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ABSTRACT: 

Several tools have been introduced to generate accurate 3D models. Among these, Unmanned Aerial Vehicles (UAVs) are an effective 

low-cost tool to go beyond on-fields effort limits since they allow to fly over areas difficult to reach and to reduce the time needed to 

collect and process photogrammetric pictures as well. Combining their versatility with Structure from Motion (SfM) techniques 

efficiency has provided a widely accessible approach to generate accurate photogrammetric products. However, the outcome resolution 

and coherences also depend on sensor traits. Therefore, UAVs are usually equipped with low-cost non-metric cameras, with the 

consequent requirement for a calibration procedure to increase the final 3D models accuracy. Although several researchers have 

highlighted the strong impact of camera calibration parameters on the photogrammetric outcomes, their linkage has not been explored 

yet. This paper is aimed at investigating their relationship and to propose a novel predicting function of 3D photogrammetric 

reconstruction accuracy. Such function was estimated thanks to the application of the Principal Components Analysis (PCA) technique. 

Four photogrammetric UAV flight surveys provided the input data of PCA while an extra dataset was used to validate the results. Once 

PCA was completed, a synthetic index was proposed and the coefficient of determination was calculated between the index and error 

components. Synthetic indices values for the various datasets were applied as baseline to detect a predictive function able to assess the 

northern and eastern error components with a deviation of 0.005 m and 0.003 m, respectively. The proposed approach shows promising 

and satisfying results for predicting 3D models accuracy.  

1. INTRODUCTION

Over the years, several tools have been developed to generate 

accurate three-dimensional textured models, useful in a wide 

range of professional and research applications. Among these, in 

the last decade, the Terrestrial Laser Scanner (TLS) has been 

considered as the reference standard to generate detailed terrain 

landform (Medjkane et al., 2018). Nevertheless, it is extremely 

expensive both in terms of technological equipment and 

acquisition/processing data time. Consequently, it cannot be 

efficiently applied in all conditions. Today, UAVs (Unmanned 

Aerial Vehicles) represent an effective low-cost alternative to 

overcome the limits imposed by TLS (Roşca et al., 2018; 

Manfreda et al., 2018). First of all, they are versatile and flexible, 

allowing flight quotas reduction with a consequent increment of 

input data resolution (Nex, Remondino, 2013; Capolupo et al., 

2014); in addition, UAVs allow to achieve areas difficult to reach 

without endangering people (Capolupo et al., 2018); and, finally, 

their most eligible property: they are able to drastically reduce 

the time required to collect and process the input data (Nex, 

Remondino, 2013). The possibility to adapt the Ground Sample 

Distance (GSD) to the size of the object under investigation is a 

direct consequence of the above-mentioned properties (Capolupo 

et al., 2015). Moreover, their combined use with Structure from 

Motion (SfM) technique and Computer Vision (CV) has 

provided an essential approach to generate accurate Digital 
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Surface Models (DSM) and 3D Point Clouds. Neverteless, the 

resolution of the obtained 3D models is affected by other factors 

as well, such as the procedure applied to generate them and the 

characteristics of the integrated sensor of the camera mounted on 

UAVs (e.g. pixel size, focal length of the lens, etc.)  (Cramer et 

al., 2017; Kraft et al., 2016).  

Several scientific contributions cooperated in designing a 

validated methodology suitable for facing the first issue 

(production of high-resolution outcomes) and generating 

products with a resolution comparable to the most established 

topographic procedures (Caroti et al., 2017; Saponaro et al., 

2019b). For instance, Mesas-Carrascosa et al., (2015) and 

Manfreda et al., (2019) investigated the influence of the flight 

plan parameters defining the general requirements to be adopted 

to optimize the entire process chain. Conversely, Saponaro et al., 

(2019b), Padró et al., (2019), Rangel et al., (2017) explored the 

impact of georeferencing strategies on the obtained accuracy in 

order to minimize the data acquisition and processing efforts 

without losing quality in the final products. Lumban-Gaol et al., 

(2018) and Benassi et al., (2017), instead, analysed the 

importance of the rational parameterization during the orientation 

phase by applying a different dedicated environment and they 

evaluated the metric consistency of the achievable results. 

