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ABSTRACT: 

 

The paper addresses the problem of a city heightmap restoration using satellite view image and some manually created area with 3D 

data. We propose the approach based on generative adversarial networks. Our algorithm contains three steps: low quality 3D 

restoration, buildings segmentation using restored model, and high-quality 3D restoration. CNN architecture based on original 

ResDilation blocks and ResNet is used for steps one and three. Training and test datasets were retrieved from National Lidar Dataset 

(United States) and the algorithm achieved approximately MSE = 3.84 m on this data. In addition, we tested our model on the 

completely different ISPRS Potsdam dataset and obtained MSE = 5.1 m. 

 

1. INTRODUCTION 

Cityscape13D models are widely used in practical applications, 

e.g. VR and computer games, data augmentation, etc. Since the 

creation of highly detailed 3D models requires a bunch of time-

consuming handwork, the solutions that can automate this 

process are still in high demand. 

 

Many modern techniques can automatically create such type of 

models using LIDAR data or an image flow, which is sufficient 

to implement structure from motion approaches. When this data 

is not fully available, the methods of 3D reconstruction from a 

single image are applied. In recent years, as in almost all other 

computer vision tasks, convolutional neural networks (CNN) are 

gaining well-deserved popularity as the core of these methods. 

 

In this work, we address the problem of automatic 3D cityscape 

reconstruction using a satellite image and some manually 

reconstructed parts of 3D scene (e.g. several buildings). This 

approach is justified in fast semi-supervised 3D modeling of the 

real environment when no high precision needed (for example, 

for synthetic dataset generation). 

 

The heightmap 3D models representation is considered, i.e. the 

2D matrix that contains surface elevation data. This allows us to 

build the algorithm on classical CNNs instead of voxel or graph 

CNNs. Last years, generative adversarial networks (GANs) have 

made a great performance gain for such types of problems and 

are employed in this work as well.  

 

Our GAN Generator-CNN receives satellite image and additional 

data (a building mask or the part of a heightmap) as the input and 

full heightmap as the output. For 3D reconstruction, two types of 

CNNs are used - MapNet and MaskNet. MapNet produces the 

heightmap from satellite image and the heightmap part or the 

buildings mask. MaskNet delivers intermediate buildings mask 

from the heightmap. Our CNNs has original architecture. 

 

The training data includes LIDAR data from National Lidar 

Dataset (USA) for New-York City and corresponding satellite 

images from Google, Yandex, Nokian and Bing online services 

 
*  Corresponding author 

using QGis software. On test dataset MSE (mean square error) = 

3.8 m is gained for restored heightmaps. The proposed NetMask 

outperforms popular CNN architectures such as ResNet36, 

DeepLabv3 and U-Net. 

In addition, we have tested our algorithm on ISPRS Potsdam 

dataset and obtained MSE = 5.1 m. It should be noted that the 

Potsdam dataset is significantly different from our training 

dataset in sense of presented building types (the algorithm has 

seen a lot of skyscrapers and high buildings in the training dataset 

of New-York City). 

 

2. RELATED WORKS  

Monocular 3D reconstruction. In our work, for the 3D 

reconstruction of cityscapes we use two data sources – aerial(or 

satellite) images and some manually created area with 3D data. 

Very similar task of 3D reconstruction from single image is well-

known in computer vision (El-Hakim, 2001), (Remondino, 

2003),( Remondino, 2006). 

As in other computer vision problems, the methods based on deep 

learning(Girdhar, 2016),( Choy, 2016),( Richter, 2018),( Shin, 

2018),(Long, 2015),(Isola, 2015), (Wu, 2017), (Huang, 2015),( 

Zheng, 2013) are successfully used in this area. Some methods 

were developed for voxel 3D model restoration from a single 

depth map ( Zheng, 2013), ( Firman, 2016). In (Girdhar, 2016) 

CNN for image to voxel 3D model translation was introduced. 

