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ABSTRACT: 

 

Photorealistic three-dimensional (3D) models play an indispensable role in the spatial data infrastructure (SDI) of a smart city. Recent 

developments in aerial oblique photogrammetry, and the popularity of terrestrial mobile mapping systems (MMSs) offer possibilities 

for deriving 3D models with centimeter-level accuracy in urban areas. Additionally, advances in image matching and bundle adjustment 

have allowed 3D models derived from the integration of aerial and ground imagery to overcome typical problems related to 3D mapping 

in urban areas (e.g., geometric defects, blurred textures on building façades). Nevertheless, this approach may not be suitable for all 

scenarios owing to innate differences between each platform. Besides, MMS images may not cover regions that cannot be reached by 

mobile vehicles in urban areas (e.g., narrow alleys, areas far from roads). Meanwhile, backpack systems have garnered attention from 

the photogrammetry community in recent years due to their flexibility, and regions neglected in previous works can be adequately 

reconstructed from images collected by backpack systems. This paper presents an approach for effectively integrating multi-source 

images collected by aerial, MMS, and backpack platforms for seamless 3D mapping in urban areas. The approach includes three main 

steps: (1) data pre-processing, (2) combined structure-from-motion, and (3) optimal generation of a textured 3D mesh model. The 

experimental results using aerial, MMS, and backpack datasets collected in a typical urban area in Hong Kong demonstrate the 

promising performance of the proposed approach. The described work is significant for boosting various types of imagery for integrated 

3D mapping in both city scale and street level to facilitate various applications. 

 

 

 

1. INTRODUCTION 

With more profound recognition of 3D city data, great 

importance has been attached to 3D photorealistic city models 

because of their usage in many applications to meet the 

increasing demand for high geometric accuracy and improved 

texture (Biljecki et al., 2015; Qiao et al., 2010; Singh et al., 2013). 

Recent and rapid advances in the development of aerial oblique 

photogrammetry and unmanned aerial vehicle (UAV) platforms 

now enable 3D reconstruction of centimeter-level accuracy in 

large-scale urban areas (Vu et al., 2012; Ye and Wu, 2018).  

 

With the advent of mobile mapping systems (MMSs), close-

range photogrammetry based on MMS platforms has been widely 

used for 3D mapping and modeling applications in urban areas. 

Assisted by MMSs, recent endeavors to combine oblique aerial 

images and terrestrial images for improved 3D modeling (Wu et 

al., 2018) offer 3D building models with optimum geometric 

accuracy and texture. However, the flexibility of MMS imagery 

remains insufficient for acquiring information regarding 

locations that are inaccessible by vehicles. Textural blurs may 

also occur on MMS images when the vehicle moves at high speed. 

This problem can be addressed by wearable mapping solutions, 

such as backpack mapping systems, which have triggered 

increasing interest because of their flexibility in data collection. 

In particular, blind zones that cannot be reached by aerial or 

MMS images (e.g., alleys between tall buildings, regions far from 

roads) can be correctly reconstructed using imagery collected by 

backpack systems. Backpack images provide even closer 

observations of ground objects and enable reconstruction of road 

furniture or building façades with more detail. 
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MMSs and backpack systems can generally provide detailed 

information with flexibility; however, they are unable to offer 

comprehensive coverage and perspective in the way that aerial 

images do. An integration of aerial, MMS, and backpack images 

is therefore an ideal solution for seamless 3D mapping in urban 

areas, which is desirable in terms of both the scale range and high 

degree of details. Traditional photogrammetry or multi-view 

stereo solutions (Furukawa et al., 2010; Magerand and Del Bue, 

2020; Schonberger et al., 2016; Westoby et al., 2012) generally 

include keypoint extraction, image matching, bundle adjustment 

(BA), dense image matching (DIM), triangulation of mesh 

models, and texture mapping. However, because of innate 

differences between the images, these existing solutions cannot 

be directly used for integrating aerial and terrestrial (including 

MMS and backpack) images.  

 

Therefore, in this paper, we present an approach to effectively 

integrate aerial, MMS, and backpack images for optimal 3D 

reconstruction in large-scale urban areas. An initial data pre-

processing step is performed to reduce the amount of 

computation and impact of moving objects and undesirable 

illumination conditions. The external orientation (EO) 

parameters of all of the images are then estimated using 

combined structure-from-motion (SfM) data. An optimal 3D 

mesh model is generated by removing geometry conflicts in point 

clouds generated by DIM (Hirschmuller, 2005; Ye and Wu, 2018) 

and texture mapping using selected images. Experiment analysis 

using aerial, MMS, and backpack images collected in Kowloon 

Bay, Hong Kong, was conducted to evaluate the performance of 

the proposed approach. Finally, conclusions were drawn and 

discussed based on the experiment results. 
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2. INTEGRATION OF UAV, MMS, AND BACKPACK 

