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ABSTRACT:

We propose a pipeline for the detection as well as modeling of individual buildings based on multi-source images. It allows to
consistently reconstruct whole buildings at Level of Detail 3 (LoD3): the roof from airborne images and the facades including
elements such as windows and doors mainly from terrestrial images. We employ a parametrized top-down model – the “shell
model” – with the roof as well as the facades semantically and geometrically integrated. This generative model fosters stability for
building detection by enabling the use of multi-source data and offers flexibility in modeling by means of a fully CAD-compatible
integration of building components. Experiments performed on imagery from different terrestrial and airborne (Unmanned Aerial
Vehicle – UAV) cameras demonstrate the potential of the approach.

1. INTRODUCTION

3D building reconstruction is of great interest for many ap-
plications such as city planning, navigation, crisis manage-
ment/emergency response, and tourism. In the last decades, it
has been intensively studied and a large number of different ap-
proaches has been reported. Overviews of approaches before
2010 are given in (Brenner, 2005, Schnabel et al., 2008, Vossel-
man, 2009).

The approaches of the last decade include (Sampath, Shan,
2010), which segments and reconstructs complicated buildings
from airborne LiDAR (Light Detection And Ranging) point
clouds using polyhedral models. (Lafarge et al., 2010) presents
building reconstruction from a Digital Surface Model (DSM)
combining generic and parametric methods. For more sophist-
icated buildings, basic geometric primitives, e.g., planes, cyl-
inders, and cones, are combined with mesh-patches to present
irregular shapes (Lafarge, Mallet, 2012). (Huang et al., 2013)
proposes a statistical approach for Level of Detail (LoD) 2
building model reconstruction from LiDAR data via generative
models.

The topological consistency of rooftops is the focus of (Chen
et al., 2017). (Zeng et al., 2018) proposes residential build-
ing reconstruction using deep neural networks applying shape
grammar rules. In (Li et al., 2019), the point cloud is segmented
using a Triangulated Irregular Network (TIN) and the boundar-
ies of roofs are refined on a 2D grid.

(Partovi et al., 2015) presents an extension of a hybrid frame-
work for data from stereo satellite imagery with ridge-line-
based building mask decomposition. (Tutzauer, Haala, 2015) is
concerned with 3D facade reconstruction based on point clouds
derived from mobile mapping systems and oblique airborne
cameras. Radiometric segmentation is used to overcome the
limited accuracy of the point clouds.

A plane-based building model reconstruction and regularization
approach is introduced in (Holzmann et al., 2018), employing
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an improved stable plane detection approach based on 3D lines
instead of points. The detection and reconstruction of buildings
from point clouds derived from space-borne Synthetic Aperture
Radar (SAR) data is reported in (Shahzad, Zhu, 2016).

A building reconstruction pipeline based on point clouds de-
rived from UAV (Unmanned Aerial Vehicle) images is presen-
ted in (Li et al., 2016). Roof structures are determined using
Markov Random Field optimization and fitted to the estimated
building footprints. Another approach using point clouds from
UAV images is (Nguatem, Mayer, 2017), which employs a non-
parametric Bayesian framework and polygon sweeping. Start-
ing from planar roof segments, (Zhou, Neumann, 2012) tries to
organize them using “global regularities” in the form of orient-
ation and placement constraints.

In recent years, the quality and availability of 3D point clouds
from LiDAR and image-based reconstruction have been signi-
ficantly improved. The approaches for building reconstruction
reach a high level of automation and cover larger urban and
suburban areas. In (Huang, Mayer, 2017, Huang et al., 2019),
an approach for scene and building decomposition is proposed
which improves the efficiency of complex building reconstruc-
tion in dense scenes. A reconstruction pipeline for sophisticated
building models based on multi-source data including building
footprints, mesh data, and terrestrial images is introduced in
(Kelly et al., 2017) with facade elements detected from the im-
agery using deep neural networks. (Zhu et al., 2018) presents a
large-scale urban modeling framework based on surface meshes
derived by a multi-view-stereo system.

