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ABSTRACT:

In this paper, we present a method to build Computer Aided Design (CAD) representations of dense 3D point cloud scenes by queries
in a large CAD model database. This method is applied to real world industrial scenes for infrastructure modeling. The proposed
method firstly relies on a region growing algorithm based on novel edge detection method. This algorithm is able to produce
geometrically coherent regions which can be agglomerated in order to extract the objects of interest of an industrial environment.
Each segment is then processed to compute relevant keypoints and multi-scale features in order to be compared to all CAD models
from the database. The best fitting model is estimated together with the rigid six degree of freedom (6 DOF) transformation for
positioning the CAD model on the 3D scene. The proposed novel keypoints extractor achieves robust and repeatable results that
captures both thin geometrical details and global shape of objects. Our new multi-scale descriptor stacks geometrical information
around each keypoint at short and long range, allowing non-ambiguous matching for object recognition and positioning. We

illustrate the efficiency of our method in a real-world application on 3D segmentation and modeling of electrical substations.

1. INTRODUCTION

Nowadays, 3D LiDAR technology is widely used for map-
ping complex industrial environments such as power stations,
electrical substations, manufacturing plants, pipeline networks,
among others. LiDAR produces massive data with high pre-
cision which can be exploited for offsite inspection, measure-
ment, assets management and virtual visits. LIDAR acquisition
systems are constantly evolving, allowing faster, more accurate
and more dense scans at increasingly lower prices. However,
the processing of such massive stream of data is the bottleneck
that prevents the expand of this technology. Automatic pro-
cessing of 3D data is still an open problem in the scientific com-
munity. In fact, several current industrial applications are based
on manual or semi-automatic processing. A typical applica-
tion consists in creating a 3D model of an industrial plant from
3D LiDAR point clouds (Sternberg, Kersten, 2007, Gonzalez-
Aguilera et al., 2012).

3D models of complex industrial environments are great in-
formation sources to improve site security and optimize in-
dustrial functioning. The creation of 3D models is generally
carried out by specialized designers based on 2D plans, pho-
tos and 3D measurements of the industrial environment. In the
case of electrical substations, access is dangerous due to elec-
trical shock risk. Thus, a remote sensing technology such as
LiDAR is an appropriate candidate to perform those 3D meas-
urements. Moreover, several manufacturers provide precise 3D
CAD models of their industrial equipment (insulators, electrical
transformers, etc.), then the modeling processing can be defined
as the process of creating a 3D virtual environment where CAD
objects from a catalogue are positioned exactly as in the real
world. In this context, 3D data offers great precision landmarks
where modeling processing can be based on.
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The main drawback of this pipeline is that 3D data manipulation
and interpretation may not be trivial. Visual object identifica-
tion and manual positioning may be painfully time-consuming
and expensive. The use of automatic methods to process 3D
point clouds will make possible the creation of 3D models in
large scale applications.

This paper focuses on the automatic modeling of electrical sub-
stations based on a twofold framework: i) electrical elements
are automatically segmented from the 3D point cloud (see Fig-
ure 1); ii) each segmented object is compared with every CAD
model in a catalogue in order to determine its corresponding 3D
model and its location in the environment (See Figure 2).

Figure 1. Classified 3D point cloud of an electrical substation.
Each colour represents a different type of object.

The automatic processing of 3D data from electrical substations
has been previously studied in the literature (Arastounia, Lichti,
2013, Arastounia, Lichti, 2014, Arastounia, Lichti, 2015, Wu et
al., 2018). These approaches are based on segmentation fol-
lowed by model retrieval, use prior knowledge and exploit the
repetitive patterns of the environment.
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Figure 2. On left, a 3D point cloud of an electrical substation; on
right, three CAD models expected to be found in the scene.

Modeling this kind of industrial environments is very interest-
ing from both the application and the technical point of view.
On one hand, from an application point of view, 3D modeling
of electrical substations is fundamental to perform tasks such as
asset management, inventory, virtual training, emergency plan-
ing, preventive maintenance, renovation planing, among others.
On the other hand, from a technical point of view, this use case
presents very interesting challenges such as: i) contrary to sim-
ulated environments, 3D point clouds from complex industrial
environments present irregular local shapes, anisotropic dens-
ity, occlusions and noise (Nan et al., 2012); ii) since electrical
substations are composed of a few number of element categor-
ies (e.g. disconnectors, transformers, circuit breakers, insulat-
ors and wires) with low intra-category variability, object match-
ing may be ambiguous; iii) since many electrical elements are
nearly symmetric with respect to a vertical plane, correct posi-
tioning is a challenging task.

