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ABSTRACT:

Objects and structures realized by connecting and bending wires are common in modern architecture, furniture design, metal sculpting,
etc. The 3D reconstruction of such objects with traditional range- or image-based methods is very difficult and poses challenges due
to their unique characteristics such as repeated structures, slim elements, holes, lack of features, self-occlusions, etc. Complete 3D
models of such complex structures are normally reconstructed with lots of manual intervention as automated processes fail in providing
detailed and accurate 3D reconstruction results.
This paper presents the image-based 3D reconstruction of the Shukhov hyperboloid tower in Moscow, a wire structure built in 1922,
composed of a series of hyperboloid sections stacked one to another to approximate an overall conical shape. A deep learning approach
for image segmentation was developed in order to robustly detect wire structures in images and provide the basis for accurate corre-
sponding problem solutions. The developed WireNet convolution neural network (CNN) model has been used to aid the multi-view
stereo (MVS) process and to improve robustness and accuracy of the image-based 3D reconstruction approach, otherwise not feasible
without masking the images automatically.

1. INTRODUCTION

Wire structures, such as radio poles, spider webs, wire jewelry,
etc., pose challenges for active and passive 3D reconstruction
techniques. Complicated interweaved wire structures usually have
a large number of holes, repeated patters, textureless surfaces,
specular reflections, ambiguities and thin elements that could be
too small to be detected by laser scanners or accurately matched
by multi-view stereo (MVS) algorithms. Therefore, such com-
plex structures are normally reconstructed with lots of manual in-
tervention as automated processes fail in providing detailed and
accurate 3D reconstruction results. Even if dense point cloud can
be derived, the modeling steps necessitate many manual interven-
tions due to the complexity of the structures.

Inspired by the progress of deep learning techniques in solving
challenging tasks in photogrammetry and computer vision, this
work tries to exploit a “human-like” machine learning approach
to perform object masking in images and improve the MVS pro-
cess. Image masking is a very time-consuming part of the image
processing 3D pipeline and often the only way to achieve detailed
3D results.

1.1 Aims of the work

The paper presents a methodology where the traditional image-
based 3D reconstruction pipeline is aided by a deep convolutional
neural network (CNN) to improve the dense image matching pro-
cess. We propose a modified neural network architecture, named
WireNet, for the automatic semantic labelling of foreground wire
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structures in UAV images. The oriented and segmented images
are then processed within a MVS method to derive dense point
clouds. The methodology is applied to some 500 UAV images
acquired to perform the 3D reconstruction of the Shukhov tower
in Moscow (Russia), included in the World Monument Watch1

since 2016.

2. STATE OF THE ART

2.1 3D reconstruction of wire structures

Remote sensing techniques based on laser scanning or multi-view
stereo (MVS) are widely used for non-contact documentation,
monitoring and inspection of industrial constructions. All meth-
ods offer successful performances for objects having relatively
large and smooth surfaces such as buildings, pipelines, bridges,
etc. On the other hand, wire-like structures are more complicated
for automated 3D reconstruction due to limited sensor resolutions
and other problems mentioned before.

Some previous works obtained a 3D reconstruction of wire struc-
tures in the form of individual curve segments (Teney, Piater,
2012, Usumezbas et al., 2016). In case a dense point cloud can
be produced, either with laser scanning or MVS methods, Huang
et al. (Huang et al., 2013) presented an automated solution to
extract curve skeletons based on the L1-medial axis.

(Morioka et al., 2013) firstly extract from a point cloud the topol-
ogy of a wire structure as a graph and then the extracted struc-
ture is presented as a combination of cylindrical surfaces centered

1 https://www.wmf.org/project/shukhov-tower
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(a) (b) (c) (d)

Figure 1. The world’s first diagrid hyperboloid water tower (37 m height) built by V. Shukhov for the All-Russian Exposition in 1896
in Nizhny Novgorod, Russia (a), now located in Polybino (b). The Shukhov radio tower, also known as the Shabolovka tower, build

between 1919 and 1922 in Moscow, Russia (c) and some details of the wire hyperboloid structure (d).

along the edges of the graph. Using Delaunay tetrahedralization,
the initial edges are then created and simplified by applying iter-
ative edge contractions to extract the graph representing the wire
topology. Finally, an optimization technique is applied to the po-
sitions of the surface in order to improve the geometrical accuracy
of the final reconstructed object.

