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ABSTRACT: 

 

Visual odometry (VO) is a technique applied to track the dynamic positioning and orientation of a moving platform with one or more 

cameras taking image sequences. The determination relies on the estimation of relative orientation parameters (ROPs) of time adjacent 

images. The idea of stereo VO to develop a dual-camera system is adopted in this study. By taking advantage of the calibrated stereo 

camera, this system is able to recover the true scale of relative translation without the need from additional sensors. However, the scale 

might not be very accurate, and the error also could exist in the orientation including rotation and translation due to environmental 

factors such as the illumination and texture. Therefore, the primary objective of this study is to find the optimized theory and method 

of stereo VO. Through the analysis of the geometric relationship of the time adjacent stereo image pairs, locally optimized network 

adjustment is developed to improve the accuracy of ROPs.  

The proposed network adjustment model is verified by the simulation data and experiment data both. ROPs are adopted as observations 

that would update the states of the image sequence further. Besides, exterior orientation parameters (EOPs) of the dual-camera system 

could be optimized obviously during the whole operation. In this study, it is worth mentioning that 3D coordinates of object points 

matched in each image pair are not necessary to be calculated. The conventional bundle adjustment is not adopted, but more accurate 

EOPs still have been generated automatically during the process. 

 

 

1. INTRODUCTION 

Visual Odometry (VO) is the technique of determining the 

egomotion including the dynamic positioning and orientation of 

a platform by using a visual system with one or more cameras 

(Scaramuzza and Fraundorfer, 2011). A mobile mapping 

platform could be a land, aerial or underwater vehicle, which 

could even be an autonomous one (Bonin-Font et al., 2008). The 

concept and methodology of VO originated by Nister et al. 

(2004). VO has been developed parallelly and named differently 

as Visual Navigation or Vision-based Navigation in mobile 

mapping, navigation and robot fields. VO provides not only 

moving directions and distances but also three-dimensional 

trajectory of the sensor as shown in Figure 1. A VO system may 

involve real-time or post-processing time series image with 

automated image matching and orientation retrieving 

computation to generate 3D trajectories of the image sequences. 

 

Figure 1. An example of 3D trajectory of a moving sensor 

generated with visual odometry. 

 

The most famous case of applying VO is the exploration project 

of Mars. The space project emitted some specially designed 
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rovers to Mars for collecting geographic and geological 

information by using VO technique (Cheng et al., 2005). 

Onboard cameras were used to record the surroundings as well as 

used for navigation. VO is applied widely in autonomous driving 

for advanced cars and unmanned aerial vehicles (UAVs) as well. 

While the signal of positioning satellites is not ideal, VO can 

show the performance of navigation and obstacle avoidance 

(Bertozzi et al., 2011; Kelly and Sukhatme, 2007). Besides, there 

are some applications in agriculture (Ericson and Astrand, 2008) 

and even underwater archaeology (Foley et al., 2009) nowadays. 

In a VO system, the determination of platform motion between 

epochs relies on the estimation of the relative orientation 

parameters (ROPs) of time adjacent images. However, the true 

scale of relative translation between images is not solvable for 

monocular (single camera) VO. Figure 2 shows the difference 

between unknown and known scale. If the scale is unknown, each 

relative translation vector is normalized as a unit vector. If the 

scale is known, each relative translation vector is a real-scale 

vector. Therefore, how to recover the true scale for applications 

of monocular VO is the key issue. 

 

Figure 2. The difference between unknown and known scale. 

The common approach is to integrate with other sensors like a 

wheel odometry or a GNSS to provide observations of moving 
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distances (Dusha and Mejias, 2012). These sensors can update 

the real translation to VO. Moreover, combining Inertial 

Navigation System (INS) is also a popular alternative (Jones and 

Soatto, 2011). Especially, VO integrated with INS applying to 

indoor navigation is more suitable and useful (Kneip et al.,2011) 

when GNSS signal is blocked. However, a multi-sensor system 

tends to have system calibration problems may affect the solution 

of VO. Furthermore, observation errors of sensors would be 

propagated and accumulated during moving as well. 