The second issue (cost of equipment and processing data time) 

was tackled by equipping the UAVs with a low-cost light digital 

camera, with the consequent requirement for a calibration 
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procedure during the metric reconstruction phase in order to 

increase the final 3D models accuracy (Salvi et al., 2002). 

Although the camera calibration procedure is based on the 

detection of focal length (f), principal point offset (Cx, Cy) and 

lens distortion parameters (k1, k2, k3, k4, p1, p2, p3, p4), these 

variables are actually taken into account just in the field of 

precise photogrammetry. Radial (k1, k2, k3, k4) and decentring 

(p1, p2, p3, p4) distortions include the aberrations which 

influence images position (Fryer, 1996). In many other 

applications, such as CV works, just the focal length is 

considered (Remondino, Fraser, 2006). The calibration phase is 

really essential in the applications where aerial photogrammetric 

pictures are involved since they are strongly affected by the 

geometric instability and limited precision and accuracy of the 

camera (Warner, Carson, 1991). Such issues are even more 

relevant with digital commercial cameras, commonly mounted 

on the UAVs since, in their case, defining the interior orientation 

of the camera is extremely difficult and, often, impossible (Pérez 

et al., 2011). Therefore, calibration algorithms suitable for 

processing UAVs aerial photos have been introduced and 

implemented in the widespread photogrammetric software, i.e. 

Agisoft Photoscan Professional (Zhang, 2000). Therefore, as 

highlighted by Oniga et al., (2017), several scholars investigated 

the importance and the impact of camera calibration parameters 

on the photogrammetric outcomes, nevertheless the estimation of 

the model accuracy could be achieved has not been explored yet. 

Therefore, this paper proposes a novel algorithm predicting the 

accuracy of 3D models generated by UAVs – SfM technique, 

based on the analysis and on the combination of camera 

calibration parameters using multivariate and linear statistical 

techniques. Such methodology provides functions suitable for 

predicting the 3D model accuracy. 

2. METHODS

2.1 Study Area and Field Operations 

The algorithm was benchmarked and tested on a coastline stretch 

of about 400 m located south of Bari, in Puglia (Southern Italy) 

(Figure 1). The entire coastal strip is characterized by frequent 

cliff collapses, because of which the site appears highly 

vulnerable to any environmental phenomenon. In particular, 

hydrological risk is widespread and visible along the shoreline. 

Figure 1. WMS Service of SIT Puglia © Orthophoto 2016. 

Representation of the 30 GCP/CP distribution in the scenario by 

means of orange dots. 

Five flights were carried out over the experimental pilot on 

December 2018, January 2019, February 2019, March 2019 and 

October 2019, respectively. All of them were performed using a 

commercial quadcopter (DJI Inspire 1), equipped with DJI 

ZenMuse X3, a non-metric camera, which is characterized by a 

focal length of 3.61mm, a pixel size of 1.56μm with an effective 

number of pixels equal to 12.4M. Moreover, even a low-cost 

GNSS/INS positioning system was collocated on the UAV to 

accurately achieve the waypoints during the survey campaigns. 

The flight was planned using iOS app DJI Ground Station Pro, 

setting the flight quota equal to 100m Above Ground Level 

(AGL) and the cruising speed to 5.5m/s. Each plan was composed 

of ten strips, perpendicular to the shoreline, and 77 waypoints, 

ensuring a longitudinal and transversal overlap of 80% and 70%, 

respectively. Moreover, each survey was performed under clear 

sky conditions and following the same flight pattern. 77 pictures 

were totally acquired in each survey. Flight plan parameters were 

fixed in order to obtain an expected GSD of about 4.3cm/px, 

suitable for describing the landform of the selected experimental 

areas. 

After the first flight campaign, thirty fixed points, uniformly 

distributed on the investigated area (Figure 1), were measured 

using Global Navigation Satellite System (GNSS) Leica Viva 

CS10/GS10 receivers, exploiting the Network Real-Time 

Kinematic (nRTK) mode. Thus, their accuracy was equal to 0.02 

m along each axis. Subsequently these points were used as 

Ground Control Points (GCP) or Check Points (CPs) according 

to the selected georeferencing strategy. 