(Su et al., 2018) retrieved the topology of a spider web devel-
oping an innovative experimental method to directly capture the
complete digital 3D spider web architecture with micron scale
image resolution. The authors built an automatic segmentation
and scanning platform to obtain high-resolution 2D images of in-
dividual cross-sections of the web that were illuminated by a laser
sheet. Processing these images, the digital 3D fibrous network of
the spider web was reconstructed.

(Martin et al., 2014) presented a method to reconstruct thin tubu-
lar structures from a dense set of images using physics-based sim-
ulation of rods to improve accuracy. They used a 3D occupancy
grid to disambiguate 2D crossings of cables.

(Liu et al., 2017) presented a novel image-based reconstruction
method of wire objects based on 3 images as input which ex-
ploits unique characteristics of wire objects (simplicity - the ob-
ject is composed of a few wires, and smoothness - each wire
is bent smoothly) to recover the global 3D wire decomposition.
A project aimed at preserving information about the Shukhov
Shabolovka radio tower has been carried out by means of laser
scanning (Leonov et al., 2015).

2.2 Deep convolutional neural networks

In the last years, deep convolutional neural networks (CNNs)
started to be employed within the 3D image-based pipeline in or-
der to boost the processing and facilitate some steps. According
to their role in the 3D reconstruction pipeline, semantic segmen-
tation networks could be divided intro three broad groups: CNNs
for single-photo 3D reconstruction, CNNs for feature matching
and CNNs for semantic segmentation and boosting of SfM/MVS
procedures.

Single photo 3D reconstruction has been recently intensively stud-
ied. Multiple neural network models were proposed for recon-
struction of objects and buildings from a single image using con-
ditional generative adversarial networks – GAN (Girdhar et al.,

n.d., Shin et al., 2018, Choy et al., 2016, Xie et al., 2019, Shin
et al., 2019, Knyaz et al., 2018, Kniaz et al., 2019). While deep
models such as Pix2Vox (Xie et al., 2019) and Z-GAN (Kniaz et
al., 2019) proved to reconstruct complex structures from a single
photo, but a large training dataset is required to achieve the de-
sired quality. However, no public datasets of wire structures is
available to date to train such models.

Feature matching networks (Yi et al., 2016, Ono et al., 2018,
Christiansen et al., 2019, Shen et al., 2019, Kniaz et al., 2020)
seems to outperform handcrafted feature detectors/descriptor meth-
ods. Still, their performance is closely related to the similarity of
local image patches in the training dataset with respect to the im-
ages used during inference. However, repeating metal beams of
wire structures are not present in modern datasets.

Another application of deep learning and CNNs is the semantic
segmentation of images (Ronneberger et al., 2015, Sandler et al.,
2018, Minaee et al., 2020, Kniaz, 2018, Kniaz, 2019). Thanks
to this, CNNs have also demonstrated their potential for multi-
view stereo (Huang et al., 2018, Kuhn et al., 2019, Stathopoulou,
Remondino, 2019).

3. PROJECT BACKGROUND

3.1 Shukhov and his hyperboloid structures

Vladimir Shukhov (1852-1939) was a genius Russian engineer,
scientist and architect renowned for his pioneering works in the
area of world hyperboloid and diagrid shell structures.