Stereo VO is a dual-camera system normally installed on a 

horizontal bar platform. This system can take stereo image pairs 

simultaneously and continuously. By taking the advantage of a 

pair of calibrated stereo cameras, this system is able to recover 

the true scale of relative translation without the need of additional 

sensors. Hence, the error propagation from other sensors would 

be avoided. Figure 3 shows the geometric relationship of adjacent 

image pairs in stereo VO. The true scale can be recovered based 

on the known baseline calibrated previously between the dual 

camera and matching the same feature points to calculate 3D 

coordinates of object points. However, the scale might not be 

accurate, and the error also could exist in the orientation 

including rotation and translation according to the quality of 

calibration and condition of illumination and texture in the 

environment. Therefore, how to improve the estimated rotation 

and translation becomes another important issue. 

 

 

Figure 3. The geometric relationship of adjacent image pairs in 

stereo VO (Yoon and Kim, 2019). 

 

Considering the aforementioned issues, this study aims to 

develop a dual-camera system to implement stereo VO. The 

primary objective is to develop a theory and robust computation 

algorithm for stereo VO to obtain complete navigation 

information without additional assistance from other sensors.  

In general, same as an INS, the navigation of VO is a kind of dead 

reckoning process. The errors of positioning and orientation on 

each epoch will be accumulated, which continuously enlarges the 

drift errors of trajectory. Therefore, developing an optimization 

approach for decreasing drift errors is necessary. There are two 

major categories of local optimization methods. The first one 

applies bundle adjustment. Assuming the object point, image 

point and perspective center is colinear, the image points are 

taken as observations. The coordinates of object points and image 

orientations are optimized by least-squares method (Triggs et al, 

1999). The second one applies pose-graph optimization like loop 

closure in the field of simultaneous localization and mapping 

(SLAM) (Grisetti et al., 2010). When the platform moves and 

detects the area as same as the previous visited, the trajectory 

could become a close graph, which is considered as constraints 

to optimize the orientation of related images in this scene. Figure 

4 shows the illustration of these two methods. However, while 

the number of image points increases, the calculation of bundle 

adjustment enlarge as well that needs much more computer 

resource to implement. For pose-graph optimization, there is also 

a limitation that the platform must revisit the place to form a 

closure. Passing by the same position is not necessary for the 

navigation purpose in reality. 

(a) (b) 

Figure 4. Local optimization (a) Bundle adjustment (b) Pose-

graph optimization. 

 

Moreover, the geometric constraint of multiple images can be 

used to optimize locally as well. Three images can form the 

geometric constraints based on conjugate points and lines that are 

called Trifocal tensor (Kitt and Lategahn, 2010). Four images 

also can form the geometric constraints called Quadrifocal tensor 

(Comport et al, 2007). Figure 5 shows the illustration of them that 

object points captured must be projected into a line on relative 

images. And these lines will be intersected into a line as well. 

Hence, the calculation would be more complicated and the 

texture in the surroundings has to be enough. 

(a)  (b) 

Figure 5. The geometric constraint of multiple (a) Trifocal 

tensor (b) Quadrifocal tensor (Hartley and Zisserman, 2003). 

 

Consequently, the optimized theory applied in stereo VO 

algorithm would be proposed as well in this study. Through the 

analysis of the geometric relationship of the time adjacent stereo 

image pairs, a locally optimized approach is built for improving 

the position and orientation accuracy of stereo VO. The following 

chapters would explain the related details. 

 

2. METHODOLOGY 

The entire workflow is shown as Figure 6. The procedures 

include the system calibration of a dual-camera system, the 

solution of ROPs between consecutive stereo image pairs, the 

motion estimation including the position and orientation, and 

local optimization through computational processing of network 

adjustment.  

 

Figure 6. The workflow of proposed stereo VO. 
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The system calibration includes the calibration of IOPs and ROPs. 

Both must be calibrated in advance and then adopted in the stereo 

VO algorithm. IOPs mean interior orientation parameters of each 

camera. IOPs would not be the absolutely same in the dual-

camera system. ROPs mean the relative orientation parameters 

between two lenses of a dual camera. ROPs play an important 

role in stereo VO for retrieving the true scale.  

 

2.1 Automated Calculation of ROPs 

The steps of image matching and eliminating error matching are 

contained in this part. The geometry between adjacent image 

pairs is built by ROPs. During the process of image matching, 

feature points are selected and filtered. Then EM is estimated and 

decomposed into the relative rotation and relative translation 

called ROPs. Furthermore, by defining the orientation of the first 

camera as the origin of the local coordinate system, the following 

ROPs of continuous image pairs are transformed into exterior 

orientation parameters (EOPs) in this local coordinate system.  