All the collected data were organized in 5 dataset and separately 

processed according to the operative workflow described in 

Figure 2. The image blocks acquired in December, January, 

February and October were used to calibrate the models, while 

the remaining dataset taken on March was utilized to validate it. 

Figure 2. Operative Workflow. UAV: Unmanned Aerial 

Vehicles; LOO: Leave-One-Out; PCA: Principal Component 

Analysis 

2.2 UAV-imagery Processing 

The image block acquired in each survey was treated as an 

independent dataset and, thus, separately processed in the same 

workspace. The photogrammetric reconstruction was performed 

using Agisoft PhotoScan software platform (v.1.4.1) (Agisoft 

LLC, St. Petersburg, Russia). 

The quality of the images of each dataset was improved removing 

the blurry photos. Thus, the quality images index was estimated 

through the tool Estimate Image Quality implemented in Agisoft 

Photoscan environment, which returns an average value greater 

than 0.8 for each dataset. The quality images index can result in 

a value between 0 and 1 (Agisoft, 2014): the highest the value, 

the highest the quality. Therefore, the 0.8 is a satisfying quality 

value (Agisoft, 2014). 

To ensure the comparability among the results generated by the 

different dataset, a common workspace was set and 

RDN2008/UTM reference system zone 33N (NE) (EPSG:6708) 

was assigned to the whole workspace. Similarly, the accuracy of 

the on-board UAV equipment and GCPs coordinates were fixed. 

Camera Accuracy (m) option was set equal to 0.05m, meanwhile 

10 degrees and 0.01 m were assigned to the Camera Accuracy 

(deg) option and to the Marker Accuracy (m) parameter, 
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respectively. Conversely, in Image Coordinates Accuracy folder, 

the accuracy in pixels of the markers was parameterized with a 

value of 0.5 pixels, while the Tie Point Accuracy option was set 

equal to 3 px, as suggested in Saponaro et al., (2019a). In 

GPS/INS Offset option, the Lever-Arm vector was set equal to 

[0.005, 0.01, 0.25]m, considering a relative accuracy of 0.01m 

for each axis. 

Moreover, camera parameters correction option was enabled in 

order to improve their estimation proportionally to the 

photogrammetric block adjustments. Agisoft PhotoScan adopts 

the Brown's model (Brown, 1971) for describing camera lens 

parametrization, which is based on 13 parameters: adding to all 

the variables commonly applied in photogrammetric analysis, 

such as focal length, lens distortion parameters and principal 

point offset, the Skew parameters (B1, B2). These last ones are 

related to the affinity value and to the non-orthogonality 

coefficient, respectively.  

In Batch Process, “High mode option” was selected for the initial 

step of image alignments to optimize it and improve the quality 

of the obtained sparse point clouds. As enhanced by Saponaro et 

al. (2019a), the obtained points clouds were manually filtered to 

remove estimated points with a Reprojection Error value higher 

than 0.4. This step improves the compliance of the block by 

optimizing the camera calibration parameters estimation and the 

impact on the final accuracy values can be neglected.  

The GCPs were implemented in Agisoft Photoscan Professional 

to georeference the sparse point clouds, optimize the results of 

such phase and reduce the block deformation and systematic 

error (Gruen, Beyer, 2001). Once the alignment phase was 

completed, the leave-one-out technique was applied to extract 31 

chunks from each dataset (Saponaro et al., 2019), characterized 

by a variable number of GCPs, from a maximum of 30 to a 

minimum of 0. Once all Bundle Block Adjustment (BBA) 

processes were completed, calibration camera configuration, 

estimated during the metric reconstruction of each chunk, was 

extracted and aggregated in a data table. They were considered 

as dependent variables and they were the input data of the 

subsequent processing phase consisting in simplifying the 

original set of data reducing the redundant information and 

extracting just the most relevant ones. Simultaneously, features 

were added to the obtained dense points clouds and a 3D textured 

model was generated. 