Our proposed method handles all these issues. Even if we chose
to focus on the specific use case of electrical substations, the
proposed method is highly generic and could be applied to a
wide range of applications. Our contribution is two-fold:

e We design a novel segmentation algorithm based on a re-
gion growing process and edge detection. This method is
proven to be robust to 3D point clouds of complex envir-
onments;

e We propose a matching method for recognizing and posi-
tioning CAD models onto 3D point clouds. This method
is based on 3D features estimation on both segmented ob-
jects and CAD models.

The pipeline of our method is illustrated in Figure 3.
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Figure 3. Overview of the proposed method

The rest of the paper is organized as follows. Section 2 presents
a revision of the state-of-the art. Section 3 explains our two-
steps method for modeling an industrial environment from a 3D
point cloud and a catalogue of CAD models. Section 4 shows
our experiments and results. Finally, Section 5 presents conclu-
sions and perspectives.

2. RELATED WORK

Manual segmentation of 3D LiDAR data is not only expensive
and time-consuming but also non repeatable in terms of quality
since it depends on the fatigue of operators. Therefore, devel-
oping automatic segmentation methods is an active field in the
scientific community. Several segmentation methods have been
proposed using graph-cuts (Golovinskiy, Funk, 2009), image
processing techniques (Serna, Marcotegui, 2014), multi-scale
and dimensionality features (Hackel et al., 2016, Weinmann et
al., 2015), deep learning (Thomas et al., 2019), among others.
In the case of electrical substations, (Arastounia, Lichti, 2013)
proposed a segmentation method based on the principal direc-
tion of points’ distribution. This is done by forming and analyz-
ing 9 different directions in 3D space. The assumption is that
electrical components from a substation environment are made
of vertical or horizontal parts and are mostly straight. While this
observation can be made for most electrical components, it does
not hold for cables (catenary shape) and very small parts (insu-
lator rings). (Wu et al., 2018) proposed a reconstruction method
of a sub-electrical station based on the detection of regularities
of the scene. An electrical substation can indeed be considered
as a collection of multiple instances of a few classes of vertical
objects on a regular grid. While demonstrating promising res-
ults on the reconstruction of these environments, this methods
can fail when disparities appears, such occlusions or some un-
expected variations (additional cables, boxes, open/closed in-
sulators). It also fails at objects of arbitrary orientations. In
this work, we make the simpler assumption that the objects are
made of geometrically simple parts, and disregards the orienta-
tion of those parts in space. We believe that this approach will
not only be more robust to variation of the entities of the elec-
trical substation, but also it could be more easily adapted to a
variety of industrial environments. The goal of this proposed
context-agnostic method is providing a collection of geomet-
rically simple objects which can be easily clustered with some
prior knowledge of the nature of the scene.

In the literature we find keypoint extractors that assume impli-
citly that the processed object is generally smooth and presents
some protuberant areas, characteristic of the object that should
be detected as key zones. Such processes are efficient for most
common objects but fail as soon as the query object is every-
where irregular and salient, such as industrial pieces. (Gel-
fand et al.,, 2005) and (Rusu, 2009) introduced novel local
descriptors that are used both for matching purposes and feature
point extraction. In these methods, feature points are selected
as points whose feature is rare with respect to all the features
computed on the object. Consequently, they are not necessarily
repeatable over various partial views of the same object, neither
robust to segmentation errors or incomplete data. Besides, the
extraction method of (Gelfand et al., 2005) keeps only a hand-
ful of keypoints, which shrinks ambiguity for the matching step
but is not suitable for detecting keypoints on irregular and noisy
point clouds from real industrial acquisitions. (Sipiran, Bus-
tos, 2011) proposes a generalization of the Harris corner de-
tection in 3D which can perform a relevant keypoint extraction
on objects whose angles are rare, but is not adapted for crenel-
lated objects such as ours. In (Zhong, 2009), authors extract
keypoints in salient zones based on a criteria of maximum ra-
tio between the eigen values of the scatter matrix on spherical
neighbourhoods around each point. This method is efficient for
extracting feature points on objects that are almost everywhere
smooth, but is not reliable for objects that are volumetrical at
every scale such as complex objects in industrial environments.
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Feature-based matching relies often on local surface descrip-
tion of keypoints. The main assumption is that keypoints are
located on regions which are locally unique over the objects. In
the industrial context, key zones are rarely unique since indus-
trial object have often planar or axial symmetries. (Tombari,
2010) proposes the SHOT descriptor based on histogram fea-
tures for local surface description. (Rusu, 2009) introduced
the FPFH descriptor for gathering angular information within
a spherical neighbourhood, but even if keypoints are well po-
sitioned and descriptor are powerful, a local description would
not solve reliably the orientation problems inherent to the geo-
metry of industrial pieces. A multi-scale solution is considered
by (Lu, 2014) for object recognition but is still limited to local
description without sufficient contextual information.

