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ABSTRACT: 
 
In this paper, we present an improved approach of enriching photogrammetric point clouds with semantic information extracted from 
images to enable a later automation of BIM modelling. Based on the DeepLabv3+ architecture, we use Semantic Segmentation of 
images to extract building components and objects of interiors. During the photogrammetric reconstruction, we project the segmented 
categories into the point cloud. Any interpolations that occur during this process are corrected automatically and we achieve a mIoU 
of 51.9 % in the classified point cloud. Based on the semantic information, we align the point cloud, correct the scale and extract further 
information. Our investigation confirms that utilizing photogrammetry and Deep Learning to generate a semantically enriched point 
cloud of interiors achieves good results. The combined extraction of geometric and semantic information yields a high potential for 
automated BIM model reconstruction. 
 

1. INTRODUCTION 

The digitalisation of the building sector is progressing steadily 
and, with Building Information Modeling (BIM), is taking the 
step from two-dimensional plans on paper to comprehensive, 
three-dimensional digital building models. These BIM models 
are the central element and represent the entire life cycle of a 
building, from planning and operation to demolition. In addition 
to the three-dimensional component and object geometries, they 
also contain all relevant semantic information. However, the 
introduction of BIM is currently taking place virtually only in the 
planning of new buildings. Due to the very high complexity of 
manual data acquisition and processing, the recording of already 
existing buildings as BIM models has been a minor topic of 
interest so far. Developing an automatic extraction of the 
necessary information out of measurement data yields a high 
potential at simplifying the creation of such “As-Build” or “As-
Is” models and thus the possibility to make them widely 
available. Creating these models requires three-dimensional data. 
We consider photogrammetry as a great method to not only 
capture and reconstruct buildings as point clouds of high quality 
but also extract further semantic information out of these images. 
Especially the categories of objects need to be available, as these 
are the foundation of every model. 
In this paper, we present our approach to providing both semantic 
and geometric information of an interior room in a classified 
point cloud in an automated process. 
 

2. RELATED WORK 

Building Information Modeling is a major focus of the digital 
transformation of the building sector. In Germany its 
implementation is taking place supported by guidelines and 
investigation mainly focussing on its introduction and execution 
in various disciplines, e.g. (Egger et al., 2013), (Eschenbruch et 
al., 2014), (Kaden et al., 2019) and (Bramann et al., 2015b). With 
the "Stufenplan Digitales Planen und Bauen" the Federal 
Ministry of Transport and Digital Infrastructure gradually 
introduced the BIM method into the planning processes of public 
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infrastructure (Bramann et al., 2015a). The effects of BIM on the 
implementation of infrastructure projects are being examined in 
detail during the introductory phase.  
A reconstruction of existing buildings as three-dimensional BIM 
models is possible using measurements of geodetic instruments, 
e.g. (Borrmann et al., 2015) and (Clemen and Ehrich, 2014). The 
increased demand of geometric three-dimensional data and 
additional semantic information of a BIM model is mostly 
ignored. In consequence, the acquisition and modelling of 
measurement data is highly complex and requires a large 
expenditure of time and money. 
The whole field of Deep Learning has become a major focus of 
research in recent years. Especially computer vision based on 
Convolutional Neural Networks progressed a lot since 
(Krizhevsky et al., 2012) was able to achieve great improvements 
in Image Classification. A lot of different ideas further 
developing this approach, and in turn, improving the reached 
accuracies, have been published, e.g. (Szegedy et al., 2015), 
(Simonyan and Zisserman, 2015), (He et al., 2015), (Xie et al., 
2017), (Huang et al., 2017). In addition to the pure classification 
of entire images, the idea of localising the detected class in the 
image also gained a lot of interest. Two different approaches have 
emerged for this purpose. Object Detection, as presented in 
(Girshick et al., 2014), (Girshick, 2015) and (Ren et al., 2015), 
uses bounding boxes to locate and classify objects. Even more 
precise, the Semantic Segmentation classifies every pixel of an 
image. As the resolution of the input images is retained, this 
method is very well suited to project the extracted semantic 
information into a point cloud. One of the first popular networks 
was (Long et al., 2015), which is named Fully Convolutional 
Network (FCN). Continuing from there, a lot of improved 
network architectures were developed, e.g. (Jégou et al., 2017) 
and (Zhao et al., 2017). In this paper we are using DeepLabv3+ 
(Chen et al., 2018), which achieves excellent results in 
benchmarks.  
In (Obrock and Gülch, 2018), our first approach to automatically 
generate a semantically enriched point cloud was published. It 
was based on the application of Deep Learning for segmentation 
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of eight interior building components and objects using an FCN. 
Subsequently, the segmented images were indexed and inserted 
into the original image by replacing the blue channel. Based on 
these false colour images a point cloud was created using 
photogrammetric methods. The fact that the previously 
segmented object categories are contained in the colour values of 
the points, and thus the semantic information confirmed the 
feasibility of this approach. The steps taken to improve and 
further develop this approach are presented in this paper. 
 