Figure 7 depicts the geometry of the image pair. There are three 

coordinates systems. The first one is object coordinate system 

(𝑂 𝑓𝑟𝑎𝑚𝑒 ), the second one is camera coordinate system of 

camera 1 (𝐶1 𝑓𝑟𝑎𝑚𝑒), and the other one is camera coordinate 

system of camera 2 (𝐶2 𝑓𝑟𝑎𝑚𝑒). Relative rotation, 𝑅𝐶2

𝐶1 means the 

rotation matrix from 𝐶2 𝑓𝑟𝑎𝑚𝑒  to 𝐶1 𝑓𝑟𝑎𝑚𝑒 . There are 9 

elements in this rotation matrix. Relative translation, 𝑟𝐶2

𝐶1 means 

the unit vector from the origin of 𝐶1 𝑓𝑟𝑎𝑚𝑒  to the origin of 

𝐶2 𝑓𝑟𝑎𝑚𝑒. This unit vector is defined in 𝐶1 𝑓𝑟𝑎𝑚𝑒 and contains 

3 elements. The image pair captures the same object point, P. 

Therefore, a coplanarity condition is formed. This condition is 

also called as the epipolar geometry. The algebraic representation 

of epipolar geometry can be expressed as a 3 × 3 matrix, which 

is named Essential Matrix (EM) (Longuet-Higgins, 1981). Every 

point correspondence, 𝑟𝑝
𝐶1  and 𝑟𝑝

𝐶2  should be satisfied with 

epipolar constraint described in the Equation 1. 𝑟𝑝
𝐶1  means the 

vector of the image point in 𝐶1 𝑓𝑟𝑎𝑚𝑒, and 𝑟𝑝
𝐶2 means the vector 

of the image point in 𝐶2 𝑓𝑟𝑎𝑚𝑒. 

 

Figure 7. The geometry of the image pair. 

 

(𝑟𝑝
𝐶2)𝑇𝐸𝑟𝑝

𝐶1 = 0                                 (1) 

 

In this study, SURF algorithm (Bay et al., 2008) is used for image 

matching and Nister’s five-point algorithm (Nistér, 2004) is 

adopted for estimating EM. It has set the inner constraint in EM, 

but the feature points are selected randomly without considering 

the distribution. The selected feature points do not distribute 

averagely on a whole image that would affect the reliability of 

ROPs. Therefore, the geometry constraint needs to be considered 

to eliminate the matching error as well. The solution in this study 

is to form a convex hull based on selected feature points. The area 

threshold of the convex hull is applied to eliminate error 

matching. The distribution of matching feature points would 

become more average which would improve the estimation of 

ROPs. 

 

2.2 Local Optimization  

The steps of transforming ROPs into EOPs and local 

optimization by network adjustment are contained in this part. 

The dual-camera system captures two-time adjacent image pairs 

that contain four images. Currently, there are two major methods 

to solve the relative orientation between them. The first one is the 

algorithm with 3D-to-3D correspondences. The conjugate points 

(i) of four images are matched first. Then objective points 

corresponding to these conjugate points can be estimated by 

forward intersection. There are two sets of 3D coordinates 

defined in the different image pair. The 3D coordinates of object 

points (𝑋̃𝑘−1
𝑖 ) at the previous time (k-1) are transformed into the 

3D coordinates of object points (𝑇𝑘𝑋̃𝑘−1
𝑖 ) at the current time (k). 

The 3D coordinates estimated by current image pairs are 𝑋̃𝑘
𝑖 . 

Based on minimizing the difference between 𝑋̃𝑘
𝑖  and 𝑇𝑘𝑋̃𝑘−1

𝑖 , 

ROPs can be solved in Equation 2. 𝑇𝑘,𝑘−1 in Equation 3 means 

the transformation matrix between k and k-1 that are formed by 

ROPs. Equation 3 shows the elements of 𝑇𝑘. 𝑅𝑘,𝑘−1 means the 

relative rotation. 𝑡𝑘,𝑘−1 means the relative translation. 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑇𝑘

∑ ‖𝑋̃𝑘
𝑖 − 𝑇𝑘𝑋̃𝑘−1

𝑖 ‖𝑖                       (2) 

 

𝑇𝑘 = [
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1

0 1
]                         (3) 

 

The second one is the algorithm with 3D-to-2D correspondences. 

The conjugate points (i) of four images are matched. First, 3D 

coordinates (𝑋̃𝑘−1
𝑖 ) of objective points corresponding to these 

conjugate points are estimated by forward intersection at the 

previous time (k-1). Then these objective points ( 𝑋̃𝑘−1
𝑖 ) are 

transformed and projected onto the image at the current time (k). 