Besides the challenges by data flaws and complex building
structures, previous approaches suffer from incomplete meas-
urements for buildings. Terrestrial LiDAR data or images reveal
details of buildings, particularly of the facades, but have poor
coverage of the roofs and the ground due to the obtuse observa-
tion angle. Because of the viewing angle and flying height, air-
borne LiDAR data or imagery provide suitable measurements
for the roof but not for the facades, even for oblique views.
Many approaches are, therefore, limited to either incomplete
building modeling without roofs or LoD2 building modeling
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with detailed roof shape but only an extrusion approximating
the walls.

Because of the improvement of data acquisition technologies,
especially the advent of UAVs, it is now possible to acquire data
covering the whole building from all sides. High-resolution ter-
restrial images of the facades are complemented by UAV im-
agery taken from slightly larger distances using nadir and ob-
lique views, with a clear view on the ground and the roofs.
While this opens up a possibility for direct LoD3 building mod-
eling, we also face new challenges concerning effective fusion
and utilization of the data, i.e., the semantic and geometric in-
tegration of the roof and the facades as well as the facade ele-
ments including windows and doors.

To this end, we employ the “shell model”, a generative statist-
ical model for LoD3 building reconstruction based on the fusion
of terrestrial and UAV imagery. It is a hybrid model combining
concepts and elements of CSG (Constructive Solid Geometry)
and BRep (Boundary Representation) models. The shell model
consists of an outer and an inner layer defining a solid body
model with a certain thickness in between. Under observation
of measurement data including point clouds from LiDAR and
image matching, we conclude that the data actually always only
reveal the surface instead of the solid body of the objects. Due
to the measurement uncertainty, the surface is also far from
perfect. Shell models allow for a more suitable and practical
geometrical modeling in comparison with conventional surface
models, e.g., meshes or assembled planes, as well as solid body
models. In this work, roof(s) and facades are modeled together
by a hollow shell with a hypothetical thickness based on the
multi-source images of the whole building.

All the components are integrated into a model with CSG oper-
ations. Experiments are performed on multi-source image data
to demonstrate the potential of the proposed approach.

The paper is organized as follows. Section 2 describes the de-
rivation of dense 3D point clouds from multi-source images.
In Section 3 the concept of shell models is introduced. The
use of shell models for both building detection and modeling is
demonstrated based on a running example. The paper ends with
a conclusion and recommendation for future work in Section 4.

2. MULTI-SOURCE IMAGERY AND 3D
RECONSTRUCTION

The input multi-source images, as shown in Figure 1, stem from
both UAV and terrestrial cameras. They are acquired with a
hand-held DSLR (Digital Single-Lens Reflex) camera (Nikon
D800, 36M pixels) and an UAV-mounted light-weight mirror-
less camera (Sony ILCE-7R, 36M pixels). The images cover
the whole building from the facades to the roof. These wide-
baseline images are fused by a precise and reliable orientation
estimation approach and dense colored 3D point clouds are re-
constructed.

2.1 Sparse 3D Reconstruction

A sparse 3D reconstruction of this image set is conducted using
the Structure from Motion approach described in (Michelini,
Mayer, 2016). This approach requires (approximate) camera
calibration, which is obtained from the meta-data of the im-
ages. Images are matched using wide-baseline image match-
ing (Mayer et al., 2012) which is required for strongly geomet-
rically/radiometrically distorted images. To improve robustness

Figure 1. Input images from an aerial (UAV – top and center)
and a terrestrial (bottom) cameras.

and accuracy, image triplets instead of pairs are employed. Fi-
nally, triplets are merged to even larger image subsets trans-
forming the orientations into a common reference frame.

Figure 2 shows the estimated orientations (top). Images with
detected overlap are linked with colored lines (bottom), which
are reduced in number for a better visualization. Color indicates
different cameras.