 

2.3 Principal Component Analysis 

Principal component analysis (PCA) is the oldest and the most 

popular multivariate statistical technique and, consequently, it is 

widely applied in almost all scientific disciplines in order to 

drastically reduce the large amount of input data. In fact, based 

on the variance maximization principle, PCA investigates the 

relationship among the several input variables, which are, in 

general, intercorrelated (Wold et al., 1987). After identifying the 

most significant information, it expresses the original data as a 

new set of linearly independent and orthogonal vectors, called 

principal components. The first principal component has the 

largest possible variance since it must explain the largest part of 

the inertia of the input data, while the second one must be 

designed orthogonal to the first component and include the 

largest possible remaining variance. All the other components 

must be constructed likewise to the second one (Abdi, Williams, 

2010). In such way, the PCA technique compresses the number 

of original input data, removing the redundant information and 

maximizing their effectiveness (Bro, Smilde 2014). 

Thus, the principal components are extracted through the 

application of the Singular Value Decomposition (SVD) method, 

a generalization of the eigen‐decomposition approach (equation 

1). Following the annotations assumed in the equations: 

• matrices are denoted in upper case bold; 

• vectors are represented in lower case bold; 

• elements are reported in lower case; 

• the same letter was used to identify matrices, vectors, 

and elements from the same matrix (e.g., A, a, a); 

• superscript T was used to denote the transpose 

operation 

 

𝑿 = 𝑷𝜟𝑸𝑇   (1) 

 

where  X = I × J matrix (I is composed by the input 

observations; J includes the variables describing the 

observations). Its rank is equal to L. 

 P = I × L matrix of left singular vectors 

 Δ = diagonal matrix of singular values 

 Q = J × L matrix of right singular vectors 

 

Conversely, the factor scores matrix F is obtained by multiplying 

P and Δ (equation 3): 

 

𝑭 = 𝐏𝚫   (3) 

 

This formula can be expressed also as (equation 4):  

 

𝑭 = 𝐏𝚫 = 𝐏𝐐𝚫𝐐𝑻 = 𝑿𝑸 (4) 

 

Q, commonly called loading matrix, is composed by the 

coefficients of the linear combinations applied to calculate the 

factors scores. Thus, the product between X and Q provides the 

values of the projections of the observations on the principal 

components. 

The inertia of each column is expressed as the sum of the squared 

elements of that column, while the whole inertia is obtained 

summing all of them (equation 2): 

 

γ
𝑗
2 = ∑ xi,j

2I
i    (2) 

 

where  𝛄j2 = inertia of column j 

 xij = element i of the column j 

 

The inertia provides an essential information since it reflects the 

importance of a specific component. 

Once the principal components were extracted, Kaiser’s criterion 

was applied for determining the number of meaningful 

components to retain (Kaiser, 1960) and, consequently, all of 

them with an eigenvalue less than 1.0 were dropped.  

Thus, the weights related to each selected principal components 

were extracted as well, and all the original data were synthetized 

by computing the weighted average of the picked elements. 

Therefore, the result of such step was considered as a “synthetic 

index” representing the all procedure. 

This step as well as the further ones were performed 

programming a specific code developed in the open-source 

statistical software R. 

 

2.4 Predictive Function 

The relationships between the synthetic index and the northern 

and eastern error components of the metric reconstruction were 

explored through the implementation of the coefficient of 

determination (R2). Examining the proportion of the variance in 

the dependent variable, R2 measures the ability of the synthetic 

index to replicate the error components. Therefore, this step was 

essential to investigate the performance of the applied procedure. 

Its outcome, ranging between 0 and 1, was interpreted according 

to the indications reported by Mutanga et al., (2005):  
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• strong correlation: R2 higher than 0.7; 

• moderate correlation: R2 comprises between 0.5 and 

0.7;  

• weak correlation: R2 less than 0.5. 

After investigating the correlation value, three different 

interpolation functions (linear, exponential, logarithmic) were 

implemented in order to test their ability in predicting the eastern 

and northern error components using the synthetic index as 

depend variable. 