Corresponding image points are 𝑝̂𝑘−1
𝑖  formed according to 

𝑋̃𝑘−1
𝑖  and 𝑇𝑘  in Equation 4. The current image points are 𝑝𝑘

𝑖 . 

Based on minimizing the difference between 𝑝𝑘
𝑖  and 𝑝̂𝑘−1

𝑖 , ROPs 

can be solved in Equation 5. 

 

𝑝̂𝑘−1
𝑖 = 𝐹(𝑇𝑘 , 𝑋̃𝑘−1

𝑖 )                          (4) 

 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑇𝑘

∑ ‖𝑝𝑘
𝑖 − 𝑝̂𝑘−1

𝑖 ‖𝑖                          (5) 

 

However, no matter adopting the algorithm with 3D-to-3D or 3D-

to-2D correspondences, the 3D coordinates of object points must 

be computed first. Then ROPs are solved based on the 

minimization principle. The matching error would be propagated 

into object points and then ROPs. Therefore, local optimization 

by bundle adjustment is necessary. The EOPs of images and 3D 

coordinates of object points are improved during the least-

squares process. More image points generate more observations, 

and the calculation becomes more complicated that cost much 

more time and computer resource. With 2D-to-2D 

correspondences, ROPs still can be solved from EM as 

monocular VO workflow. The 3D coordinates of object points do 

not have to be computed, but the true scale is unknown. 

In this study, a novel local optimization is proposed based on 2D-

to-2D correspondences for above issues. Two-time adjacent 

image pairs can generate six sets of ROPs totally. Their 

geometric relationship is depicted in Figure 8. Images captured 

by the left camera is  𝐶1 and 𝐶3 sequentially. Images captured by 

the right camera is  𝐶2 and 𝐶4 sequentially. There are totally six 
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combinations of ROPs. Relative rotation is 𝑅2
1, 𝑅4

2, 𝑅3
4, 𝑅1

3, 𝑅1
4, 

and 𝑅3
2 correspondingly. Relative translation is 𝑟2

1, 𝑟4
2, 𝑟3

4, 𝑟1
3, 𝑟1

4, 

and 𝑟3
2 correspondingly. Each true scale for relative translation is 

𝜆2
1 , 𝜆4

2, 𝜆3
4, 𝜆1

3, 𝜆1
4, and 𝜆3

2 correspondingly. Assuming 𝐶1 𝑓𝑟𝑎𝑚𝑒 

is O frame, all rotation and translation in each camera frame are 

transformed into O frame. So that EOPs of four images could be 

obtained. 𝑟12
O  means the vector defined in O frame from the origin 

of 𝐶1 𝑓𝑟𝑎𝑚𝑒 to the origin of 𝐶2 𝑓𝑟𝑎𝑚𝑒, and so on. 𝑅1
O means the 

rotation from 𝐶1 𝑓𝑟𝑎𝑚𝑒  to 𝑂 𝑓𝑟𝑎𝑚𝑒 , and so on. The related 

equations are listed as the following. 

 

 

Figure 8. The geometry between consecutive images. 

 

𝑟12
O = 𝜆2

1 ∙ 𝑅1
𝑂 ∙ 𝑟2

1                                    (6) 

 

𝑟24
O = 𝜆4

2 ∙ 𝑅2
𝑂 ∙ 𝑟4

2                                    (7) 

 

𝑟43
O = 𝜆3

4 ∙ 𝑅4
𝑂 ∙ 𝑟3

4                                    (8) 

 

𝑟31
O = 𝜆1

3 ∙ 𝑅3
𝑂 ∙ 𝑟1

3                                    (9) 

 

𝑟14
O = 𝜆4

1 ∙ 𝑅1
𝑂 ∙ 𝑟4

1                                   (10) 

 

𝑟23
O = 𝜆3

2 ∙ 𝑅2
𝑂 ∙ 𝑟3

2                                   (11) 

 

𝑅1
O = 𝐼                                              (12) 

 

𝑅2
O = 𝑅1

𝑂 ∙ 𝑅2
1                                   (13) 

 

𝑅3
O = 𝑅1

𝑂 ∙ 𝑅3
1                                   (14) 

 

𝑅4
O = 𝑅1

𝑂 ∙ 𝑅3
1 ∙ 𝑅4

3 = 𝑅1
𝑂 ∙ 𝑅2

1 ∙ 𝑅4
2                 (15) 