Shukhov invented the world’s first hyperboloid structure in 1890
and he built the first diagrid tower for the All-Russian Exhibi-
tion in Nizhny Novgorod (Russia) in 1896 (Figure 1a). Later
Shukhov designed the so called Shabolovka tower, which was
built in Moscow under his direction in 1920-1922. The Shukhov
radio tower in Moscow is a landmark in the history of structural
engineering and an emblem of the creative genius of an entire
generation of modernist architects in the years that followed the
Russian Revolution. Shukhov wanted to build a light but solid
construction higher than the Eiffel Tour (Paris, France) but much
lighter. His approach allowed to achieve a high degree of rigidity
of the tower and to reduce significantly the weight of the con-
struction. The planned height of the nine-sectioned hyperbolic
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tower was 350 meters but, due to Civil War and lack of resources,
the project was revised and the height reduced to ca 150 m, with a
weight of 240 tons and some 7,500 of individual connecting wire
elements. The Shabolovka tower has played a very important
role in the history of radio and TV broadcasting in the USSR and
Russia and was recognized as monument of international heritage
(Shukhov et al., 1990).

3.2 3D surveying

Studying the condition of such a structure with almost a cen-
tury of history is a difficult task. Various specialists are required,
from civil engineers to metalworkers or corrosion specialists and,
of course, 3D measurements of the tower play a fundamental
role to understand how its characteristics have changed over the
long period of time. Unfortunately, the original documentation
for the Shukhov towers has not been preserved. The last sur-
veys of the tower were conducted in 1947 and later in 1971.
In 2009, under the direction of Prof. Dr. Uta E. Hassler and
Prof. Dr. Armin Gruen (ETH Zurich, Switzerland) and Prof.
Dr. Rainer Graefe (University of Innsbruck, Austria), a research
project named “Shukhov’s strategies for thin iron constructions”,
was initiated. The project was dedicated to the study of Shukhov’s
engineering achievements and it was joined in 2011 by the Rus-
sian partners GosNIIAS (team led by Prof. S. Yu. Zheltov) and
Prof. Dr. Felix L. Chernousko, Chairman of the Shukhov Com-
mittee of the Russian Academy of Sciences.

It was decided to conduct photogrammetric measurements of two
structures: the 1922 Shukhov radio tower of Moscow (Russia)
– also known as the Shabolovka tower, as well as the Shukhov
tower built in 1896 for the All-Russian exposition in Nizhny Nov-
gorod (Russia), now located in Polybino (Lipetsk region).

In 2012, in the year of the 90th anniversary of the Moscow tower,
a team of the Institute of History of Technology of the Russian
Academy of Sciences, led by Andrey Leonov, conducted a laser
scanning 3D surveying of the Shabolovka tower (Leonov et al.,
2015). It has resulted in a precise polygonal 3D model using both
the results of the scanning and some existing drawings. The tran-
sition from an unstructured point cloud to a highly structured rep-
resentation has been performed using a special semi-automated
methodology to model deformed steel elements of hyperboloid
sections. To reproduce the individual shapes of twisted rods and
rings, pre-defined cross-sections were used, which were precisely
positioned in a point cloud. The connection joints of steel ele-
ments were modeled using drawings based on measurements that
were made in 1947. The combination of various 3D modeling
methods for different parts of the tower allowed to visualize the
geometry of the huge steel construction with high accuracy (about
10 mm). At the moment, the produced laser scanning 3D model
is the most accurate in existence, but it only creates the geom-
etry of the tower, without giving information about its state of
conservation.

In the same years, two attempts were made to conduct a pho-
togrammetric UAV survey and obtain the geometric characteris-
tics of the tower and its textured 3D model. It took ca 1.5 years
to get permission to fly around the tower, since this area is also
the active TV center of Moscow with live broadcast systems. The
first UAV experiments, under the guidance of Prof. Armin Gruen
(ETH Zurich) found out that the large number of cellular trans-
mitters installed on the tower create powerful electromagnetic
fields that disturb the drone’s navigation system. Two years later,

the same team performed a second, more successful attempt, col-
lecting some 600 images with a GSD spanning from 5 mm (lower
part) to 10 mm (upper part).

Figure 2. One of the GCPs measured on the basement of the
tower (left). Scheme of the 9 UAV strips flown to capture images

of the tower (right).

The tower was also surveyed with a Geomax Zoom 25pro total
station in order to measure 10 GCPs useful to georeference the
produced 3D results. Special markers (Figure 2a) were used for
labeling reference points, placed inside and outside the tower, on
the foundation and at an altitude of approximately 50 meters.