3. METHODOLOGY AND EVALUATION 

3.1 Overview 

Images are the main component of our approach because of the 
massive amount of information contained in them. They are the 
input for the photogrammetric point cloud generation and the 
extraction of objects based on Deep Learning methods. 
 

 

Figure 1. Overview of our workflow. Images of an interior room 
are the input for inference with our trained neural network and 
the photogrammetric point cloud generation. An interpolated 

point cloud is produced by projection of the segmented images. 
This point cloud is reclassified and used as the input in the final 

post-processing step. 

 
We use DeepLabv3+ as the architecture of our neural network to 
segment components and objects of interiors visible in the images 
at pixel-level. The training of the model is conducted using 
manually segmented ground truth data. 
The trained model then is used for inference on the images of an 
exemplary room. The base images also are used to generate a 
point cloud using photogrammetry. Afterwards, the category 
information stored in the RGB-values of the segmented images 
is transferred in the point cloud by projection based on the 
determined camera parameters. Ideally, the result would have 
been a classified point cloud, but because of interpolation, there 
is no clear assignment of category colours to the points. 
Therefore, an additional step is taken to reclassify them. By using 
the clearly classified point cloud as input for further post-
processing, we are able to automatically correct the rotation and 
scale, as well as extract additional information like floor, ceiling 
and wall planes.  
The presented steps are described in more detail below.   
 
3.2 Semantic Segmentation of Interiors 

A comprehensive and high-quality segmentation of all the 
important building components and objects in the images is of 
essential importance for a complete reconstruction of an existing 
building.  

For this purpose, the object categories were expanded to a total 
of 25 components and objects important for a great variety of 
interiors. Even though “Wall” is a major component of interiors, 
it had to be dismissed from the segmentation classes of the neural 
network because it had a negative influence on training. 
Therefore, the model was trained for extracting the remaining 24 
categories and a “Background” class of unclassified objects. As 
these were to be segmented with Deep Learning out of images, a 
new training data set was created. It is based on approximately 
300 images and the corresponding manually segmented ground 
truth annotations. Using data augmentation, the training dataset 
was expanded to almost 18,000 unique images. 
 

Table 1. Overview over the 25 categories of interiors we are 
interested in. The category "Wall" had to be excluded from the 
segmentation classes as it couldn't be segmented by the neural 
network. Our model was trained for the remaining 24 classes 

plus a “Background” class of unidentified objects. 

 
To further improve the quality of the segmentation, the 
architecture underlying the Deep Learning model was 
exchanged. Instead of a Fully Convolutional Network, the 
Architecture of DeepLabv3+ was used as the basis for training. 
Based on a pre-trained model utilizing xception65 architecture, 
training was conducted using fine-tuning.  
In an additional post-processing step, the smallest areas, which 
are partially present in the segmentations but do not relate to any 
real object, are filtered out. 
Based on the final trained neural network, inferencing was 
conducted on images of an interior room as the basis for 
subsequent steps. 
 

 
Figure 2. Figure 2: Exemplary results of using our trained 

DeepLabv3+ model for inferencing the images of an interior 
room. 