 

2.5 Accuracy assessment 

The final step is aimed at: 

• assessing the accuracy of the generated 

photogrammetric models;  

• assessing the accuracy of the predictive functions; 

• validating the predictive functions. 

Photogrammetric models accuracy depends on various factors, 

such as the quality of the collected images, GSD and low-cost 

camera mounted on the UAV (Fabris, Pesci, 2005). Therefore, to 

meet such purposes, three main steps were implemented: 

assessment of acquired pictures quality, evaluation of obtained 

GSD and, lastly, examination of the metric reconstruction 

accuracy. 

The evaluation of acquired photos quality was carried out using 

the Image Quality tool implemented in Agisoft Photoscan 

Professional detecting an average value of 0.8, as described in the 

previous section. Such value is satysfying and, thus, they were 

adapted for photogrammetric purposes. Next, considering the 

non-blurry pictures only, the coherence between the programmed 

and the obtained GSD was performed. Conversely, the third issue 

involved the comparison between the GCPs, imported in the 

Agisoft Photoscan Professional during the alignment phase, and 

the coordinates assigned to those points during the reconstruction 

phase. This procedure was automatically and iteratively detected 

by Agisoft Photoscan Professional software, calculating the Root 

Mean Square Error (RMSE) between the observed and the 

estimated coordinates. RMSE provided the accuracy level 

expected in the photogrammetric outcome (Butler et al., 1998). 

Consequently, only RMSE value lower than 0.5 can be accepted. 

The user’s ability and experience in locating GCPs on the 

pictures strongly affect the outcome of this step and, therefore, 

RMSE value can be iteratively improved repeating it until RMSE 

achieves satisfying value. This step was repeated for all the 

implemented chunks. 

Once the predictive functions were estimated, their performance 

were explored in order to assess their accuracy and to detect the 

optimal functions for satisfying the requirements. This phase was 

carried out through the calculation of RMSE between the values 

predicted using the proposed functions and the eastern and 

northern error components obtained from the photogrammetric 

outcomes accuracy analysis. 

Lastly, their predictive ability was tested using the additional 

dataset acquired in March since it was not involved in the 

modelling phase. Thus, it was applied to predict its final 

reconstruction accuracy just elaborating the camera calibration 

parameters and the RMSE was computed between them to 

evaluate the accuracy of the results. 

 

3. RESULTS AND DISCUSSION 

This paper is intended to investigate the relationship between the 

camera calibration parameters and the maximum metric 

reconstruction accuracy that could be achieved by an expert user. 

Several research works have demonstrated that the model applied 

to calibrate a camera and the obtained results of this procedure 

strongly affects the photogrammetric outcomes accuracy 

(Warner & Carson, 1991; Oniga et al., 2017). Conversely, none 

explored the potential accuracy that could be reached. Thus, this 

paper is aimed at filling this scientific gap. Therefore, five flight 

surveys were carried out on the experimental site of Torre a Mare, 

a coastline stretch in Puglia, using the UAV DJI Inspire 1, 

equipped with a metric-camera, DJI ZenMuse X3. Such camera 

was subjected to a calibration procedure through the Brown’s 

model implemented in Agisoft Photoscan Professional. This 

software was also used to investigate the images quality as well 

as to metrically reconstruct the scene.  

Before aligning the photos, their quality was analysed through 

the index quality tool and an average value equal to 0.8 was 

pulled out, demonstrating their suitability for metric 

reconstruction purposes. Thus, they were subjected to the further 

photogrammetric steps in Agisoft environment and high-

resolution 3D models were extracted. A GSD of 4.11cm/px, 

4.73cm/px, 4.82cm/px, 4.15cm/px, 4.29cm/px were obtained 

from the surveys carried out in December, January, February, 

March and October, respectively. A GSD of about 4.3cm was 

expected. Thus, matching the value of expected and obtained 

GSD, the reliability of the generated outcomes was shown. 

Moreover, their accuracy was evaluated as well by computing 

RMSE value according to the amount of GCPs implemented in 

the reconstruction (Figure 3).  