IMAGES FOR SEAMLESS 3D MAPPING 

2.1 Overview of the Approach 

The workflow of the proposed approach can be divided into three 

main steps: data pre-processing; combined SfM; and optimal 

generation of a textured 3D mesh model (Figure 1). The data pre-

processing includes optimal image selection, color equalization, 

and removal of moving objects, which are designed to reduce the 

computational cost in the subsequent steps and reduce differences 

between images obtained from different sources. In the combined 

SfM, the EO parameters of the aerial and terrestrial images are 

first estimated separately to serve as initial values, which are 

subsequently refined through a combination of image matching 

and BA. To generate an optimal 3D mesh model, the DIM point 

clouds from the aligned images are first improved by detecting 

and modifying visibility conflicts. The refined point clouds are 

then used to generate a 3D mesh model and textures are mapped 

using the images selected in the pre-processed step.  

 

 
 

Figure 1. Overview of the proposed approach. 

 

 

2.2 Data Pre-processing 

2.2.1 Image Selection 

 

The images in input datasets are generally unordered; hence, 

locating all of the image pairs can be exhaustive, especially in 

consideration of the large volumes of images. Optimal aerial and 

terrestrial images are therefore selected prior to further 

processing to minimize computational time and resources. 

Because aerial images cover a large area, relatively sparse point 

clouds (e.g., 1-m sample distance) are derived from the aerial 

images to provide referencing information for the image selection. 

Building façades and the corners of each plane are further 

extracted from the sparse aerial point clouds according to the 

random sample consensus (RANSAC) (Fischler and Bolles, 1981) 

plane fitting algorithm (Li et al., 2017). Optimal images are then 

selected for each plane based on the following criteria. 

 

Because the characteristics of aerial and terrestrial images differ, 

their selection criteria are also not the same. For aerial images, 

three criteria should be met. The first criterion is to check whether 

the image was taken at a position where the plane is visible. The 

second criterion is that the projection of 3 out of 4 corners should 

be within the range of the image to guarantee that the image 

contains sufficient area of the façade. The third criterion requires 

that if a point is visible on an image, it must be the nearest point 

in its projection direction in the object space, which determines 

whether the façade is blocked by other buildings.  

 

Three requirements are set for the terrestrial images. First, the 

distance between the center of the plane and image should be 

within a certain threshold. Second, the directions between the 

normal vectors of the plane and image are preferably parallel to 

each other to ensure that the image possesses a relatively good 

view. Third, at least a certain ratio (10% used in this study) of the 

point clouds should be able to be projected within the image 

range. The abovementioned requirements are progressive and 

ordered by the computational complexity. If the previous 

requirements are not met, those following are directly rejected. 

 

2.2.2 Color Equalization 

 

Images obtained from different datasets can differ substantially 

because illumination conditions vary with time and 

photosensitive elements of cameras can differ, both of which lead 

to some extent of mottled texture and difficulty in image 

matching. Therefore, histogram specification is conducted to 

reduce this kind of differences in the first place. Because aerial 

images cover a broad area, leveraging their color histogram to 

adjust the color of all of the other images usually leads to 

harmonious visualization effects. A comparison between the 

textured models without and with color equalization is shown in 

Figure 2, which reveals the significance of this step. As shown in 

Figure 2(a), the texture of the building façade displays a 

noticeable boundary between the aerial and terrestrial images, 

which is largely improved by applying color equalization. 
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Figure 2. Comparison between mesh models generated without 

and with color equalization. (a) Mesh model textured with 

original images. (b) Mesh model textured with processed images. 

 

2.2.3 Removal of Moving Objects 

 

Even though MMS and backpack systems offer complementary 

views, they still present two main issues. First, the platform of 

MMS or backpack-fixed cameras must be easily photographed. 

Second, MMS and backpack systems must be close to the objects. 

Therefore, typical moving objects in urban scenes (e.g., vehicles, 

pedestrians) occupy large areas in the MMS and backpack 

images that cannot be ignored. To address these problems, masks 

are carefully defined to cover image regions of the mapping 

platform itself and regions with high possibility of moving 

objects. The regions within the masks are then ignored in the 

subsequent image matching step, as shown in Figure 3. 

 

 
Figure 3. Illustration of the use of image masks. The first row 

shows original images and the second row shows masks on the 

images. 

 

2.3 Combined Structure-from-Motion (SfM) 

Due to obstruction or multiple reflections of positioning signals 

caused by densely distributed buildings (Chu and Chiang, 2016; 

Gruen et al., 2013), the accuracy of Global Navigation Satellite 

System (GNSS) positioning has been shown to be reduced in 

urban areas. The initial EO parameters obtained by GPS/IMU on 

board the MMS or backpack systems may therefore not be 

sufficiently accurate to generate 3D models. It is therefore 

imperative to refine their EO parameters by bridging with aerial 

oblique images through a rigorous mathematical model (Wu et 

al., 2018), such as SfM. 

