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ABSTRACT: 
 
Laser scanning technology is useful to create accurate three-dimensional models of indoor environments for applications such as 
maintenance, inspection, renovation, and simulations. In this paper, a detection method of indoor attached equipment such as 
windows, lightings, and fire alarms, from TLS point clouds, is proposed. In order to make the method robust against to the lack of 
points of equipment surface, a footprint of the equipment is used for detection, because the entire or a part of the footprint boundary 
shapes explicitly appear as the boundary of base surfaces, i.e. walls for windows, and ceilings for lightings and fire alarms. In the 
method, first, base surface regions are extracted from given TLS point clouds of indoor environments. Then, footprint boundary 
points are detected from the region boundary points. Finally, target equipment is detected by fitting or voting using given target 
footprint shapes. The features of our method are footprint boundary point extraction considering occlusions, shape fitting with 
adaptive parameters based on point intervals, and robust shape detection by voting from multiple footprint boundary candidates. The 
effectiveness of the proposed method is evaluated using TLS point clouds.   
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1. INTRODUCTION 

3D indoor models generated from laser-scanned point clouds 
are used in applications such as maintenance, inspection, 
renovation, and simulations. Many automatic 3D indoor 
modeling methods have been proposed, and the main target of 
the modeling is basic structures of the indoor scene, such as 
ceiling, floor, and walls, in many articles (Díaz-Vilariño et al., 
2015, Hong et al., 2015, Monszpart et al, 2015, Macher et al., 
2017, Previtali et al., 2018, Shi et al., 2019, Takahashi et al., 
2019). Fitting planes to 3D points and lines to projected points 
are often used to find the basic structures. The Manhattan 
worlds assumption in which the objects follow orthogonal or 
parallel relationships under a coordinate frame are also used to 
create useful models and to realize efficient and stable modeling 
(Hong et al., 2015, Monszpart et al., 2015), and additional 
regularities, such as regular arrangements which often appear in 
man-made environments, are also used (Previtali et al., 2018, 
Takahashi et al., 2019). Using these methods, useful 3D models 
of the basic structures of indoor scenes can be automatically 
obtained from laser scanned point clouds.  
 
On the other hand, equipment attached to the walls and ceilings, 
such as windows, lightings, sprinklers and fire alarms are also 
important for maintenance and inspection of the indoor 
environment. Drawings of the ceiling including the equipment 
of several facilities are created from measurement of real 
environments for inspection. 3D scanning technology is 
sometimes used to create the drawing. However, recognition of 
the equipment is manually done, and the work is quite time 
consuming for large facilities. Unfortunately, automatic 
recognition of the attached equipment, the methods which can 
be used in practical work, have not been developed. Therefore, 
in this paper, a method for detecting indoor equipment attached 

to the walls and ceilings such as windows, lightings, and fire 
alarms from point clouds acquired by a terrestrial laser scanner 
(TLS).  
 
For window detection, holes or space occupancy information in 
wall planes are often used (Previtali et al., 2018，Shi et al., 
2019). However, non-negligible points in the glass area of 
windows often exist caused by the dirt or screens. In addition, 
large parts of windows may be occluded by other objects such 
as columns and curtains (e.g. see Fig. 7). To detect objects in 
the point clouds, recently, machine learning and classification 
can be used for several outdoor and indoor environments. After 
the supervised learning, the classifiers recognize scanned points 
of not only basic structures but also desks, chairs, and tables 
(Babacan et al., 2017, Qi et al., 2017a, Qi et al., 2017b, Su et al., 
2018). Furthermore, model-based object recognition can be 
used for detecting specific shape objects from point clouds 
(Johnson, Hebert, 1999, Drost et al., 2010, Date et al., 2012, 
Salti et al., 2014). However, in the point clouds acquired by 
TLS, the points of the attached equipment are often lacking due 
to their surface reflectance properties of transparency and 
specularity. Therefore, it is difficult to apply the 3D model-
based recognition method and machine learning to attached 
equipment detection. 
 