 

 
Figure 3. RMSE trends obtained from the photogrammetric 

reconstruction of the five flight surveys carried out on the 

experimental site of Torre a Mare according to the amount of 

implemented Ground Control Points (GCPs). The number of 

GCPs and RMSE value are reported on x and y axes, 

respectively. Dec: December, Jua: January, Feb: February; Mar: 

March, Oct: October.  

 

Although Figure 3 shows the optimal number of GCPs to be set 

to generate highly accurate photogrammetric products, it is 

reported to show the absolute accuracy obtained in the 31 chunks 

processed for each survey. The whole reconstruction shows the 

same trend: the optimal volume of GCPs is equal to 3 and the 

accuarcy values are relatively close. This means that the traits of 

the 3D photogrammtric model are similar. 

Afer investigating the goodness of the outcomes of 

photogrammetric steps, the calibration parameters for each chunk 

were extracted, organized in a data table and used as input 

information of the PCA technique. Each dataset was separately 

investigated. Such method has the invaluable property to 

compress the size of the original dataset extracting the most 

important information only (Wold et al., 1987; Bro, Smilde 

2014). Figures 4-8 show the correlation plot between camera 

calibration parameters and principals componentes. They 

enhance that just three variables are needed to describe the whole 

original dataset taking into account the survey performed in 

December, January and October. On the contrary, two and five 

components should be considered for the survey carried out in 

March and February, respectively. As already discussed in the 

previous section, Kaiser’s criterion (Kaiser,1960) was applied to 

0,000

1,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Dec Jan Feb Mar Oct
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select the most important components and they were weighted to 

obtain the synthetic index. 

 

 
Figure 4. Correlation plot between camera calibration 

paramaters and principal components extracted by processing 

the dataset acquired in December. F: focal length; Cx and Cy 

coordinates of the principal point offset; B1, B2: Skew 

parameters; k1, k2, k3, k4: radial distortions; p1, p2, p3, p4: 

components of the decentring distortions 

 
Figure 5. Correlation plot between camera calibration 

paramaters and principal components extracted by processing 

the dataset acquired in Juanuary. F: focal length; Cx and Cy 

coordinates of the principal point offset; B1, B2: Skew 

parameters; k1, k2, k3, k4: radial distortions; p1, p2, p3, p4: 

components of the decentring distortions; Dim.1-Dim.13: 

principal components. 

 
Figure 6. Correlation plot between camera calibration 

paramaters and principal components extracted by processing 

the dataset acquired in February. F: focal length; Cx and Cy 

coordinates of the principal point offset; B1, B2: Skew 

parameters; k1, k2, k3, k4: radial distortions; p1, p2, p3, p4: 

components of the decentring distortions; Dim.1-Dim.13: 

principal components. 

 

 
Figure 7. Correlation plot between camera calibration 

paramaters and principal components extracted by processing 

the dataset acquired in March. F: focal length; Cx and Cy 

coordinates of the principal point offset; B1, B2: Skew 

parameters; k1, k2, k3, k4: radial distortions; p1, p2, p3, p4: 

components of the decentring distortions; Dim.1-Dim.13: 

principal components. 

 
Figure 8. Correlation plot between camera calibration 

paramaters and principal components extracted by processing 

the dataset acquired in October. F: focal length; Cx and Cy 

coordinates of the principal point offset; B1, B2: Skew 

parameters; k1, k2, k3, k4: radial distortions; p1, p2, p3, p4: 

components of the decentring distortions; Dim.1-Dim.13: 

principal components. 

 

Table 1 - Synthetic computed index. Dec: December, Jua: 

January, Feb: February; Mar: March, Oct: October; Corr_north: 

correlation between the synthetic index and the northern error 

component; Corr_east: correlation between the synthetic index 

and the eastern error component. 

 Date  

 Dec Jau Febr Mar Oct  

Synthetic 

index 
1.42 1.88 1.08 3.06 1.78  

       

Corr_north      -0.8 

Corr_east      0.5 

 

The computed synthetic index were listed in Table 1. The 

correlation between them and the eastern and northern error 

components were computed as well and also reported in Table 1. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-479-2020 | © Authors 2020. CC BY 4.0 License.