2.2 Dense 3D Reconstruction

Based on the accurately estimated orientations, dense depth
maps are generated considering epipolar constraints. The
foundation of our Multi-View Stereo (MVS) approach is Semi-
Global Matching (SGM) (Hirschmüller, 2008) because of its
potential for an efficient as well as effective processing, es-
pecially for high-resolution images. A pixel-wise uncertainty
measure for the disparities (Kuhn et al., 2017) is the basis for
a high quality probabilistic integration of the stereo models in
voxel space. Figure 3 shows the target building (top) and the
dense point cloud (bottom) reconstructed from the multi-source
images shown in Figure 2.

3. BUILDING MODELS

We employ a generative model – “shell model” for both detec-
tion (cf. Section 3.1) as well as modeling (cf. Section 3.2) of
buildings from the input point cloud. The concept of the shell
model is inspired by two observations: (1) no matter which ac-
quisition technique (e.g., LiDAR or 3D reconstruction based on
image matching) has been employed, the “3D” measurement
data represent only the surface and not the solid body of the
objects and (2) because of measurement errors, noise, and lack
of physical construction precision the underlying surfaces are
represented by a layer with a certain thickness.

We, therefore, consider a “shell” a more reasonable and practic-
ally useful geometrical model for the parsing of measurement
data than a simple surface or a solid body and propose a shell
model for building modeling in LoD3. It consists of parallel in-
ner and outer layers and the solid body defined by them. I.e., it
is a hybrid model combining elements of BRep and CSG mod-
els. Figure 4 presents the concept of the shell model. Instead
of a standard BRep or CSG model, the building is modeled as a
“shell” with a certain thickness.

Please note that shell models have different definitions of the
inner and outer layers depending on the application, namely
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Figure 2. Orientation estimation for images from different
sources: The pyramids show the orientations with the colors

representing different cameras (calibration). Cameras are linked
with colored line segments (bottom) if the corresponding images

overlap.

building detection (cf. Section 3.1) and modeling (cf. Sec-
tion 3.2).

3.1 Building Detection

The shell model for building detection is designed as shown in
Figure 5 (top left). The outer layer (blue) and the inner layer
(red) represent the tolerances around the model matching the
data (green). The definition of layers is different for building
modeling (Figure 5, top right), for which more details are given
in Section 3.2.

3.1.1 Primitives Our statistical building detection employs
generative primitives. Inspired by (Huang et al., 2013), we
provide an extended library of primitives, as shown in Fig-
ure 6, by adding, e.g., the half-hipped roof for typical European
houses (cf. the running example in Figure 7) and arched and
butterfly roof. This empirically defined library is supposed to
cover a majority of typical European residential and industrial
buildings.

The primitives are parametrized as:

θ ∈ Θ; Θ = {P, C,S} , (1)

where the parameter space Θ consists of position para-
meters P = {x, y, azimuth}, contour parameters C =
{length, width} (rectangular footprint), and shape parameters
S: ridge/eave height(s) and parameters of hips.

Figure 3. Top: A photo of the target building; Bottom: The
reconstructed colored 3D point cloud.

3.1.2 Parameter Optimization The Maximum A Posteri-
ori (MAP) estimate of Θ is employed to find the optimal model
fitting the data:

Θ̂MAP = argmax
Θ

{
L(D|Θ)p(Θ)

P (D)

}
= argmax

Θ

{
L(D|Θ)p(Θ)

}
.

(2)

L(D|Θ) is the likelihood function representing the goodness of
fit of the model to the data D and p(Θ) the prior for Θ. The
prior is derived from empirical knowledge and can be incre-
mentally improved based on the accepted models (pieces of
evidence). I.e., parameter values of already found primitives
(single buildings or building components) are used to update
the priors. P (D) is the marginal probability. It can be omit-
ted from the goal function as it does not depend on Θ and is,
therefore, constant in the optimization.

Reversible Jump Markov Chain Monte Carlo (RJMCMC)
(Green, 1995) is used for the statistical search of the paramet-
ers, resulting in an efficient exploration of the high-dimensional
(determined by the number of parameters) search space. The
reversible jumps allow to switch between search spaces, i.e.,
different types of primitives with different numbers of paramet-
ers.