 

The first step in the SfM pipeline is image matching, which is 

based on the tie points between overlapped aerial and terrestrial 

images. However, due to large variations in view direction and 

image resolution, many state-of-the-art feature correspondence 

frameworks, such as affine Hessian and affine Harris 

(Mikolajczyk and Schmid, 2002), MSER (Matas et al., 2004), 

and ASIFT (Morel and Yu, 2009; Wang et al., 2018), fail to 

directly connect aerial and terrestrial images. Hence, in the 

proposed approach, feature correspondence is first performed on 

aerial and terrestrial images separately to obtain some initial tie 

points. Joint feature matching is then carried out to register the 

aerial images and terrestrial images (Hu and Wu, 2017) to apply 

constraints on the EO parameter refinement of the terrestrial 

images. 

 

By capitalizing on the BA algorithm, the estimation of EO and 

internal orientation (IO) parameters of the images is cast as a non-

linear problem to minimize re-projection error by optimally 

adjusting the positions of images and sparse points corresponding 

to the tie points (Wu et al., 2015). During this procedure, a small 

number of ground control points (GCPs) are used to estimate the 

transformation from the relative positions to the absolute 

coordinate systems through 3D similarity transformation. After 

BA, DIM point clouds are generated using dense image matching 

(Hirschmuller, 2005; Ye and Wu, 2018). 

 

2.4 Optimal Generation of Textured 3D Mesh Models 

There will be unavoidable outliers in the DIM point clouds 

generated from the previous steps due to possible wrong matches 

or other problems. The filtering of point clouds is therefore 

crucial to accurately recover geometric information. In our 

approach, the point clouds are first separated into aerial and 

terrestrial point clouds for cross-checking. For the terrestrial 

point clouds, a depth conflict test is implemented. However, this 

method does not work correctly on aerial point clouds because 

the rooftops of some low-lying constructions might also be 

removed. Hence, a different normal-vector-based method is used 

for the aerial dataset.  

 

Two roughly filtered point clouds are then combined and further 

operations are conducted to remove redundant points based on 

the accuracy and spatial smoothness of the point clouds. Once the 

point clouds are properly selected, 3D mesh models are generated 

by the Poisson reconstruction algorithm (Bolitho et al., 2009; 

Kazhdan and Hoppe, 2013) and the textures are mapped using the 

images selected in the pre-processing stage (Section 2.2.1). 

Figure 4 illustrates the necessity of this point cloud filtering step. 

 

 
Figure 4. Illustration of point cloud filtering. (a) Mesh model 

generated without point cloud filtering. (b) Mesh model 

generated after point cloud filtering, of which the problematic 

area indicated by the red box in (a) has been removed. 
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3. EXPERIMENTAL EVALUATION 

3.1 Dataset Description 

In this paper, three challenging datasets acquired in Kowloon Bay, 

Hong Kong that cover a built-up urban area of over 40,000 m2 to 

evaluate the performance of the proposed approach. As shown in 

Table 1, the datasets comprise images collected from three 

different platforms and are divided into three blocks, including a 

UAV image block, an MMS image block, and a backpack image 

block. A total of 121 aerial oblique images were obtained using a 

set of UAV-borne AMC PanOblique cameras, together with 12 

Canon EOS 5DS R cameras. The ground sampling distance (GSD) 

for the aerial image is about 6 cm. In the MMS block, 1895 

images were collected by a Leica MMS system, which comprises 

six cameras. The other 4202 backpack images were collected by 

the state-of-the-art Leica Pegasus Backpack system, which 

consists of five cameras. The GSDs of these terrestrial images are 

about 1 cm. Representative aerial oblique, MMS, and backpack 

images are shown in Figure 5. The distribution map of these 

datasets is shown in Figure 6. The backpack dataset contains 

abundant images of alleys and has the highest usable image ratio. 

 

Together with the images and initial EO parameters, calibrated 

IO elements are also available. In addition, 70 evenly distributed 

GCPs in the Hong Kong 1980 (EPSG:2326) spatial reference 

system are used for control and checking purposes.  

 

 
Figure 5. Representative images of the test area in Kowloon Bay, 

Hong Kong. (a) Backpack image, (b) MMS image, and (c) UAV 

image. 

 

 
Figure 6. Experimental area and image distribution. The red and 

blue lines indicate the trajectories of the MMS and backpack 

systems, respectively. 

 

3.2 Experimental Results 

In this dataset, the MMS laser scanning point clouds 

georeferenced based on the integrated BA of the aerial and MMS 

images are used as the ground truth to evaluate the geometrical 

accuracy. The unsigned cloud-mesh-distance (CMD) is 

calculated in CloudCompare software and the results are ramped 

from 0 to 1 m, as shown in Figures 7–9, where blue represents 0 

and red represents 1. The average unsigned CMD decreases 

from >0.5 to 0.1 m in some challenging parts after adding MMS 

and backpack images. Figures 7–9 show three representative 

regions, including an alley, a typical building façade, and the 

bottom part of a tall building.  