 

Applying the same algorithm of monocular VO, ROPs of each 

image pairs could be solved. Besides, the scale of the origin of 

𝐶1 𝑓𝑟𝑎𝑚𝑒  to the origin of 𝐶2 𝑓𝑟𝑎𝑚𝑒 , and the origin of 

𝐶4 𝑓𝑟𝑎𝑚𝑒  to the origin of 𝐶3 𝑓𝑟𝑎𝑚𝑒  is known based on the 

previous calibration. For the other 4 scales, the approximation 

could be estimated based on the principles of the triangle 

including inner product and sine rule.  

The network adjustment of ROPs is based on least-squares. 

Observations are relative rotations and translations, not originally 

image points in bundle adjustment. The process is incremental 

that is designed into two parts. In the first part, 9 elements in each 

relative rotation and six inner constraints in each rotation matrix 

are listed as observation equations sequentially. Unknown 

parameters that are rotations belong to EOPs of 𝐶3 𝑓𝑟𝑎𝑚𝑒 and 

𝐶4 𝑓𝑟𝑎𝑚𝑒 are calculated during the iteration. In the second part, 

3 elements in each relative translation and one baseline of dual-

camera system as the known true scale ( 𝜆3
4 ) are listed as 

observation equations sequentially. Unknown parameters that are 

translations and other true scales belong to EOPs of 𝐶3 𝑓𝑟𝑎𝑚𝑒 

and 𝐶4 𝑓𝑟𝑎𝑚𝑒  are calculated during the iteration. The related 

observation equations are listed as the following. V means the 

matrix of residual, A means the design matrix, and W means the 

matrix of weight correspondingly. 

[
 
 
 
 
 
 
 

𝑅4
2

𝑅3
4

𝑅1
3

𝑅4
1

𝑅3
2

6 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅3
𝑂

6 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑡𝑠 𝑖𝑛 𝑅4
𝑂]
 
 
 
 
 
 
 

+ 𝑉 = 𝐴 × [
𝑅3

𝑂

𝑅4
𝑂]~𝑊     (16) 

 

[
 
 
 
 
 
 
𝑟̂4

2

𝑟̂3
4

𝑟̂1
3

𝑟̂4
1

𝑟̂3
2

𝜆3
4]
 
 
 
 
 
 

+ 𝑉 = 𝐴 ×

[
 
 
 
 
 
 
 
𝑟3

𝑂

𝑟4
𝑂

𝜆4
2

𝜆3
4

𝜆1
3

𝜆4
1

𝜆3
2]
 
 
 
 
 
 
 

~𝑊                     (17) 

 

3. EXPERIMENTS AND RESULTS 

3.1 Simulation Data 

For verifying the performance of the proposed network 

adjustment model, simulation data is generated as shown in 

Figure 9. EOPs of consecutive images are known. Therefore, all 

ROPs of each image pairs are also known. The random bias is 

added in all ROPs. There are two cases are designed. Random 

bias in ROPs is set as 1 degree and 0.01meter in Case 1.  Random 

bias in ROPs is set as 10 degrees and 0.1 meter in Case 2. Testing 

is implemented three times both in Case1 and Case 2.  

For the results in Case 1, Table 1 indicates the error comparison, 

and Figure 10 shows the differences of ROPs before and after 

applying network adjustment. Six vectors mean six sets of ROPs 

from two-time adjacent image pairs. According to Table 1, the 

error of EOPs compared to true values is very small. Most 

rotation differences are less than 0.01 degree, and most 

translation differences are less than 0.003 meter. Besides, Figure 

10 shows the network adjustment of ROPs is feasible and useful 

so that all ROPs could be optimized.  

For the results in Case 2, Table 2 indicates the error comparison 

and Figure 11 shows the differences of ROPs before and after 

applying network adjustment. Six vectors mean six sets of ROPs 

from two-time adjacent image pairs. According to Table 2, the 

error of EOPs compared to true values become larger due to the 

larger random bias added. However, Figure 11 shows the 

network adjustment of ROPs is still feasible and useful so that all 

ROPs could be optimized significantly. 