All these considerations led us to present two contributions:
first, a keypoint extractor able to capture key areas on indus-
trial objects that are everywhere detailed; second, a multi-scale
feature for describing these key zones both locally and glob-
ally, as chunks of an object rather than local surfaces without
context.

3. METHODOLOGY

3.1 Segmentation

In this section, we propose a generic segmentation approach
based on shape analysis and region growing. Since this seg-
mentation process produces geometrically coherent regions,
usually corresponding to over-segmented objects, an agglomer-
ation process is also proposed in order to get objects of interest
in 3D point clouds of electrical substations. This agglomeration
process relies on context-based knowledge.

3.1.1 Shape analysis in the eigenvalues domain PCA
(principal component analysis) aims at transforming a data set
of a given dimension to a set of smaller dimension. PCA can be
computed by the covariance method. Eigenvectors are extrac-
ted from the matrix V that diagonalizes the covariance matrix
C,sothat V'!CV = D, D being a diagonal matrix that en-
codes the eigen values.

While eigen vectors give us information about the spatial ori-
entation of a set of points (tangents and normals), eigen values
describes the overall shape (length, width and thickness). In
this work, we propose edge detection and segmentation meth-
ods based on the analysis of eigenvalues. Our main assumption
is that the intersection between two surfaces produces an edge
which can be located by analyzing the eigenvalues variation at
a local scale.

Let us denote by P a set of 3D points and A1, A2, A3 the eigen
values of the covariance matrix of P, sorted in ascending order.
Let us consider the normalized vector, denoted by A(P), of the
following vector (A1, A2, As). The magnitude of each eigenval-
ues depends on the scale. Thus, the normalization of this vector
gives overall proportions in each dimension.

As A(P) is normalized, the point (A1, X2, A3) belongs to the
unit sphere. It can be transformed in polar coordinates (¢, 0, )
which can be projected into a 2D space since » = 1. Thus, ¢
and 6 for a given set P of eigenvalues (A1, A2, A3) are:

WYEDY]
¢ = arctan &7 0 = arctan VALTA

N " M

The 2D domain G of A is bounded by the triangle given by
the following three top points L, P,V, as shown in Figure
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Figure 4. In (a), a cylinder slightly bent at its middle at a
10°angle, generated with an added Gaussian noise. In (b), the
projection of the coloured points of (a) in G. In (c), two
cylinders intersecting at a 90°angle, generated with an added
Gaussian noise. In (d), the projection of the coloured point of (c)
in G. In (a) and (c), coloured points are weighted by their §
value from purple to yellow. In all figures, the position of the
point of interest p is shown in a yellow square, and the least and
most stable points are shown in red and blue respectively.

4b. One can notice that A(P) = L would be obtained if P
is a set of points evenly distributed along a line. Respect-
ively, P would be obtained from a set of points evenly dis-
tributed along a plane and V' from an evenly distributed set of
3D points. As A1, A2, A3 are sorted and their vector is normal-
ized, the extremities of the triangle can intuitively be assessed
as (1,0,0), (1/v/2,1/+/2,0) and (1/+/3,1/+/3,1/+/3). Thus,
their respective projection in G are (0,7/2), (w/4,7/2) and

(7 /4, arctan v/2).

In this context, we can define the shape instability of a point
with respect to its location inside the triangle LPV. A point
with low stability will be located far from vertices L, P or V,
the most unstable point being located at the circumcenter of the
triangle. Those points are very interesting since they represent
transition zones between different surfaces.

Let us denote N, the set of points neighbouring the point p
given some neighbourhood relationship. In this work, we only
consider the case of radial neighbourhoods. For each point p,
we compute A(Np,).