The CNN architecture is an auto-encoder for direct voxel model 

prediction. Unfortunately, this approach can work only with 

small 3D models (up to 20×20×20 voxels). An approach that 

combines single-view and multi-view reconstruction modes was 

described in ( Choy, 2016). In (Knyaz, 2018a) more accurate 

CNN that can generate voxel models of complex scenes with 

multiple objects was proposed. 

Using heightmaps, landscape reconstruction problem can be 

easily transformed to classical image-to-image translation 

problem. 

Image-to-image translation. Well-known grayscale 

colorization and style imitation methods (Zhang, 2016), (Gatys, 

2015) are the examples of the early CNN based image-to-image 

translation methods. The next level of quality and the ability to 
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solve this problem in general are promised by the generative 

adversarial networks. The first one was Pix2Pix (Isola, 2017) 

model that can learn any type of high quality image-to-image 

translation using training datasets of corresponding image pairs. 

In (Zhu, 2017) a new generative adversarial network called 

CycleGAN was proposed, that have the ability to learn on 

unpaired datasets. 

High quality 3D reconstruction. There are also some popular 

approaches for high quality 3D terrain reconstruction based on 

stereo matching (Knyaz, 2018b) and structure from motion 

(Knyaz, 2017). These approaches provide high quality 3D terrain 

models but require more input data - stereopairs or image 

sequences. 

 

3. HEIGHTMAP 

Normally, 3D cityscape models are represented as a set of points 

or triangles with texture. This type of representation is common 

for 3D modeling software and graphics cards. Unfortunately, this 

type of representation cannot be used with regular convolutional 

neural networks, since it can take only 2D fixed grids as an input. 

Of course, today there are, for example, some good realizations 

of graph-based neural networks, which can work directly on 

graph-like data structures. However, in fact, the theory of graph-

based network are not as mature as regular CNNs.On the other 

hand for terrains, there is a 2D fixed grid data representation 

called heightmap. Heightmap or heightfield is a 2D matrix used 

mainly as Discrete Global Grid in secondary elevation modeling. 

Each element of this matrix corresponds to a point in 3D model 

and the value of the element represents the elevation in this point. 

The values of elevation are set relatively to some “zero” level. 

Such type of heightmap can be easily converted by triangulation 

into 3D mesh. On figure 1 an example of heightmap and 

corresponding 3D model for landscape are shown.  

 

Figure 1. Heightmap (left) and corresponding 3D landscape 

 

The heightmap is similar to an image in terms of data structuring. 

Therefore, classical CNNs can be used for 3D landscape 

processing. For example in (Vizilter, 2019) heightmaps are used 

for 3D landscape restoration using CNN.  

In our work we also use heightmaps for cityscape representation. 

On Figure 2 an example of heightmap and corresponding 3D 

model for cityscape are shown.  

 

Figure 2. Heightmap (left) and corresponding cityscape 3D 

model  

4. METHOD 

Simple Generative adversarial networks generate some signal 𝐵̂ 

based on random noise vector z, 𝐺: 𝑧 →  𝐵̂ . Conditional GAN 

transforms an input image A and vector z to an output 𝐺: {𝐴, 𝑧} →
 𝐵̂. The input A can be the image that is transformed by the 

generator network G. The discriminator network D is trained to 

distinguish “real” signals from the target domain B from the 

“fakes” B produced by the generator. Generator and 

discriminator are trained simultaneously. Discriminator provides 

the adversarial loss that enforces the generator to produce “fakes” 

𝐵̂ that cannot be distinguished from “real” signal B. 

In our case, we have classical Conditional GAN problem, i.e. we 

have two inputs: aerial image and low quality heightmap 

(interpolation from a set of points), and get dense landscape 

model as an output(see Figure 3). Data fusion is made by a 

concatenation procedure. 

 

 

Figure 3. 3D reconstruction as GAN problem. 

 

For 3D reconstruction, two types of CNNs are employed - 

MapNet and MaskNet. MapNet produces the heightmap from 

satellite image and the heightmap part or the buildings mask. 

Also the special intermediate CNN – MaskNet is used that 

produces intermediate buildings mask from the heightmap and 

input image to improve 3D reconstruction quality. The algorithm 

pipeline is shown on Figure 4. 