Figure 7 presents the detection of a building with a half-hipped
roof. The shell model with inner (red) and outer (blue) layers
(bottom) is fitted to the input point cloud (top). The model of
best fit is then assumed to be the layer (green) between them.

In comparison to previous approaches (mostly BRep-based) in-
cluding (Huang et al., 2013), the proposed shell models have
the following advantages for building detection:
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Figure 4. Comparison of the concepts of BRep (left), CSG
(right), and shell models (bottom).

Figure 5. Shell models for building detection and modeling.

1. Roof and facades are defined by the same model and are
detected jointly. There is no need to adjust and match roof
and facade planes. The result is guaranteed to be a com-
plete and watertight model.

2. The parameters of the model are determined through the
consensus of all planes of the building and are, therefore,
more precise and stable.

3. The detection is more efficient. A time-consuming part of
the MCMC search is the calculation of the likelihood L,
i.e., the evaluation of the goodness of fit of the proposed
model. This calculation has to be performed a large num-
ber of times during statistical optimization. In previous
work, the likelihood is calculated based on the distances of
all individual points to the corresponding planes. For the
shell model, the goodness of fit can be represented as the
number of points inside the shell, which can be efficiently
calculated as the difference of the number of points in the
solids constructed by the outer and the inner layer.

3.2 Building Modeling

As shown in Figure 5, the shell model for building modeling
is defined differently than for detection. After the optimally

Figure 6. Predefined primitive library.

fitting model (green) has been detected (cf. Section 3.1), it is
employed in building modeling as the outer layer representing
the facade, while the inner layer models the inside walls. In this
case, the thickness of the shell simulates the thickness of the
walls. Yet, we note that the thickness of the walls is, in most
cases, only hypothetical, as there is usually no data available for
the interior of the building.

In conventional building modeling, there is data available either
solely for the roof or the facades. We can either choose “roof-
based” modeling, i.e., facades modeled as an extrusion from the
eave lines to the ground, or “facade-based” modeling, meaning
that the exact roof geometry including the overhang is ignored.
As we fuse the images from both aerial and terrestrial cameras
(cf. Section 2), the reconstructed point cloud is available for
both roofs and facades. The shell model shows its advantage by
inherently integrating roofs and facades jointly taking all data
from multiple sources into account:

1. Roof and facades are predefined jointly in the top-down
model. The resulting building model is guaranteed to be
watertight without any extra effort to assemble individual
planes.

2. Both roof and facades are appropriately modeled with the
possibility to detect and model roof overhangs.

3. The shell model allows to model windows and doors quite
naturally as openings.

3.3 Integration of Building Parts and Facade Elements

The shell model has a tree structure compatible with standard
CSG operations such as “Union” and “Difference”. This means
that the shell model can be extended by merging multiple build-
ing parts and refined by modeling facade elements. The integ-
ration does not only mean geometric combination but also se-
mantic organization.

3.3.1 Roof Overhang Roof overhang refers to the part of a
roof which extends over the facade planes. In almost all previ-
ous approaches for building reconstruction, the roof overhang
of buildings has been ignored. On one hand, it is considered
as a trivial part in comparison with the main body of the build-
ing. On the other hand, it is hard to detect because of (1) the
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Figure 7. Building detection from point cloud (top) with shell
model (bottom).

weak support by a limited number of points and (2) the inherent
constraints in roof-based and facade-based modeling. The roof
overhang, however, plays an important role in detailed build-
ing modeling, in which the contour of the roof (eaves) and the
boundary of the walls, i.e., the building footprint, should be dis-
tinguished and modeled precisely.

Since we have data available for the roof as well as the facades,
we can detect and model this relatively slim structure. We deal
with the roof as an additional building part, which is a solid
body (or an open shell) consisting of the planes of the roof
with a certain thickness. The detection and modeling of the
roof overhang can, thus, be performed separately without con-
straints by the facades. We particularly employ a rule-based
“edge sweeping” method (Huang, Brenner, 2011):

Hypotheses are generated by extending the roof to fit the points
that are supposed to represent the overhang. I.e., these points
belong to the planes of the roof but are outside the boundary of
the walls. Since the points of the overhang are few and noisy,
we link the “sweeping” of both sides of the roof by joint con-
straints to ensure parallelism and symmetry. The roof is merged
to the main body of the building with the CSG “union” opera-
tion (cf. also Figure 5, bottom).