We define the shape instability 6(p) as the minimal distance in
G from A(N,) to L, P or V:

3(p) = _min_ [A(N,) — 5| @

se{P,L,V}

Now, let define the most stable point s, and the less stable point
ip in neighbourhood N, respectively as:

sp = arg min 6(x), ip = arg max 6(x) 3

The span p(p) of a point p is then defined as the difference
between the instability of s, and i, for a given p:

p(p) = 0(sp) — d(ip) 4)

The span is correlated to the presence of a transition zone in
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the 3D space. On the one hand, Figure 4a illustrates a cylinder
slightly bent at its middle at a 10°angle. This slight transition
is confirmed by a low p value (low dispersion of blue points) in
Figure 4b. On the other hand, Figure 4c presents two cylinders
intersecting at a 70°angle. This transition is observed in the G
domain in Figure 4d where p value is higher.

In Figure 5, the span p of a point cloud with various objects
(steel beams, cables, boxes, ground) is shown. We observe a
high value of p when different surfaces intersect and a low value
otherwise.

0 01 02 03 04 0.50.55

(a) p over an electric point cloud

Figure 5. 3D point cloud from an electrical substation.
Instability values are shown on the given colour scale. We
observe high values of p on edges and low values on flat zones.

3.1.2 Region growing We propose a region growing pro-
cess based on the previously introduced definitions of shape in-
stability and span. Region growing process starts from carefully
selected seeds and propagates to adjacent points given some re-
gion membership criterion.
In our work, those seeds are points whose shape instabilities are
low. The membership of two adjacent points to the same region
is constrained to the presence of instability in their neighbour-
hood. We will define this region membership criterion based on
a set of points called edges, whose shape instabilities are high.
Thus, we give the following definitions of seeds and edges in
our region growing process. We define the set of seeds S as the
set of stable points whose span is lower than a given threshold
toi

S = {s,p(s) < to} (5)

Then, we define the set of edges E as the set of unstable points
whose shape instability is greater than a given threshold #;:

E={e,é(e) > t1} (6)

Our region membership criterion is based on the presence of
edges. We will say that two adjacent points are from the same
region if both points are closer to each others than to any edge
point. Our proposed method is similar to image segmentation
methods based on region growing. It is an iterative process and
the goal is to partition a point cloud into regions {R}. At a
given iteration, a seed s is randomly selected and a new region
R = {s} is grown. R is grown from each neighbour of points
from R that satisfy the proposed region membership criterion.
A new seed is selected and a new region is grown when no more
points are added to R.

The results of this region growing method are illustrated in Fig-
ure 6. In Figure 6a, one can observe that our process selects

seeds from regions with no prominent features. Oppositely,
edge points are all picked from regions of intersecting objects.
In Figure 6b, the result of the region growing is shown and on
can see the resulting regions are geometrically coherent, des-
pite having a slow curve (as cables) or small shape disturbances
(due to miscalibration of the acquisition).

(a) edges and seeds (b)
over-segmentation

Figure 6. Point selected from the process described in section
3.1.2in (a). Seeds are shown in green, while edges are shown in
red. Over-segmentation generated by the proposed region
growing algorithm in (b), colourized with random colours.
Objects correspond to geometrically coherent regions. One can
see that cables, ground patches, poles and objects of primitive
forms are correctly labelled. More complex structures such as
steel beam are regrouped into one object.

3.1.3 Over-segmentation correction The previous region
growing process produces geometrically coherent regions. In
general, these regions correspond to over-segmented objects
since it is only based on shape criteria. Depending on the ap-
plication, an agglomeration process is needed in order to get
objects of interest. In the case of electrical substations, this ag-
glomeration process is straightforward.

First, the ground is usually flat and can be extracted as the
largest connected component from the region growing result.
Second, cables are the most elongated objects of the over-
segmentation. They can be detected by the averaged local lin-
earity measure over the object. A linearity threshold, set by
visual inspection, is then used. Finally, we suppose that the re-
maining points are from electrical elements, as substations are
rarely occupied with any other type of object. In a substation
environment, electrical elements are always a few meters apart
in order to prevent short circuit. Once ground and cables are
removed, a simple neighbourhood search with a carefully se-
lected radius is able to reconstruct whole electric elements.