 

 

Figure 4. Proposed 3D cityscape reconstruction pipeline. 

 

The reconstruction process can be divided in three stages: 

1. Low quality 3D restoration from input image and 

heightmap part using MapNet CNN; 

2. Building mask estimation based on low quality 3D 

model and input image using MaskNet CNN 

3. High quality 3D restoration using MapNet CNN, 

which depends on data from previous stages. 
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5. IMPLEMENTATION DETAILS 

To determine the height of a point, it is necessary to know what 

type of object it belongs to, what height the given object is, and 

how uniform it is. Moreover, most of the points, which have a 

height that differs from the ground level, belong to buildings 

whose scale can be diverse (small - private sector houses, 

medium and large - city buildings, hangars, etc.). The height of 

buildings is indirectly reflected in their shadows size and the 

deviation of the building roof position relative to the foundation. 

Moreover, depending on the height of the object and the angle of 

the sun at which the satellite image is acquired, its shadow on the 

image can take from just a few to hundreds of pixels. Also, the 

height of the object depends on the area in which it is located 

(private sector, residential quarter, skyscrapers, etc.). Thus, to 

determine the height of a point, it is necessary to take into account 

both closely situated and distant features. Since the construction 

of a 3D model is carried out using a satellite image (the resolution 

of which is a couple of meters or tens of centimeters), it is 

necessary to minimize the loss of spatial resolution, which can 

lead to a decrease in the accuracy of height maps restoration. 

 

5.1 ResDilation block 

For good 3D reconstruction we need multi-scale features. Such 

type of features can be created using convolution with different 

dilation (dilated convolutions (Fisher, 2016)). Following (Zhou, 

2018) multi-scale features can be combined in one layer. In this 

paper, we propose a new layer called ResDilation block that 

combines ideas of residual block from ResNet and multi-scale 

features. 

 

Figure 5. ResDilation block architecture. 

 

ResDilation block (shown on Figure 5) contains a sequence of 

convolutional layers with different dilations. For ResDialtion 

block with convolutions dilations (1->2->4->8->16->32) the 

receptive field is 127x127. The block output is based on local 

information from first convolution layers and on global 

information from last layers. Concatenation is used to prevent 

any changes in global and local information.  

ResDilation block is aimed at combining differently distant 

features and, depending on the position of the block in the 

network, determine what feature scale is important at this level. 

 

5.2 MapNet architecture 

The original network architecture based on ResDilation block is 

shown in Table 2. 

 

CNN blocks 

Name Layers 

Conv_block(n) 

Conv2d (num_filter=n, 

kernel_size=3, stride=1, 

padding=1) 

BatchNorm 

ReLU 

ResDilation Figure 3 

Table 1. MapNet block. 

 

Input Layers 

(Satellite image, center 

heightmap) or (Satellite 

image, center heightmap, 

mask build) 

Conv_block_1(64) 

Conv_block_1 Conv_block_2(128) 

Conv_block_2 ResDilation(128) x 9 

ResDilation Conv_block_3(128) 

Conv_block_3 Conv_block_4(128) 

Conv_block_4 Conv2d (num_filter=1, 

kernel_size=3, stride=1) 

Table 2 –MapNet architecture 

 

5.3 Training process 

During training we use generative adversarial network ideology 

with NetMap network as a generator CNN and the original 

network described in Table 3 as a discriminator CNN.  

 

pixel-ResDilation 

Layers 

Conv2d (num_filter=64, kernel_size=3, stride=1) 

BatchNorm 

ReLU  

Conv2d (num_filter=128, kernel_size=3, stride=1) 

BatchNorm 

ReLU 

ResDilation(128) 

Conv2d (num_filter=1, kernel_size=1, stride=1) 

Table 3 MapNet architecture 

 

Training process and basic loss functions are similar to 

Pix2Pix(Isola, 2017). To prevent model from smoothing, the 

special border loss is added – L1 loss between “height difference 

maps”, produced using Laplace operator from the heightmaps of 

ground truth and the generator CNN output. So the final loss is: 

 