4. UAV-BASED 3D RECONSTRUCTION

4.1 UAV image-based survey

The UAV images of the Shukhov tower in Moscow were acquired
in 2015 using a Falcon 8 octocopter drone equipped with a Sony
NEX-5T camera (16 MPixels, 16 mm focal length). The onboard
camera acquired a set of ca 600 images divided in nine vertical
strips with an interval of about 3 m (Figure 2b). The image GSD
varies from 5 mm to 10 mm. The lack of auto-piloting and the
difficult location of the mission did not provide a uniform and
constant image overlap.

A subset of the images was processed within a photogrammet-
ric pipeline with the aid of an automated background masking in
the MVS step in order to match only the wire structure of the
foreground and achieve more accurate results. The segmentation
of the wire structures in the images was performed with a CNN
model named WireNet (Figure 3).

4.2 WireNet Model Architecture

Local patch similarity is the main problem for 3D object recon-
struction using structure-from-motion pipeline. False matches re-
sult in poor quality of camera external orientation estimation and
deform the resulting 3D model. The main reason for the false
feature point matching are the repeating structures of the tower.
Moreover, feature point matching algorithms confuse points on
the foremost sections of the tower with the rear points visible
through the windows in the wire structure.

Masking of the irrelevant object parts to improve the stereo match-
ing accuracy is a well-known technique for improving the quality
of 3D reconstruction. The developed approach was inspired by a
recent research (Stathopoulou, Remondino, 2019) regarding se-
mantic segmentation for improving accuracy of a structure-from-
motion pipeline. Still, the total number of photos in the UAV
survey exceeded 700. Therefore, manual labelling of all acquired
data was impossible. A deep learning based technique was pro-
posed to overcome this problem. Firstly, a simple U-net (Ron-
neberger et al., 2015) model was trained. However, the quality of
segmentation using the U-net model was insufficient for correct
point matching.
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Figure 3. Overview of the WireNet model.

The segmentation results of a HRNetv2 (Sun et al., 2019) was
much more impressive. Still, the model was unable to distinguish
between foreground and background wire structures on the im-
ages. Hence, a new model based on the HRNetv2 was developed,
that was termed WireNet. The idea of an HRNetv2 model is to
provide high-resolution labelling by connecting high-to-low res-
olution convolutions in parallel. These convolutions are repeated
multi-scale and fused in multiple points of the model architecture.
All in all, the architecture of HRNetv2 includes four stages. The
2nd, 3rd and 4th stages are formed by repeating multi-resolution
convolution blocks. A single multi-resolution block consists of a
group convolutions and followed by a multi-resolution convolu-
tion. The multi-resolution group convolution is a simple exten-
sion of the group convolution, which divides the input channels
into several subsets of channels and performs a regular convolu-
tion over each subset and over different spatial resolutions sepa-
rately.

The multi-resolution convolution resembles the multi-branch fully
connected regular convolution. A regular convolution can be di-
vided as multiple small convolutions (Zhang et al., 2017) The

input channels are divided into several subsets, and the output
channels are also divided into several subsets. The input and out-
put subsets are connected in a fully connected fashion and each
connection is a regular convolution. Each subset of output chan-
nels is a summation of the outputs of the convolutions over each
subset of input channels.

The following contributions were applied to the HRNetv2 in the
WireNet model to improve segmentation of the frontmost and
rare parts of the tower. Firstly, an additional branch of multi-
resolution convolutions was added that produces the segmenta-
tion of the rare wire structures. Secondly, a negative log likeli-
hood loss function was used to improve the segmentation accu-
racy. The resulting architecture is presented in Figure 3.