3.2 Feature based matching

The results of the latter segmentation method provides object
hypothesis that may have a CAD counterpart within a cata-
logue of modeled object expected to be found in the scene.
Our work brings a twofold contribution for achieving feature-
based matching between these segments extracted from real ac-
quisition data and reconstructed models. We firstly designed a
generic keypoint extractor that is suited for dealing with shape
auto-similarity and captures precisely the structural details that
are characteristic of the object’s orientation. Secondly, we in-
troduce a novel multi-scale descriptor, aimed at describing the
local neighbourhood of each keypoint as well as gathering in-
formation about its global localization over the whole object in
an efficient way. In order to have a unified method for extract-
ing keypoints and features on both CAD models and 3D point
clouds, we work on point cloud versions of each CAD model in
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the catalogue obtained by uniform sub-sampling over the faces
of the mesh. Sampling resolution is roughly the same as the 3D
scene. Once features are computed on both CAD models and
3D scene segments, we perform a brute-force matching and es-
timate the 6 DOF transformation that best fits the CAD models
on each segment and compute a score for identifying the best
corresponding CAD model.

3.2.1 Keypoints extraction For our use case, keypoints
must be located in structural zones of the object that are un-
common and salient. Industrial pieces have details everywhere,
thus we designed a keypoint extractor based on a filtered di-
mensionnality analysis. We compute the PCA of a spherical
neighbourhood N; around each point of the query object at a
characteristic radius r, of the object’s geometry, and compute
the asp coefficient introduced in (Demantké, 2012), that meas-
ures the saliency o; of the query point p;

0 = Vs @)
VAL + VA2 + VA3

where A1 > A2 > A3z > 0 are the eigen values of the covari-
ance matrix. Note that the eigen values of the neighbourhood
characterize the expansion of the point cloud along its principal
axis; thus, the greater the o;, the more volumetric the neigh-
bourhood. Since key zones on objects are mainly volumetric
(such as corners, junctions and protuberances), relevant keypo-
ints rely in zones of high saliency. On Figure 7 we show a spe-
cific part of an industrial piece with the saliency as scalar field.
On that Figure, areas 1 and 2 would be relevant to extract as
they are structural and characteristic of the object’s orientation,
whereas area 3 is fully auto-similar and would lead to ambi-
guity in the object’s orientation in later processes. On such a
complex object with milling and bars, the more salient points
are not necessarily on key areas, thus applying a rigid threshold
for extracting relevant zones would fail. This is shown on Fig-
ure 7 where no trade-off is affordable for keeping 1 and 2 only.

o; = 0.267549

a; = 0.304038

;= 0.266057

0> 025 0; > 0.28 0i 2 6+ 7

Figure 7. Structural chunk of an industrial object coloured by
saliency and remaining points for different extraction methods.

However, points that are locally excessively salient compared to
their neighbours are structural, even if they are not absolutely
salient. Therefore, for each point p;, we build a distribution
on the saliency of neighbouring points and estimate the average
saliency and standard deviation in \;

o = |N|Z(7k, (fi—\/wl_' Z(kaffip (8)

kEN; U ken;

We extract the query point p; as a keypoint 1f — > pos where
po is a rigid threshold (typically 5% is sufﬁc1ent) for avoiding

picking points on homogeneously salient zones such as zone 3
on Figure 7, and if 0; > &; + ;. Thus, points in structural
zones of objects such as junctions, corners and protuberances
are captured in patches.

Rather than searching for isolated and very accurately located
keypoints such as (Gelfand et al., 2005), we keep dense patches
of key zones, which is much more reliable for real and noisy
data. A qualitative comparison with other keypoint extractors
is presented in Section 4.2.

The second step of the keypoints extraction consists in select-
ing points sparsely and regularly on the shape. This step is not
compulsory but it can help aligning coarsely the point clouds for
the further RANSAC registration, while the key patches extrac-
ted with our method contribute to orienting correctly the point
clouds.