𝐺∗ = arg min𝐺 𝑚𝑎𝑥𝐷𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝛾(𝐿𝐿1(𝐺) + 𝐿𝑑𝐿1(𝐺))   (2) 

 

where 

𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑦[log𝐷(𝑦)] + 𝐸𝑥[log (1 − 𝐷(𝐺(𝑥)))] 

𝐿𝐿1(𝐺) = 𝐸𝑥,𝑦[‖𝑦 − 𝐺(𝑥)‖1] 

𝐿𝑑𝐿1(𝐺) = 𝐸𝑥,𝑦[‖∇𝑦 − ∇𝐺(𝑥)‖1] 

 G – generator CNN 

 D – discriminator CNN 

 x – input data 

 y – ground truth data 

 ∇𝑦 – difference map 

                         𝛾  – equal to 100 in this work. 
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HRNet (Wang, 2019) was selected for MaskNet architecture. 

Cross entropy loss for semantic segmentation for two classes 

(building and background) with learning parameters from 

original paper are used in training process that contains several 

stages (see Figure 4): 

 

Stage 1: MapNet#1 CNN pre training on low quality 3D 

model restoration. 

 

Stage 2: MaskNet CNN pre training on semantic 

segmentation using low quality 3D model and aerial 

photo as input. 

 

Stage 3: MapNet#2 CNN pre training on high quality 3D 

model restoration. 

 

Stage 4: All three CNNs are trained simultaneously using 

full pipeline (Figure 1).On this stage we use Adam 

optimizer with β1 = 0.5, β2 = 0.999. Initial learning rate 

is 0.0001, learning rate decay is 0.1.  

 

6. EXPERIMENTS 

In our experiments we use PyTorch framework and 4 Nvidia 

Tesla P100 for training and testing. 

 

6.1 Database 

We use public LIDAR database from National Lidar Dataset 

(United States) for New-York city 

(http://gis.ny.gov/elevation/lidar-coverage.htm), 2017 and 

corresponding satellite images downloaded from Google, 

Yandex, Nokian and Bing map engines(using QGIS software), 

with 1 meter per pixel resolution. Training and testing datasets 

were created from this data. 

Training dataset contains 18000 samples and 576000 unique 

pairs (3D model and 256x256 RGB image). Test dataset contains 

2000 pairs. 

 

6.2 Training results 

Measurement quality is estimated by mean squared error (MSE) 

metric between ground truth and reconstructed heightmap, and 

building mask quality is evaluated by mean Intersection over 

Union (mIoU) metric. 

The segmentation quality has been tested with different input 

data. Results are given in Table 4 and show that using low quality 

heightmaps leads to quality improvement. 

 

Input mIoU 

Satellite image 85.2 

Satellite image, heightmap low quality 87.5 

Table 4. Segmentation quality on test dataset 

 

 

Table 5 shows 3D reconstruction results for different processing 

pipelines using different input data (image, center, building 

mask). 

 

Satellite 

image 

Center 

heightmap 

(64×64)  

Mask 

build 

RMSE, м 

✓ × × 9.45 

✓ ✓ × 4.44 

✓ × ✓ 8.76 

✓ ✓ ✓ 3.84 

Table 5. 3D reconstruction with different pipelines 

 

Also we tried different popular architectures as MapNet like 

ResNet, U-Net,DeepLabv3.  

 

Network  RMSE, м 

Unet 6.1 

Resnet 36 layers 5.54 

DeepLabv3 7.01 

Net Map 3.84 

Table 6. NetMap architecture comparison using full training 

pipeline 

 

Proposed architecture leads to significant better quality in  

comparison to competitors. 

 Also our approach was tested on completely different 

ISPRS Potsdam dataset from 

http://www2.isprs.org/commissions/comm3/wg4/tests.html and 

obtained RMSE = 5.1 without any pretraining. It should be noted 

that the Potsdam dataset is completely different from our training 

dataset in sense of presented building types (in New York there 

are a lot of skyscrapers and high buildings). On Figure 6 and 7 

the qualitative example of 3D reconstruction on Potsdam dataset 

is shown. 