3.3.2 Facade Elements While the aerial images cover
mainly the roof, the terrestrial images with relatively higher res-
olution reveal the details of the facades. While we have worked
with Implicit Shape Models (Reznik, Mayer, 2008) and Struc-
tured Random Forests (Rahmani, Mayer, 2018) in the past, here
we detect the elements i.e., particularly windows and doors, in

rectified terrestrial images employing a Convolutional Network
(ConvNet). A shell model has semantically defined planes for
roof and facades. From the primitive model the facades can,
thus, be directly derived in the form of 3D polygons. The
original images are projected via a planar homography onto
the facade planes representing the corresponding regions of the
facades.

We employ FC-DenseNet56 (Jégou et al., 2017), trained for the
semantic segmentation of rectified facade images. I.e., we gen-
erate pixel-wise proposals for the classes wall, door, window
and occlusion. The results for projections from different im-
ages are merged and facade elements are fitted to the overall
result (Schmitz, Mayer, 2016, Schmitz et al., 2019). The detec-
ted facade elements are projected back into 3D space for integ-
ration in the LoD3 model. Figure 8 presents this process.

Figure 8. Detection of windows and doors with a ConvNet on a
planar facade. Image parts of the facade are projected onto the

facade plane using corresponding 3D coordinates. The final
results are projected back into the 3D model.

Since the walls have a certain thickness, the windows and doors
can be modeled either as alcoves (left) or cavities (right) as
shown in Figure 9.

Figure 9. Openings can be represented as alcoves (left) or
cavities (right).

Figure 10 presents reconstruction results based on the point
clouds (left) derived from multi-source images. The CSG mod-
els (right) contain the roof with overhang, the walls with a given
thickness and the facade elements.

A combined (L-shaped) building, as demonstrated in Figure 11,
is modeled by merging two individual primitives with the
“union” operation of CSG, while the windows and doors are in-
tegrated with the “difference” operation as alcoves. The BRep
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Figure 10. Input point clouds (left) and reconstruction results
(right).

elements of shell models – the outer layers – can be used for tex-
turing (cf. Figure 11, bottom). Based on the determined facade
as well as roof planes, images are projected onto the corres-
ponding facets (3D polygons with known plane parameters and
vertices) as textures.

4. CONCLUSION AND FUTURE WORK

In this paper, we have presented a pipeline for the reconstruc-
tion of individual buildings from multi-source imagery. We
have demonstrated the advantages of shell models in building
detection as well as modeling using the fusion of airborne and
terrestrial images. The main contributions of this paper can be
summarized as follows:

– Introduction of a complete pipeline to utilize multi-source
images from different platforms with different resolutions;

– Efficient and stable building detection based on the con-
sensus of roof as well as facade planes;

– Detailed modeling of both roof and facade geometry con-
sidering roof overhangs;

– Water-tight and CAD-compatible vector models with op-
tional alcoves/cavities for openings

We are aware that many challenges remain. Public and com-
mercial buildings may have special shapes that cannot be rep-
resented by the introduced rectangular primitives. The super-
structures on the roof and facades, e.g., dormers, chimneys and
balconies, as well as annexes of the buildings, for instance,
storage sheds and outer stairs, have not been tackled yet, even
though they could, to a certain extent, be approximated with the
existing primitives, i.e., flat-, shed- and gable-roofs.

Concerning future work, we first consider to upgrade the lib-
rary of primitives with flexible geometric shapes (instead of

Figure 11. Reconstruction of an L-shaped building.

only rectangles) and to extend it with specific types for super-
structures and annexes. Besides conventional classification of
2D images, ConvNets could also be used for direct parsing of
the 3D geometry (Qi et al., 2016, Qi et al., 2017, Wang et al.,
2018), i.e., the segmentation of point clouds into building parts
and the detection of facade elements using both color and depth
information.
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