3.2.2 Features extraction The next step of our method con-
sists in describing the keypoints through 3D features. The
SHOT and PFH descriptors introduced by (Tombari, 2010)
and (Rusu, 2008) respectively are efficient for shape descrip-
tion, but they do not capture any contextual information, and
therefore are not so reliable for registering auto-similar objects
such as those we can find in industrial environments. We de-
signed a hybrid descriptor inspired by the SPFH descriptor in-
troduced in (Rusu, 2009) that gathers local and contextual in-
formation. To capture information present in neighbourhoods
of radii {r;}1<i<p of a keypoint, we firstly generate p sub-
sampled versions {P;}1<i<p of the input cloud with spatial
resolution 3; x r; (8; € [0,1]). The parameter 3; controls
the density of points in a neighbourhood of radius r; searched
in P;. For instance, setting 8; = 0.1 for a searching radius
r; = 0.5m will result in a neighbourhood where the distance
between each point is at least 8; x r; = 5cm, which is suffi-
ciently dense to describe local geometry in a neighbourhood of
radius ;. Atscale k € [1, p], we compute for each keypoint the
Local Reference Frame introduced in (Tombari, 2010) for cir-
cumventing the normal’s orientation issue and having rotation
invariant descriptors, and then compute the SPFH descriptor of
a spherical neighbourhood of radius rj searched in Px. Unlike
the original authors of this feature, we do not decorrelate the
three computed angles for simplifying the feature’s expression,
because it actually brings ambiguity and reduces significantly
the descriptive power of the SPFH descriptor. On Figure 8,
we have connected by coloured lines the points used to com-
pute the pair features. The green lines for instance connect the
query keypoint to points of its spherical neighbourhood of ra-
dius 3 = 2.50 m, showing that a third of the feature’s inform-
ation is exclusively dedicated to gathering contextual informa-
tion. Repeating the operation at every desired scale, we finally
stack the SPFH descriptors computed at each scale in one single
feature vector.

Figure 8. Multi scale neighbours for computing our feature on a
keypoint with three radii and 5° bins per histogram.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI11-B2-2020-391-2020 | © Authors 2020. CC BY 4.0 License. 395



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

The resulting features are descriptive of the local geometry
around the keypoints thanks to SPFH with short radius and also
contains contextual information gathered into the histograms
of long searching radius, allowing highly discriminating power
and non ambiguous matching: in our use case, a local descrip-
tion of the keypoints, as structural as they are, would not be
completely reliable because of the auto-similarity aspect of the
objects.

323 Feature matching and pose estimation

Going through each segment, we match its features with those
of each CAD model by brute-force matching using x distance,
better fitted for histogram comparison than L. distance (see
Figure 9a), using a weighting on the different scales. If the fea-
ture f; = (f, .. 1) was computed over N scales, we compute
the weighted distance with f; as follow :

Y1
f17f] :Z%dXQ fZ?f_] (9)
k=1

for giving priority to local description while adding long range
matching constraints. As we kept patches of keypoints, we
cannot filter the matches as in (Lowe, 2004) which excludes
matches that are not significantly better than the second best
match in the feature space, under the assumption that features
are unique. Instead, we only keep matches with distance to the
nearest neighbour lower than piy,, + 0n, Where pn, and o,
are the average distance to the nearest neighbour and standard
deviation on the object. We estimate the 6 DOF transformation
that best fits the query CAD model on the segment by RANSAC
(Figure 9b) on the pairs from the matching step and finally ap-
ply a point-to-plane ICP registration (Figure 9¢c). The overall
rigid transformation Tc ap is applied to the CAD object. The
object shown is fully symmetric except on the area zoomed on
Figure 9d : our keypoint extractor caught this very specific zone
allowing the right pose estimation. We compute the intersection

(a) (b) () (d)

Figure 9. Steps for estimation the rigid transformation between a
CAD’s point cloud (red) and a 3D scene segment (blue) by
feature matching and RANSAC. On this example the keypoints
were extracted only with our saliency analysis.

over union (/oU) as our overlap measure : for each point of the
3D segment Prrs, we search for its nearest neighbour in the
CAD cloud Pcap within a distance 7overiap. The intersection
I is defined as the number of point having at least one neigh-
bour, the union U is defined by U = |Pcap| + |Prrs| — 1,

. I
and the overlap is given by JoU = —. The parameter roveriap

defines the tolerance on the JoU. We set a rigid threshold on the
minimum /oU for being a good match, because some segments
may not have their CAD counterpart in the catalogue and we
do not want to assign them to any 3D model. The CAD model
that maximizes the IoU is considered as the right model and is
positioned in the scene by applying the corresponding Tcap.

4. EXPERIMENTS
4.1 Evaluation of the segmentation

We compare our method with two region growing algorithms.
We aim at demonstrating the advantages of our approach based
on eigenvalues compared to approaches based on eigenvectors
and dimensionality features as defined in (Demantké, 2012). In
both cases a PCA is computed at a local scale on each point us-
ing a radial neighbourhood.