 

 

Figure 6. Qualitative example of 3D reconstruction on Potsdam 

dataset. Ground truth (left) and restored model (right). 

 

Figure 7. Qualitative example of 3D reconstruction on Potsdam 

dataset. From left to right: Aerial image, Ground truth 3D 

heightmap, Restored 3D heightmap, Restored 3D heightmap 

with textures  

 

7. CONCLUSIONS 

The paper addresses the problem of a city heightmap restoration 

using satellite view image and some manually created area with 

3D data. This problem is kind of monocular 3D reconstruction 

problem. To solve this problem, we propose an approach that 

uses a set of convolution neural networks with proxy tasks. We 

use heightmap 3D models representation, i.e. the 2D matrix that 

contains surface elevation data. This allows us to use classical 

CNNs instead of voxel or graph CNNs.  

Following very popular Pix2Pix technique, we use generative 

network approach to improve 3D restoration quality. Our 

Generator-CNN receives satellite image and additional data (a 

building mask or the part of a heightmap) as the input and full 

heightmap as the output. L1 and adversarial loss are used as a 
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loss function. To prevent 3D model smoothing the special border 

loss is added – L1 loss between “height difference maps”, 

produced using Laplace operator from the heightmaps of ground 

truth and generator CNN output. For 3D reconstruction, two 

types of CNNs are used - MapNet and MaskNet. MapNet 

produces the heightmap from satellite image and the heightmap 

part or the buildings mask. MaskNet produces intermediate 

buildings mask from the heightmap. Both MapNet CNNs are 

trained using adversarial approach mentioned above. MaskCNN 

is trained in classical semantic segmentation way. After 

pretraining all three networks are trained simultaneously. For 

MapNet we propose architecture based on ResDilation blocks. 

Our test shows that proposed architecture significant better than 

popular architectures. 

Lidar data from National Lidar Dataset (USA) for New-York 

City and corresponding satellite images from google, yandex, 

nokian and bing online services are used for training. QGis 

software is used to create satelliteview images with 1 meter on 

pixel resolution. On test dataset (2000 samples) MSE(mean 

square error) = 3.8 m is gained for restored heightmaps. The 

proposed NetMask outperforms popular CNN architectures such 

as ResNet36 (MSE = 5.54), DeepLabv3 (MSE=7.01) and U-Net 

(MSE=6.1). In addition, we tested our CNNs on ISPRS Potsdam 

dataset and obtained MSE = 5.1 m. It should be noted that the 

Potsdam dataset is completely different from our training dataset 

in sense of presented building types (in New York there are a lot 

of skyscrapers and high buildings).   

The proposed algorithm is not supposed to be used for 

photogrammetric measurements due to the provided accuracy, 

but it can be effectively used for the automatic generation of 

surrounding 3D models.  

 

ACKNOWLEDGEMENTS 

This work was performed with the support of Grant No. 19-07-

01140 of Russian Foundation for Basic Research (RFBR) 

 

REFERENCES 

Wang J., Sun K., Cheng T., Jiang B., Deng C., Zhao Y., Liu D., 

Mu Y., Tan M., Wang X., Liu W., Xiao B.,2019. Deep High-

Resolution Representation Learning for Visual Recognition. 

CoRR, abs/1908.07919 (2019) 

 

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.,2017. Image-to-Image 

Translation with Conditional Adversarial Networks, Proc. 

CVPR2017. Papers 5967–5976(2017) 

 

El-Hakim, S.,2001. A flexible approach to 3d reconstruction 

from single images, ACM SIGGRAPH. Volume 1. Papers 12-17 

(2001) 

 

Remondino, F., Roditakis, A.,2003. Human figure reconstruction 

and modeling from single image or monocular video sequence, 

Proc. 3DIM 2003. Papers 116–123(2003) 

 

Remondino, F., El-Hakim, S., “Image-based 3D Modelling. A 

Review,” Proc. The Photogrammetric Record, 269–291(2006) 

 

Girdhar, R., Fouhey, D.F., 2016. Learning a predictable and 

generative vector representation for objects. Proc. M.R.E.C. 2016 

Springer (chapter 34) 702–722 (2016) 