Therefore, two loss functions govern the training process of our
WireNet model

L = λf · LNLL(Lf , L̂f ) + λb · LNLL(Lb, L̂b), (1)

where Lf is the ground truth foreground segmentation, L̂f is the
predicted foreground segmentation, Lb is the ground truth back-

Figure 4. Some UAV images acquired to survey the tower (above). Different views of the recovered camera poses - red dots - and
sparse point cloud (below).
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ground segmentation, L̂b is the predicted background segmenta-
tion, λf and λb are the hyperparameters, LNLL(A,B) is a nega-
tive log likelihood loss function given by

LNLL(A,B) =
1

2 · w · h

w∑
x=0

h∑
y=0

1∑
i=0

−mi log(B(A(x, y), x, y),

where w, h are the image width and height, A ∈ {0, 1}w×h is
the ground truth semantic labelling, B ∈ [0, 1]2×w×h is mul-
tichannel probability map defining the probability of pixel with
coordinates (x, y) belonging to class i, mi is the class weight for
class i.

We manually labeled 5% of the whole UAV image dataset to train
our WireNet model. The evaluation of the model on the inde-
pendent test set demonstrated 85% accuracy for the Intersection-
over-Union (IoU) metric.

5. RESULTS

After discarding the images with insufficient image quality, the
photogrammetric image processing was performed on the remain-
ing set of ca 500 images in COLMAP2 (Schönberger et al., 2016,
Schönberger, Frahm, 2016). As the images contain the far-away
scene in the background of the tower, given the short baselines
between the UAV images, a threshold on the ray intersection an-
gle was imposed in order to avoid 3D points reconstructed under
a very small intersection angle. Once the camera poses and sparse
point cloud were derived (Figure 4), a dense image matching was
applied to derive a dense point cloud of the wire tower.

(a) (b)

Figure 5. Dense point cloud (3.3 mil points) produced on a set of
images without applying any masking (a). Dense point cloud

(2.1 mil points) derived applying a masking (b).

The main problem preventing an accurate dense 3D reconstruc-
tion of the wire structure was the incorrect and noisy dense match-
ing result when no masks were used in the MVS step (Figure
5(a)).

Figure 6. Results for the proposed WireNet model. An input
image (left), the predicted semantic segmentation (middle) and
dense point cloud generated using the created masks (right).

A detailed image masking was therefore necessary to constrain
the patch-based MVS method. The developed WireNet (Section

2 https://colmap.github.io

4.2) was trained on a manually labeled 5% subset of the UAV
images. The trained WireNet model was then used on the rest
of the images for the automatic segmentation of the wire struc-
tures, providing a quick and robust masking of the background
scene and also eliminating many outliers in the dense point cloud
(Figure 5(b) and Figure 6).

(a) (b)

Figure 7. Photogrammetric dense point cloud of Shukhov tower
(a), inserted in the sparse cloud of the surrounding area (b).

The final image-based dense point cloud on the entire tower, com-
posed of ca 5.7 mil. points, is shown in Figure 7. As portions of
the lower part of the tower were occluded by vegetation, some
holes in the point cloud are present.

Figure 8. 3D comparison between the UAV-based point cloud
and the available laser scanning cloud.

Thanks to the availability of a laser scanning (32 mil.) point cloud
of the tower ((Leonov et al., 2015), a geometric comparison be-
tween the 3D data was performed.
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The best-fit alignment of the 3D data resulted in a RMS of 0.26
m whereas the Cloud-to-Cloud distances are shown in Figure 8.

Taking into account the different conditions of the two surveys
(including temperature, wind, etc.), the complexity of the wire
structure and the unfavorable image network design, the achieved
results are satisfactory and could be used for further analyses and
modeling.

6. CONCLUSIONS

The paper presented the UAV-based 3D survey of the Shukhov
radio tower in Moscow, Russia. The main aim of the work was
to show how geometric processing can be aided (not replaced)
by deep learning. A deep Convolutional Neural Network (CNN)
model, named WireNet, was developed in order to support a
MVS procedure for the 3D reconstruction of the wire large struc-
ture. The semantic segmentation allowed to automatically pro-
duce image masks and avoid a time-consuming manual labelling
on some 500 images. The masking was of fundamental impor-
tance to achieve 3D point clouds not obtainable without masks.

The project highlighted difficulties in the 3D reconstruction of
such complex wire structures, including the definition of a proper
image network due to electromagnetic interferences of mobile
phone antennas on the tower with the UAV’s navigation system.
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