The first region growing method exploits the tangent, the main
component of the eigen vectors of this PCA. Seeds are selected
from the most linear points. Two adjacent points are from the
same region if the angle between their corresponding tangents
are smaller than a given threshold.

The second region growing method is similar to the first but
the linearity is replaced by the planarity for the seeds selection,
and the tangent by the normal. We try by visual inspection of
the results, to set the threshold of the previous region growing
methods as to obtain the best possible examples. As for our
method, we have chosen the thresholds values for the seeds and
edges as defined in section 3.1.2 to to = 0.25 and ¢; = 0.48.
We obtain the results of Figure 10. The linear region growing
in Figure 10a is able to extract every cable and two insulators
chains but performs poorly on electrical elements. It is also
unable to extract the ground. The planar region-growing in Fig-
ure 10b performs poorly overall, as there is no plane except for
the ground. The ground and the bigger structure are not split
as expected, as the edge between the two features a low slope.
Selecting a different radius for the radial neighbourhoods may
hold different results. Only our method in Figure 10c is able to
extract all cables. Electrical structures are over-segmented, but
their parts are geometrically coherent as expected. The chains
of rings at the top are slightly over-segmented, but it is a com-
plex structure and the two top chains are badly acquired in this
particular case.

In Figure 10d, the result of the over-segmentation correction
is shown, each object colourized with a random colour. It can
be compared to the ground truth in Figure 10e. The ground is
correctly extracted, along with all the cables. Each electrical
objects is correctly extracted along with the three bigger struc-
tures. The scanner positions have been extracted as circular
planar regions on ground. While this might be problematic in
other applications, it does not disrupt the object matching pro-
cess as it does not resemble to any other entity in the catalogue.

4.2 Qualitative keypoint extractors comparison

For comparing our keypoint extraction method to well known
methods, we used the (Rusu, Cousins, 2011) PCL implement-
ation of the (Zhong, 2009) ISS and (Sipiran, Bustos, 2011)
Harris3D keypoint extractors with the most adapted paramet-
ers, found qualitatively by trial and error. We also implemented
the persistent feature point extraction of (Rusu, 2008) based on
prior FPFH estimation. Results are shown on Figure 11. For
each experiment, the same parameters where applied for ex-
tracting keypoints on all point clouds.

In our use case, the Harris3D extractor detects keypoints on
different zones, depending on the noise level and of the cloud
density. The ISS extractor catches salient points everywhere on
the structure, so it is nearly equivalent to a uniform sampling
for such objects. The persistent FPFH points are relevant on
the CAD object but are much disturbed by real measurement
noise such as on object TLS 1, and the keypoints are not re-
peatable on the crowned” object which was sub-segmented in
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(c) our
proposed
region-growing

(a) linear
region-growing

(b) planar
region-growing

(d) our final segmentation (e) ground truth

Figure 10. Comparison of two methods of region growing based
respectively on the tangents (a) and on the normals (b) of the
PCA and of the proposed region growing (c). Only our method
is able to correctly differenciate cables, ground and steel beams.
Comparison of the proposed segmentation (d) and of the ground
truth (e).

[ Harris3D [ 1SS FPFH Ours

| CAD |TLS1|TLS2 | CAD |TLS1| TLS2 | CAD |TLS1| TLS2 | CAD [ TLS1| TLS2

Figure 11. Qualitative comparison of keypoint extractors against
ours on industrial pieces. Keypoints are represented in red.

TLS 2. Consequently they are not necessarily located on same
areas on TLS segments and CAD objects, leading to inaccur-
ate matching. Finally, our keypoint extractor is robust to noise,
under- and over-segmentation, and offers the best located key-
points reliably: we capture each area that is relevant for feature
matching with high repeatability whether the piece is extracted
from the 3D scene or the CAD model.