 
The segmentations achieved seem to be matching very good 
despite the significantly increased complexity due to the 
expansion of the categories. 
 

Room 
forming 

components 

Connecting 
components 

Fixed objects of 
interest 

Movable 
objects of 
interest 

Floor Door Light switch Socket Poster 

Wall Window Lamp Pillar Bookshelf 

Ceiling   Heater Pipe Carpet 

    Stairs Railing Cabinet 

    Sink Toilet  Chair 

    
Cable 
trunking 

Fire 
alarm 

Table 

    
Fire alarm 
siren 

  
Fire 
extinguisher 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-421-2020 | © Authors 2020. CC BY 4.0 License.

 
422



 

Due to time constraints, we were unable to create another dataset 
for validation and thus could not calculate the accuracy of the 
model. 
Visually inspecting the images, the overall quality seems to be 
rather high. Some of the categories, especially ones with large 
areas, seem to have a high consensus. Errors are happening where 
objects resemble each other too closely, like the feet of the 
“Table” and “Chair”. It is also noticeable, that unique objects like 
“Heater” are segmented more precisely then plain and big areas 
like “Ceiling”, in which some holes occur. The small categories 
like “Light switch” and “Socket” are segmented very unsteady, 
often depending on the angle and distance at with they are 
pictured. A continuously only mediocre segmented category is 
the “Bookshelf”, as its areas seem to be incomplete often. 
Nevertheless, the results obtained are very promising and form a 
good basis for the next steps. 
 
3.3 Classified Point Cloud 

With BIM-models as our main target, we then need to transfer 
the two-dimensional semantic information from the images into 
three dimensions. Using photogrammetry and digital image 
matching, the images of the room build the basis to create a three-
dimensional, semantically enriched point cloud.  
In our previous paper, the category information was compressed 
into just one colour channel, which made it hard to distinguish 
between them visually because there was only a small distance 
between the classes. This would have been further complicated 
by increasing the classes to 25, including the unclassified 
“Background”. Therefore, we needed to change the approach. 
The transfer of semantic and geometric information no longer 
takes place in one, but in two separate but consecutive phases. 
Based on these, a photogrammetric point cloud is generated 
automatically in Agisoft Metashape (Agisoft, 2020) without 
placing any control points. In our experiments this software has 
proven to be very well suited to perform this task, especially in 
comparison to some non-commercial packages, like Visual SfM 
or Alice Vision. 
By relying on the original images of the interior room, a point 
cloud is generated without losing any colour information. To 
transfer the category information of the segmented images into 
the point cloud, a different method is applied. By replacing the 
original images with the segmented images after the point cloud 
was created and thus relying on the previously determined 
camera position and rotation, we are projecting the category 
information into the point cloud. The resulting interpolated point 
cloud is shown in Figure 3. 
This yields significant advantages. When generating the point 
cloud by photogrammetry, there is no missing colour 
information. This results in a higher quality when extracting and 
linking individual concise image areas and thus an improved 
reconstruction of the entire point cloud. Furthermore, the colour 
value combinations representing the individual categories can be 
placed at a greater distance from each other. These are very small 
if 25 classes are to be divided into 256 possible colour values of 
one channel. In contrast to this, the combination of values from 