In this paper, we propose a method for detecting equipment 
attached to walls and ceilings (base surfaces) from point clouds 
using the footprint which is shape of the equipment on the base 
surfaces. The entire or part of the footprint boundary always 
appears explicitly as the boundary points of ceilings and walls, 
and their shapes are simple. Therefore, they are useful to detect 
the equipment. The contributions of the paper are to propose a 
simple algorithm for detecting attached equipment based on 
planar region boundary points in TLS point clouds, to provide 
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some techniques of point cloud processing for detecting 
footprints stably considering occlusions, point intervals, and 
noises, and to show effectiveness of the boundary point-based 
detection method through experiments. 
 

2. ATTACHED EQUIPMENT DETECTION METHOD 

2.1 Overview  

As described in Section 1, we focus on the footprint of the 
equipment to be detected, because the points on the equipment 
surfaces are not often obtained due to the surface reflectance 
properties of them. The footprint is shape of the equipment on 
the base surfaces (walls and ceilings). They can be easily found 
as a part of boundary of base surfaces, and their shapes are 
usually quite simple. Therefore, more stable detection of the 
attached equipment is achieved by using footprint compared 
with 3D points of the equipment.  
 
The major equipment to be detected and type of footprints are 
summarized in Table. 1. The footprint boundary shapes of 
almost attached equipment are rectangle and single or multiple 
circles. Therefore, the method is designed to detect equipment 
with circular or rectangle footprint boundaries under the 
assumption that the base surfaces are planes. In this paper, 
methods for detecting circular footprint boundary for equipment 
on the ceiling, and rectangular footprint boundary for windows 
on the wall are described. To detect points of the equipment’s 
footprint boundary (footprint boundary points) correctly, 
occlusions in the scanning are considered. Primitive fitting 
considering point intervals is developed to detect equipment on 
the ceilings, and voting is used to find window footprints which 
consist of boundary points of multiple planar regions. 
 
The flow of the method proposed in this paper is shown in Fig.1. 
In the method, TLS point clouds and shape type and dimension 
of footprint boundary of the equipment to be detected are given 
by the user as input. First, boundary points of planar regions are 
extracted from point clouds. Then, the footprint boundary points 
are detected considering occlusion. Finally, positions of the 
equipment are detected using footprint boundary shape fitting 
considering point interval for equipment on single planar region 
(equipment on the ceiling) and voting for the ones on multiple 
planar regions (windows). Most of the process is applied to 
point clouds acquired in one scan to accelerate the point cloud 
processing using 2D structured points. Finally, the detection 
results of each scan are merged. Detection methods for 
equipment attached to the ceiling and windows on the wall are 
described in Sections 2.2 and 2.3, respectively.  
 
2.2 Detection of Equipment attached to Ceiling 

Planar region and boundary point extraction 
The ceiling points are extracted using region growing. First, 2D 
structured point clouds (Masuda, Tanaka, 2010) are generated to 
realize efficient neighbor search in region growing, and the 
normal vector of each point is estimated using outer product of 
difference vectors to neighbors considering Euclidean distance 
(Che, Olsen, 2017). Then, the region growing is applied to the 
structured point clouds. In the region growing, thresholding for 
differences of the estimated point normal and vertical direction, 
and difference of z-coordinate of points are used as the growing 
conditions. The regions with enough number of points above 
the scanner are detected as ceilings. Finally, sets of the 
connected boundary points of each ceiling region are extracted 
by traversing neighboring boundary points on the structured 

point clouds. We denote a set of connected region boundary 
points by Bi. 
 
Footprint boundary point extraction 
Each point of Bi can be classified into two types. The first is the 
actual boundary point of the ceiling. The second is the occlusion 
boundary points which is the region boundary point caused by 
the occlusion of equipment or objects between the ceiling and 
the scanner. Footprint boundary points of the equipment should 
consist of only the actual ceiling boundary point. Therefore, 
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Figure 2.  Footprint boundary points

Input 1 : TLS point clouds

Output : Positions of the 
target equipment

- Point cloud 
structuring

- Region growing

1. Planar region and 
boundary point 

extraction

- Occlusion boundary 
point detection

2. Footprint boundary 
point extraction

- Point interval-
adaptive RANSAC 

- Weighted voting

3. Attached equipment 
detection

Input 2 : Target equipment info.

・Region boundary points

・Footprint 
boundary points

r

circle

rectangle

w

h

Figure 1.  Flow of the attached equipment detection method

Fire alarm, Sprinkler 

Inspection hole

Lighting

Window

Single Multiple 
Rectangle

Ventilation hole

Circle 

Region of 
footprint 
boundary

〇
〇 〇

〇

Shape of footprint
boundary

Single  

Single/Multiple  

Attached 
equipment

〇
〇
〇

〇

Table 1.  Attached equipment and their footprint
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from each connected boundary points Bi, only footprint 
boundary points are extracted by removing occlusion boundary 
points.  
 