 
483



 

According to the indications reported by Mutanga et al., (2005), 

the Syntethic index shows a strong (-0.8) and a moderate (0.5) 

correlation with the northern and eastern error components, 

respectively. Nevertheless, while a positive correlation was 

detected with the eastern component, a negative one was 

identified in the other case. Thus, the former are directly related; 

on the contrary, the latter show an inverse dependency. Although 

these results demonstrate that the synthetic index can be used as 

a depend variable of a predictive function, we are not able to 

define a priori interpolating function to be used. Therefore, five 

functions were tested to identify the best one: linear, logarithimic, 

exponential, power and polinomial. Figures 9-13 show the 

outcomes of the five interpolation functions to predict the 

northern error component. The coeffiecient of determination (R2) 

was calculated for each functions in order to detect those ones 

showing the best performance. Although all the implemented 

functions show a good value of R2, higher than 0.51, the 

polinomial equation seams the best one since the coefficient of 

determination was equal to 0.78. 

 

 
Figure 9. Predictive function extracted linearly interpolating the 

depend (synthetic index) and independent variables (northern 

error component). R2: coefficient of determination. 

 

 
Figure 10. Predictive function extracted through a logarithmic 

interpolation between depend (synthetic index) and independent 

variables (northern error component). R2: coefficient of 

determination. 

 

 
Figure 11. Predictive function extracted through an exponential 

interpolation between depend (synthetic index) and independent 

variables (northern error component). R2: coefficient of 

determination. 

 

 
Figure 12. Predictive function extracted through a polynomial 

interpolation between depend (synthetic index) and independent 

variables (northern error component). R2: coefficient of 

determination. 

 

 
Figure 13. Predictive function extracted through a power 

interpolation between depend (synthetic index) and independent 

variables (northern error component). R2: coefficient of 

determination. 

 

Conversely, the outcomes produced considering the eastern error 

components (Figures 14-18) has a different trend, indeed, just the 

polynomial functions appear reliable, showing a high coefficient 

of determination (0.68). 

 

 
Figure 14. Predictive function extracted through a polynomial 

interpolation between depend (synthetic index) and independent 

variables (eastern error component). R2: coefficient of 

determination. 

 

 
Figure 15. Predictive function extracted through a logarithmic 

interpolation between depend (synthetic index) and independent 

variables (eastern error component). R2: coefficient of 

determination. 
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Figure 16. Predictive function extracted through an exponential 

interpolation between depend (synthetic index) and independent 

variables (eastern error component). R2: coefficient of 

determination. 

 

 

 
Figure 17. Predictive function extracted through a linear 

interpolation between depend (synthetic index) and independent 

variables (eastern error component). R2: coefficient of 

determination. 

 

 
Figure 18. Predictive function extracted through a power 

interpolation between depend (synthetic index) and independent 

variables (eastern error component). R2: coefficient of 

determination. 

 

Moreover, to test the accuracy of the implemented functions, the 

RMSE between the values predicted by the introduced equations 

and the eastern and northern error components obtained from the 

dataset acquired in March were computed, since it was not 

included in their definition. For brevity, the average of RMSE 

related to polynomial equations are reported since they were 

recognized as the best one: 0.005 and 0.003 for northern and 

eastern error components, respectively.   

 

4. CONCLUSION 

The relationship between camera calibration parameters and the 

accuracy of the photogrammetric outcomes has not been deeply 

examined yet in literature. In fact, although several researchers 

have demonstrated the importance of calibration steps and the 

strong impact of applying different methods on the results, there 

are no studies quantifying the potential accuracy that should be 

achieved by an expert user. Therefore, this paper is intended to 

make a first step in that direction, proposing a methodology to 

investigate such potential and to define predictive functions of 

error components. The resulting equation was computed through 

the implementation of multivariate and linear statistics 

techniques. Their combination shows promising results for 

predicting 3D models accuracy; indeed, the northern and the 

eastern error components were detected with a deviation value 

equal to 0.005 m and 0.003 m, respectively. Further works are 

required to test the methodology on the other error component 

too and on different landscape scenarios as well. 
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