 

In the alley region (Figure 7), the unsigned CMD of the mesh 

model derived from the UAV images approaches 1 m at the end 

of the alley, which is covered by a rooftop. This area is too deep 

and narrow to be accessed by the MMS and the perspective range 

is highly limited, leading to a slight improvement at the beginning 

of the alley, as shown in the middle part of Figure 7. Owing to the 

comprehensive views offered by backpack images, all of the alley 

area is recovered with a low average CMD of about 0.1 m. For 

the building façade shown in Figure 8, the average CMD 

decreases from >0.5 to 0.25 m when leveraging the MMS images 

and is further reduced to 0.1 m after the backpack images are 

integrally used. However, even with the assistance of backpack 

images, the bottom part of a tall building shown in Figure 9 

remains poorly reconstructed. There are two main reasons for this. 

First, this building façade is made of glass that strongly reflects 

and transmits sunlight, which makes it hard to accurately conduct 

dense image matching (see example in Figure 10). Second, 

Dataset Sensor 
Sensor 

Number 

Focal 

length 

(mm) 

GSD 
Image Size 

(pixels) 

Number of 

Images 

Collection 

Date 

Coverage 

(m2) 

UAV 
Canon EOS 

5DS R 
12 49/35 6 cm 8688×5792 121 

07/11/2016 

02/12/2016 
744,765 

MMS Leica MMS 6 8 1 cm 2048×2048 1895 05/07/2019 142,256 

Backpack 
Leica Pegasus 

Backpack 
5 6 1 cm 2046×2046 4202 05/07/2019 43,260 

 Table 1. Information of the dataset used for experimental evaluation. 
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several backpack images obtained in this area only capture glass 

surfaces, which results in the failure to match backpack images 

with MMS and UAV images. Thus, the results in the second and 

third columns shown in Figure 9 are nearly the same. 

 

 

 
Figure 7. Unsigned CMD of an alley area calculated based on the 

model from UAV images only, UAV and MMS images, and 

UAV, MMS, and backpack images. 

 

 
Figure 8. Unsigned CMD of a typical building façade based on 

the model from UAV images only, UAV and MMS images, and 

UAV, MMS, and backpack images. 

 

 
Figure 9. Unsigned CMD of the bottom part of a tall building 

based on the model from UAV images only, UAV and MMS 

images, and UAV, MMS, and backpack images. 

 

 
Figure 10. An example of a glassed façade. 

Figure 11 shows the overall reconstruction results, which indicate 

the promising performance of the proposed approach. Figure 12–

Figure 14 compare three challenging scenarios: the first columns 

show the mesh model generated from UAV images only; the 

second columns show mesh models generated from UAV and 

MMS images; and the third columns show mesh models 

generated from UAV, MMS, and backpack images. Even though 

the UAV images can be leveraged to efficiently reconstruct the 

scene, detailed street-level information is lost. Additionally, due 

to the high shooting elevation and occlusions, the textures of 

regions close to the ground (e.g., bottom parts of buildings) are 

blurred. When adding the MMS images, the situation of the 

building bottom is largely improved and the traffic signs are 

properly mapped. However, information from narrow alleys 

remains limited without apparent improvement. This problem is 

solved by including backpack images, which clearly show the 

boundaries of street objects and plants. 

 

 
Figure 11. 3D mesh model generated from the integration of 

aerial, MMS, and backpack images. 
 

 
Figure 12. Comparison of the 3D models in a narrow alley where 

MMS images were obtained in the alley. 

 

 
Figure 13. Comparison of the 3D models in another narrow alley 

where the MMS only obtained images at its two ends. 
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Figure 14. Comparison of 3D models of traffic signs. 

 

4. CONCLUSION AND DISCUSSION 

In this paper, we present an effective approach for integrating 

aerial, MMS, and backpack images for seamless 3D mapping in 

urban areas. Possible adverse effects are reduced by geometry-

based image selection, color equalization, and removal of moving 

objects. A combined SfM workflow is presented to register the 

aerial and terrestrial images, followed by point cloud generation 

and selection, which aims to offer an accurate mesh model for the 

texture mapping stage. 

 

The experimental results based on actual datasets collected by 

aerial, MMS, and backpack platforms covering a typical urban 

area in Hong Kong indicate that the proposed approach can 

provide improved 3D mapping in large-scale urban areas using 

integrated multi-resource images. This work is significant to 

boost various types of imagery for 3D mapping in both city scale 

and street level to facilitate various applications such as urban 

planning, urban highways management, and smart city 

development. 
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