The basic idea is shown in Fig. 2. Lower convex equipment 
yields occlusion boundary points as shown in Fig. 3. Such 
points should not be used in the detection because they have no 
useful information for the footprint of equipment. Occlusion 
boundary points can be detected by distance comparison of 
neighboring points in structured points as shown in Fig. 3. Let 
point i be the boundary point of a region R, and di be the 
distance between the point i and the scanner. If a neighbor point 
j of the point i is not included in the R and dj is smaller than di, 
the point i is recognized as occlusion boundary point. The 
occlusion boundary points can be defined by Eq. (1). 
 
  | , ( ), ,R

O j iB i d d j N i i R j R        (1) 

 
where  N(i) = neighbor points of i 
 
We use four neighbors (up, down, left, and right) in the 
structured point cloud as N(i). In the laser scanning, the lack of 
points often can be observed at the jump edge; therefore, points 
within a few cells from the cell of point i are also included in 
the N(i). Final footprint boundary points are obtained by 
removing the occlusion boundary points R

OB  from each region 
boundary points Bi as shown in Fig. 2.  
 
Detection of equipment 
The equipment is detected by fitting the given footprint 
boundary shape to each connected footprint boundary point. In 
this paper, the method for circular footprint detection is 
described. The fitting problem differs from general line/surface 
fitting to point clouds because all points exist outside the target 
footprint shape (Fig. 2) and gaps between points change 
according to distance from the scanner (Fig. 4). In our method, 
RANSAC (Fischler, Bolles, 1981) with adaptive parameters is 
used to detect the target footprint shape. RANSAC consists of 
model definition from samples (hypothesis) and consensus 
calculation under a given tolerance (verification). In our method, 
the diameter of fit circle and the tolerance are adaptively 
determined by the point interval estimated from the height of 
the ceiling and distance from the scanner. The point interval 
near the point i is estimated by Eq. (2).  
 

  tan( ) tani i ip h          (2) 

 
where  h = height of the ceiling of point i 
 i  = / 2  elevation angle of point i 
   = angle pitch in the scanning 
 
As shown in Fig. 4, the interval increases while the distance 
from the scanners increases. In the RANSAC, pi is added to the 
radius of the circle model in hypothesis, and pi is used as the 
tolerance in the verification. In our implementation, for too 
small pi near the scanner, we use constant value e instead of pi. 
If inliers are more than outliers, the boundary points are 
recognized as the footprint of the target equipment. Finally, the 
inscribed circle is fitted to determine the position of the 
equipment. The above process is applied to each point cloud 
from different scans, and the results are merged. If detected 
equipment overlaps with the other, the closest one to the 
scanners is adopted as the output. 
 

2.3 Detection of Windows 

Region and footprint boundary candidate point extraction  
First, using region growing on the structured point cloud, 
vertical planar regions in the point cloud are extracted. Then, 
the largest vertical planar region is extracted as a wall region, 
and the related sub-regions which are parallel and close to the 
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wall region are also extracted. This process is repeated until all 
regions which are considered as walls are extracted. Here, we 
denote a wall region k and its related sub-regions by Wk. From 
planar regions in Wk, boundary points Bk are extracted, and 
occlusion boundary points obtained by using same method 
describe in Section 2.2 are removed from Bk. Finally, remaining 
neighboring boundary points in Bk are connected as the footprint 
boundary candidate points. As a result, a set of the connected 
footprint boundary candidate points Ck is obtained for each wall 
k. The following detection process is applied to each Ck. 
 