 

Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S. 2016. 3d-

r2n2: A unified approach for single and multi-view 3d object 

reconstruction. Proc ECCV 2016 (2016) 

 

Richter, S.R., Roth, S. 2018. Matryoshka Networks: Predicting 

3D Geometry via Nested Shape Layers. Proc. arXiv.org (2018) 

 

Shin, D., Fowlkes, C., Hoiem, D. 2018. Pixels, voxels, and views: 

A study of shape representations for single view 3d object shape 

prediction. Proc. CVPR 2018 (2018) 

 

Long, J., Shelhamer, E., Darrell, T. 2015.Fully convolutional 

networks for semantic segmentation. Proc. CVPR2015. Papers 

3431–3440(2015) 

 

Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, W.T., Tenenbaum, 

J.B. 2017. MarrNet: 3D Shape Reconstruction via 2.5D Sketches. 

arXiv.org (2017) 

 

Huang, Q., Wang, H., Koltun, V. 2015. Single-view 

reconstruction via joint analysis of image and shape collections. 

ACM Transactions on Graphics. Papers 1–87 (2015) 

 

Zheng, B., Zhao, Y., Yu, J.C., Ikeuchi, K., Z hu, S.C. 2013. 

Beyond point clouds: Scene understanding by reasoning 

geometry and physics. Proc. CVPR2013 (2013) 

 

Firman, M., Mac Aodha, O., Julier, S., Brostow, G.J., 2016. 

Structured prediction of unobserved voxels from a single depth 

image. Proc. CVPR2016 (2016) 

 

Girdhar, R., Fouhey, D.F., 2016. Learning a predictable and 

generative vector representation for objects. Proc M.R.E.C. 2016. 

Springer (chapter 34) 702–722 (2016) 

 

Knyaz V.A., Kniaz V.V., Remondino F., 2018. Image-to-Voxel 

Model Translation with Conditional Adversarial Networks. Proc. 

ECCV 2018 Workshops (2018) 

 

Zhang R., 2016. Colorful Image Colorization.  ECCV2016. 

Pages  649–666 (2016) 

 

Gatys L., Ecker A., Bethge M., 2015. A Neural Algorithm of 

Artistic Style. Proc. CoRR2015 (2015) 

 

Zhu J., Park T., Isola P., Efros A., 2017. Unpaired Image-to-

Image Translation using Cycle-Consistent Adversarial 

Networks. Proc. ICCV2017 (2017) 

 

Knyaz V., 2018. Deep learning performance for digital terrain 

model generation. Proc. SPIE 10789, Image and Signal 

Processing for Remote Sensing XXIV, 107890X (9 October 

2018) 

 

Knyaz V., and  Zheltov S., 2017. Accuracy evaluation of 

structure from motion surface 3D reconstruction. Proc. SPIE 

10332, Videometrics, Range Imaging, and Applications XIV, 

103320P (2017) 

 

Lichen Zhou., Chuang Zhang., Ming Wu., 2018.D-LinkNet: 

LinkNet with Pretrained Encoder and Dilated Convolution for 

High Resolution Satellite Imagery Road Extraction.Proc CVPR 

2018(2018) 

 

Fisher Yu., Vladlen Koltun., 2016. Multi-scale context 

aggregation dilated convolutions”, Proc. ICLR 2016(2016)  

 

Vizilter Yu., Gorbatsevich V., Melnichenko M., 2019. 3D 

Terrain Model Enhancing Using Generative Adversarial 

Network. Proc. Vol 11057, Modeling Aspects in Optical 

Metrology VII; 110571D (2019) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-415-2020 | © Authors 2020. CC BY 4.0 License.

 
419



 

 

Wang J., Sun K., Cheng T., Jiang B., Deng C., Zhao Y., Liu D., 

Mu Y., Tan M., Wang X., Liu W., Xiao B., 2019. Deep High-

Resolution Representation Learning for Visual Recognition. 

Proc. TPAMI 2019 (2019) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-415-2020 | © Authors 2020. CC BY 4.0 License.

 
420