4.3 Feature-based matching evaluation

We dispose of a ground truth on an electrical substation near to
Castellane in France. Each CAD model from a catalogue was
manually positioned on the 3D scene. Thus we can evaluate
the recognition rate as well as the accuracy of the positioning
on the 6 DOF transformation. For these experimentation, we
chose to extract salient keypoints with a radius r, = 0.30m,
completed with a coarse sampling of radius 15 cm. We de-
scribe keypoints with two radii » € {0.30m 2.0m} for cov-
ering short and long range, given that the object’s dimensions
are roughly 1m x 1m x 5m. Each SPFH descriptor is built
with 5° bins, resulting in a 250 dimensional stacked feature vec-
tor. In our experiments, the catalogue includes 3 CAD objects,
and 81 segments where identified on the scene. The threshold
on IoU is set to 40%. For evaluating quantitatively the ac-
curacy of our positioning method, we compare the computed

transformations {7}} to the ground truth {T;} by evaluating
log(T; ' T;) = (dw, du)” € R for each object, where dw and
du are respectively the errors vectors in rotation and translation,
and we compute the translation error (; = ||dul|2 and rotation
error {, = ||dw||2. For dealing with axial symmetry, we with-
draw 7 to angular error greater than 90° but we count the num-
ber of flipped pieces. We have confronted our method for this
use case to the well-known local methods FPFH (Rusu, 2009),
SHOT (Tombari, 2010), and to a single scale SPFH feature.
We show the betterment of our keypoint extraction method by
carrying the matching experiments with both uniform sampling
(denoted by u on Table 1) of radius » = 15 cm, and with our
keypoints, for the same description methods. We compare the
recognition rate 7, maximum errors in translation ¢;" and rota-
tion (' and the percentage of flipped pieces Tfiippeqa. Runtimes
are between 10 and 20 minutes for all experiments, which is
not limiting for this use case. In particular, the multi-scaling
method does not induce significant runtime increase.

Method

T Ctm ( cm ) C:}n ( ° ) Tflipped

SPFH,, 80% 947.1 87 38%
SPFH 90% 29.7 8 21%
FPFH,, 3% 27.2 79 30%
FPFH % 30.4 84 17%
SHOT,, 96% 30.9 89 30%
SHOT 96% 21.8 84 10%
Ours,, 100% 45.6 77 39%

Ours 100% 11.6 4.0 7%

Table 1. Quantitative comparison of our descriptor against
state of the art descriptors.

As presented in Table 1, our keypoint selection method in-
creases with no ambiguity the number of rightly oriented
pieces. Moreover, our method increases for most description
method the recognition rate. We see that our SPFH implement-
ation outperforms the PCL FPFH descriptor because, as men-
tioned in Section 3.2.2, we do not decorrelate the computed
angles. Our method proves to be the most reliable for object
recognition, as we reach 100% recognition rate, and have the
lowest errors in translation. Indeed, our features are more effi-
cient for describing keypoints as being part of an object rather
than the local descriptor chosen, thus global shapes are better
matched. The maximum errors in rotation for SHOT and FPFH
are due to the fact that the overlap reached was sufficient for
matching segments that were incomplete because of data inher-
ent issues, but local description failed at managing nearly axial
symmetry. With our method, incomplete pieces are at worst
flipped on their quasi-symmetry plan, but no significant rota-
tion error occurs. Our experiments show that allying a simple
feature such as SPFH with a multi-scale method and an accur-
ate keypoint extraction can compete state of the art description
methods such as SHOT.

5. CONCLUSIONS

In this work, we proposed a general framework for modeling
complex industrial environments from 3D point clouds and a
catalogue of 3D CAD models. Our contribution is two-fold.
The first step consists in a robust segmentation of all objects
within the 3D point cloud. This segmentation method is based
on a shape analysis in the eigenvalues domain. Segmentation
result is a set of geometrically coherent regions which can be
agglomerated according to some application-dependent prior
knowledge. The second step queries the catalogue and eval-
uates the best correspondences between segmented objects and
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CAD models. For this purpose, salient key areas are determined
and described by a multi-scale feature on both CAD models and
3D segments. This multi-scale descriptor gathers local and con-
textual information, which allows managing the high degree of
auto-similarity of industrial pieces. Extracted features are thus
matched and the best fitting transformation is estimated for po-
sitioning automatically the corresponding CAD model directly
on the 3D scene, as it is shown in Figure 12.

Figure 12. On top, the 3D scene where the ground (green), the

wires (yellow) and other objects (purple) were segmented. On

bottom, objects having their CAD counterpart in the catalogue
were replaced by our modeling method.

Although we presented the specific use case of electrical sub-
stations, the proposed method is highly generic and could be
applied to a wide range of applications. Our multi-scale method
gathers information at short and long range from any geomet-
ric descriptor, insuring robust registration for complex objects.
In the future, we plan to use more efficient local descriptors
and decline them into multi-scale descriptors for reaching even
more robust results on larger datasets. Other use cases such as
pipelines and indoor industrial environments will be studied.
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