 

Figure 9. Simulation data of consecutive images. 
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1st 
𝛥𝜔 𝛥𝜑 𝛥𝜅 𝛥𝑋 𝛥𝑌 𝛥𝑍 

0.0085  -0.0186  0.0099  0.000  -0.003  0.000  

0.0075  -0.0190  0.0102  0.000  -0.003  0.001  

2nd  
𝛥𝜔 𝛥𝜑 𝛥𝜅 𝛥𝑋 𝛥𝑌 𝛥𝑍 

-0.0054  0.0099  -0.0051  0.002 0 -0.005 

-0.0048  0.0102  -0.0052  0.002 0 -0.005 

3rd 
𝛥𝜔 𝛥𝜑 𝛥𝜅 𝛥𝑋 𝛥𝑌 𝛥𝑍 

0.0065  -0.0138  0.0073  -0.003 0.002 -0.003 

0.0057  -0.0141  0.0075  -0.003 0.002 -0.002 

Table 1. Error comparison in Case 1. 

 

 
Figure 10. The differences of ROPs before and after applying 

network adjustment in Case 1. 

 

1st 

𝛥𝜔(°) 𝛥𝜑(°) 𝛥𝜅(°) 𝛥𝑋(𝑚) 𝛥𝑌(𝑚) 𝛥𝑍(𝑚) 

-0.0023  0.0044  -0.0023  0.077 -0.005 -0.063 

-0.0021  0.0045  -0.0023  0.077 -0.005 -0.063 

2nd  

𝛥𝜔(°) 𝛥𝜑(°) 𝛥𝜅(°) 𝛥𝑋(𝑚) 𝛥𝑌(𝑚) 𝛥𝑍(𝑚) 

0.0186  -0.0490  0.0274  -0.107 -0.104 0.064 

0.0159  -0.0500  0.0279  -0.107 -0.104 0.064 

3rd 

𝛥𝜔(°) 𝛥𝜑(°) 𝛥𝜅(°) 𝛥𝑋(𝑚) 𝛥𝑌(𝑚) 𝛥𝑍(𝑚) 

-0.0893  0.0995  -0.0396  -0.012 0.003 -0.004 

-0.0838  0.1043  -0.0424  -0.012 0.003 -0.004 

Table 2. Error comparison in Case 2. 

 

 
Figure 11. The differences of ROPs before and after applying 

network adjustment in Case 2. 

 

3.2 Experiment Data 

The experimental setting of the dual-camera system is shown as 

Figure 12. Images are taken in front of the department building 

at a different time. Table 3 indicates the solved EOPs and true 

scales in the experiment. Figure 13 shows the difference of ROPs 

before and after applying network adjustment in the experiment. 

Six vectors mean six sets of ROPs from two-time adjacent image 

pairs. Figure 14 shows the position and orientation of adjacent 

image pairs in stereo VO. The results represent the proposed 

stereo VO algorithm is feasible. The unknown orientation of 

images can be recovered in the local frame. Especially, network 

adjustment of ROPs could optimize the solved EOPs without the 

observations of image points.  

 

 
Figure 12. The experimental setting of the dual-camera 

system. 

 
EOPs 𝜔(°) 𝜑(°) 𝜅(°) 𝑋(𝑚) 𝑌(𝑚) 𝑍(𝑚) 

𝐶3 0.6952  -1.2449  -0.6450  -0.052 -0.004 2.015 

𝐶4 0.6032  0.3745  -0.0733  0.22 -0.009 1.993 

Scale 𝜆2
1 𝜆4

2 𝜆3
4 𝜆1

3 𝜆4
1 𝜆3

2 

Value 0.273 1.997 0.273 2.016 2.005 2.044 

Table 3. Solved EOPs in the experiment. 

 

 
Figure 13. The difference of ROPs before and after applying 

network adjustment in the experiment.  
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Figure 14. The position and orientation of adjacent image pairs 

in stereo VO. 

 

4. CONCLUSIONS AND FUTURE WORKS 

The proposed stereo VO is feasible and has been implemented. 

The true scale of translation can be recovered. Network 

adjustment of ROPs is validated by both simulation and 

experiment data. No matter the random bias in relative rotation is 

1 or 10 degrees or the random bias in relative translation is 0.01 

or 0.1 meter, ROPs could be optimized significantly. Therefore, 

the position and orientation of images can be estimated better. 

The experiment data also represent the same effect. However, the 

combination of the baseline and intersection geometry needs to 

be analyzed and tested in more experiments. The trajectory in the 

experiment also needs to be larger to estimate the accumulated 

error. Besides, the reference solution can be set to compare the 

precision of the solved position and orientation of images frame 

by frame. 
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