Detecting window rectangle 
In the point clouds, the boundary of the window often consists 
of small planar regions of window frames. In addition, Ck 
includes several region boundary points of not only windows 
but also subdivided window frames, window screens, pillars 
and part of walls. To detect rectangle of the target window from 
boundary points of multiple regions, voting for the center 
position of the rectangle is used. First, all points in Ck are 
projected onto the wall plane and polygonised using Douglass-
Peucker algorithm (Douglass, Peucker, 1973). Then, vertical 
and horizontal straight-line segments of the polygon with 
enough length (more than few centimeters) are extracted as 
candidates of window boundary. The sets of vertical and 
horizontal segments are denoted by Lv and Lh, respectively. 
Next, as shown in Figure 5, the voting for the center position of 

the window candidate is done. In this process, first, a regular 
grid for storing votes is defined on the wall plane. Then, the 
voting for cells of the grid is done by possible line segment 
pairs (lm, ln) which consist of a vertical line segment lm in Lv and 
horizontal ln in Lh. Here, the overlap length of the line segments 
of the line segment pair and the target rectangle t estimated by 
the pair is voted (added) to a grid cell corresponding to the 
center of t as shown in Fig. 5.  Finally, from the cell with the 
maximum vote which is larger than a given threshold, 
rectangles are sequentially detected considering overlaps of 
extracted rectangles.  
 

3. EXPERIMENTAL RESUTS 

Figure 6 shows detection results of a lighting and a fire alarm 
attached to the ceiling of a room (19.7 m width, 10.2 m length, 
and 2.7~3.3 m height). Their footprint boundary shapes are 
circles, and the diameters of the lighting and fire alarm are 130 
mm and 100 mm, respectively. FARO Focus 3D X130 is used 
to acquire three point clouds (130 M points in total), and point 
interval at 10 mm from the scanner is about 6 mm. In the figure, 
red and blue circles show detected lightings and fire alarms. The 
detection rates of the lightings and fire alarms were 90.3 (65/72) 
and 100% (3/3). In the experiments, the equipment about 10 m 
away from the scanner could be detected. The main cause of 
lack of detection is that the boundary points of the equipment 

(a) Point clouds (3 scans)

(b) Detection results (top view). Red/blue circles are detected lightings and fire alarms. Filled red circles 
are false detection of lightings. Filled black squares are scanner positions.

Lighting Fire alarm

Figure 6.  Results of lighting and fire alarm detection
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were connected with the outside boundary of the ceiling region 
due to lack of points at the distant region from the scanner. 
Additional laser scanning will reduce the lack of detection. In 
the figure, filled red circles are false detection of the lightings. 
Seven false detections were observed from other attached 
equipment with similar footprints (monitoring camera) and the 
corner of square boundaries from rails of partitions. 
 
Figure 7 shows the results of the window detection. The point 
clouds (11 M points) from one scanner position was acquired 
using FARO Focus 3D S120, and the point interval at 10 m 
from the scanner is about 12 mm. The scanner is set 2.6 m away 
from the wall, and the width of the wall is approximately 8.7 m. 
Figs. 7 (b) and (c) show the extracted planar regions and line 
segments of candidates of window boundary. The window 
frame consists of several small regions caused by the lack of 
points due to reflectance property of the material. Figure 7 (d) 
shows detected windows by the proposed method. In this 
experiment, all windows are correctly detected robustly against 
to the points on the glass area, large occlusions, and small steps 
of the window frames. However, positional errors of a few 

centimeters in some windows were observed. Accuracy 
improvement is included in future works.  
 

4. CONCLUSIONS 

In this paper, a method for detecting equipment attached to 
walls and ceilings from TLS point clouds was proposed. In 
order to realize robust detection from the lack of scan points of 
the equipment, the method finds points of footprint boundary of 
the equipment in the point clouds, and shape fitting and voting 
for the footprint boundary points using given footprint boundary 
shape of target equipment were used to detect target equipment. 
For extracting appropriate footprint boundary points from the 
region boundary of base surfaces (ceilings and windows), a 
method to recognize points caused by the occlusions was 
developed. The footprint shape fitting by RANSAC with 
adaptive parameters was proposed to find footprints robustly 
from boundary points with different point intervals. Moreover, 
the voting from multiple footprint boundary candidates was also 
proposed to realize robust shape detection from multiple 
candidates of footprint boundary points. In the experiments, a 

(a) Point clouds

(b) Planar regions

(c) Line segments

(d) Detected windows

Figure 7.  Results of window detection
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detection rate of over 90% for lightings and fire alarms on the 
ceiling was achieved; all windows of a wall were also detected 
from point clouds including points in the glass areas and large 
occlusions. The future work includes developing a method for 
detecting several types of equipment, accuracy improvement of 
window detection, and automatic detection without information 
of target footprint shape. 
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