three channels allows significantly larger Euclidean distances 
between the colour values of the categories, since they can be 
regarded as points in three-dimensional space. A distribution 
over all colour channels also has the greatest advantage for the 
viewer, since they can be distinguished more clearly from each 
other. 
The point cloud itself is a proof of concept of an automatic 
generation and category projection. It is rather noisy but still 
manages to capture most parts of the room. Nevertheless, there 
are some missing areas, especially at the floor and the ceiling, 
which consist of large, uniform parts. 
The colour values of the individual points are derived by 
interpolation of the overlapping values of the individual images. 
If their camera orientations in three-dimensional space or if the 
segmentations performed in these images do not match, the 
interpolation results in divergent values in the generated points. 
This becomes very clear by the darkening colours within the 
points of an object like the door, which only is partially bright 
green. 
This leads to the fact that a further step is necessary, in which a 
reclassification of the point cloud is carried out to generate a clear 
assignment of the categories. 
To aid this reclassification, the RGB colour values of the 
categories were chosen so, that their minimum Euclidean 
distance from each other and possible interpolated colours with 
“Background” are maximally large. This way a reasonably even 
distribution of the colour values in three-dimensional space is 
achieved and a clear assignment of the categories is made 
possible more easily. 
A coarse filtering of the point cloud is carried out beforehand to 
remove outlier points that are not close enough to the other 
points. A clear assignment of categories is obtained by looking at 
the colours of the individual points in three-dimensional space 
and determining their Euclidean distance from the colour values 
of the individual categories. Additionally, the distances of the 
colour values of a point to those colour values are calculated, 
which would result from the interpolation of a category with 
“Background” points as the most common class. If the distances 
to one of these are smaller than a threshold value derived as a 
percentage of the minimum distance between the classes, a direct 
assignment to the corresponding category is made.  
In the case that these two are not within the limits, the 
neighbourhood of the points is examined for the assignment of 
the categories. If one category occurs significantly more often 
than the others in this neighbourhood, this category is also used 
for the examined point. As a combination, it is checked if the 
colour values of a point are within an extended range to the most 
prominent category in the neighbourhood. If no categories can be 
determined by distance and neighbourhood investigations, they 
are listed as an undefined “background” point. The point cloud 
resulting from this step now contains clearly assigned categories 
for each point. The classified point cloud is shown in Figure 4.  
It becomes clear that due to the overlapping of many segmented 
images, individual segmentation errors in these images rarely 
influence the final classification of the point cloud. Incorrect 
category assignments usually occur if there are systematic errors 

Figure 3. Different views of the generated point cloud after projection of the categories as combination of colour values. No clear 
distinction of categories, as the colours changed through interpolation, which is especially apparent in parts of the green door. 
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in the segmented images, the determined camera position and 
rotation are inaccurate, or image matching errors occur during 
point cloud creation.  
In Table 2 the accuracies are shown, which reflect the good 
overall classification quality. It is based on the comparison with 
a manually segmented copy of the point cloud and enable us to 
extract data about the accuracy (ratio of correctly classified 
points to all / category points) and mean intersection over union 
(mIoU) of the categories present in the room. 
The good quality of the classification is confirmed by the mIoU 
with a value of 51.9 % where every class is weighted the same. 
This also applies for the calculated mean accuracy of 60.4 %, 
which is showing a high consensus of the ground truth points.  
Comparing the individual IoU numbers, a big difference between 
them becomes obvious, ranging from low values of “Light 
switch” with 6.3 % to high values of “Door” at 77.9 %. Especially 
bigger objects seem to be classified very good and even the 
“Bookshelf”, which often is segmented poorly in the images, still 
reaches an IoU of 38.4 %. On the other hand, the categories of 
“Socket” with 10.8 % and “Light switch” with 6.3 %, which 
represent very small objects, only achieve a low IoU in the point 
cloud. Partly contrary to this, the accuracy of “Light switch” is 
reaching a much better value with 48.2 %. This is due to a 
comparingly high amount of interpolated and then wrongly 
assigned colours which are occurring at points of the floor. 
Because the number of actual points of “Light switch” is small, 
these wrongly assigned points have a huge influence on the IoU. 
In conclusion, it can be said that thought projection and 
reclassification of the categories in the point cloud a high quality 
of classification is reached. 
 

3.4 Automated Post-Processing 

Based on the resulting classified point cloud, further processing 
is conducted. Since it was generated fully automatically and 
without the use of control points and marks, neither its rotation 
in space nor its scale correspond to the real conditions. Extracting 
these is possible based on the additional semantic information. 
For this purpose, the points segmented as ground are used and 
occurring incorrectly classified points are filtered out. From the 
remaining selected points, the ground plane is derived. Then the 
point cloud is shifted to the origin and rotated in an iterative 
process based on the ground plane so that its normal is 
approximately identical to the Z-axis of the local coordinate 
system and therefore aligned horizontally. Next, the ceiling plane 
is determined from the corresponding points segmented as 
ceiling.  
Subsequently, wall planes and wall points are extracted from the 
point cloud as they could not be considered in the segmentation. 
This is achieved based on a top view heat map created from the 
unclassified “Background” points of the point cloud, where the 
pixel values are based on the numbers of existing points of a grid. 
When viewed in two dimensions, an accumulation of points is to 
be expected, especially on vertical components. Since walls, as 
the limiting element of the room, have large vertical surfaces, a 
particularly strong accumulation is to be expected. 

