complete, which can assist the 

classification of LiDAR points better. It can be found that, the 

better the auxiliary point clouds are, the better the classification 

performance achieved. 

 

4. CONCLUSION 

In this paper, we show that DIM points are helpful for the 

LiDAR points classification, which is another way of fusing 

point clouds and images. A sample selection framework is  

 
Figure 6 DIM points of a village in Zhengding City, Hebei 

Province  

 

Method 
The proposed 

method 
SVM Adaboost 

Time 

(second) 

Test 1,  

Scene II 
162.22 104.53 16.16 

Test 2,  

Scene III 
106.38 72.96 13.34 

Test 3,  

Scene I 
183.96 180.89 16.74 

Table 6. The processing time of different classifiers 

 

proposed to fuse the DIM points. In the framework, the features 

of points, and super-voxels are extracted. Then the multi-class 

TraAdaboost algorithm was proposed to automatically select 

samples from the DIM points for improving the classification 

performance of the LiDAR points. The results show that after 

using the DIM points, the classification performance improved 

and the improvement is based on the quality of the DIM points. 

At the same time, the framework does not need to register the 

LiDAR points and DIM points. The DIM points of other 

regions can also help in the LiDAR points classification. This 

advantage can make full use of existing aerial images. 

 

In the future, we will use our framework for classifying more 

objects, and study which categories can be improved by the 

DIM points. Also we will use more DIM points for 

classification to further study which DIM points can improve 

the LiDAR points. 
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