Figure 4. Different views of the classified point cloud. A sharp distinction between categories is visible. Therefore, there are no more 
darkened colours in the area of the green door. 
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IoU 51.9 60.8 75.1 77.9 75.6 6.3 10.8 59.2 66.4 43.6 41.6 71.4 53.5 38.4 43.3 54.9 

Accuracy 60.4 93.8 77.1 84.4 88.8 48.2 11.3 62.2 70.5 45.3 43.0 74.2 54.7 38.8 50.0 63.4 

Table 2. Calculated intersection over union and accuracy of the objects present in the room. 
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Figure 5. Derived heat map of the room used to extract the most 

prominent lines using Hough transform algorithm. 

 
From the created heat map, the probable angles of the walls are 
extracted based on the most prominent lines determined by a 
Hough transform algorithm. These are then transferred back into 
the third dimension. Previously uncategorized points, which are 
located in only a short distance from these, are now selected to 
determine the actual best-fit planes of the walls. Accordingly, the 
points close to these planes are classified as wall points. 
To achieve a correct scale for the point cloud, the dimensions of 
an object in the real world and a segmented object in the point 
cloud have to be adjusted. As an object of comparison, especially 
doors (frames) seem to be well suited. They are present in every 
room and easily measurable manually in the real world. They 
have a rather large dimension in Z-axis direction but are usually 
easier to measure, than e.g. the vertical distance between floor 
and ceiling, whose planes in the point cloud are known but may 
not be completely parallel, making the height calculation error 
prone. Doors, in contrast, are clearly segmented in the point 
cloud. Because the point cloud is correctly aligned, the height of 
objects can easily be extracted and is therefore used for 
comparison. Using a region growing approach all points of a door 
are selected and the height is calculated based on the maximum 
and minimum values along the Z-axis. The resulting scale is used 
to adjust the point cloud. 
When using the scaled point cloud for comparison, the measured 
distances are matching the real distances rather well as shown on 
two examples in Table 3. 
 

 Real World Point Cloud 

Height Table 72.3 cm 72.1 cm 

Width Cabinet 110.0 cm 108.9 cm 

Table 3. Comparison of measurements of objects in the real 
world to their counterparts in the scaled point cloud. 

 
The points resulting from the intersections of walls with floor and 
ceiling planes, all of them automatically derived entirely from 
data, represent the room geometry in its basic features. 
With our investigations and the solutions based on them, we have 
taken further important steps to enable automated BIM-
compliant modelling of existing buildings. 
 

4. CONCLUSION 

In this paper, we were able to verify that the combination of 
photogrammetry and Deep Learning is a solid approach to 
generate a semantically enriched point cloud of interiors. The 
combined extraction of geometric and semantic information 
based on segmentation with DeepLabv3+ and projection into the 
photogrammetric point cloud achieves good results. In 
consequence, the components and objects can be differentiated 
very well in the point cloud. The reached mIoU of 51.9 % for the 
classified point cloud confirms the good quality of this approach. 
Additional important information essential for a BIM model can 
be extracted by analysing and post-processing the point cloud. 
We are confident that we will be able to improve the results by 
further optimizing the methods used.  
In the future, it is planned to extend this approach to the 
combination and joint processing of several rooms as well as 
including mobile laser scanners. With the methods presented by 
us, we have created a solid basis for the acquisition and modelling 
of semantic and geometric information of interiors for BIM 
models towards their automated reconstruction. 
 

 

 

Figure 6. Different views of the post-processed final point cloud. Rotation and scale are corrected. Extracted wall point are visible in 
the point cloud in light grey colour. 
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