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ABSTRACT:

Indoor mapping attracts more attention with the development of 2D and 3D camera and Lidar sensor. Lidar systems can provide
a very high resolution and accurate point cloud. When aiming to reconstruct the static part of the scene, moving objects should be
detected and removed which can prove challenging. This paper proposes a generic method to merge meshes produced from Lidar
data that allows to tackle the issues of moving objects removal and static scene reconstruction at once. The method is adapted to a
platform collecting point cloud from two Lidar sensors with different scan direction, which will result in different quality. Firstly,
a mesh is efficiently produced from each sensor by exploiting its natural topology. Secondly, a visibility analysis is performed to
handle occlusions (due to varying viewpoints) and remove moving objects. Then, a boolean optimization allows to select which
triangles should be removed from each mesh. Finally, a stitching method is used to connect the selected mesh pieces. Our method
is demonstrated on a Navvis M3 (2D laser ranger system) dataset and compared with Poisson and Delaunay based reconstruction
methods.

1. INTRODUCTION

3D reconstruction from images (Schops et al., 2017) and Li-
dar (Berger et al., 2017) is a widely researched topic in the
photogrammetry and computer vision communities. With the
development of sensor devices, 3D reconstruction is widely ap-
plied to various scenes, both outdoors (Musialski et al., 2013)
and indoors (Huitl et al., 2012). During the data collection,
there may exist moving objects in the scene (people inside,
pedestrian and vehicles outside). For robot applications, these
moving objects should be detected to adapt the behaviour of the
robot to its surrounding for scene mapping. For 3D reconstruc-
tion purposes, these objects should be removed in order for the
3D model to represent only the static part of the scene (Jiang
et al., 2017a). In both cases, motion analysis is a mandatory
preprocessing step.

1.1 Previous Works

For indoor static scene reconstruction, the related work can be
categorized into two research areas: moving objects analysis
and 3D reconstruction. Moving objects analysis can be based
on images(Tron, Vidal, 2007) or Lidar (Schauer, Nüchter, 2018)
points clouds. In this paper, we emphasize on Lidar based in-
door reconstruction, so we focus our state of the art on Lidar
based methods.

1.1.1 Moving Objects Analysis The methods can be divided
into two groups:
∗ Corresponding author

(1) Motion flow relies on ICP (Iterated Closet Point) us-
ing point correspondence to analyze the velocity of moving ob-
jects (Pomerleau et al., 2014). Simultaneous localization and
mapping with moving object tracking method is mainly used in
robot scanning (Wang, Thorpe, 2002). A 3D flow field is com-
puted to analyze the motions during ICP (Jiang et al., 2017b),
and dynamic objects are detected by flow clustering.

(2) Visibility analysis (Underwood et al., 2013) uses the
sensor information to remove the objects that are volumetri-
cally inconsistent between scans (objects from a scan traversed
by rays from another scan). The input are two point clouds
acquired at different time. The Dempster-Shafer theory can
be used to improve the combination of volumetric informa-
tion from the scans (Xiao et al., 2015). Several point based
data structures such as Voxel (Andreasson et al., 2007; Schauer,
Nüchter, 2018) and OctoMap (Gehrung et al., 2019) have been
proposed to improve the performance of the ray tracing method.

Our method falls in the second category as it leverages visibility
information to detect 3D volumetric changes. However, while
the methods mentioned above are based on point clouds, which
contains samples of the continuous surface of the scene, our
method handles meshes, providing a continuous representation.

1.1.2 3D Reconstruction There are many 3D reconstruc-
tion methods for static scenes (Berger et al., 2017). They can
be categorised as:

(1) Implicit methods: the reconstructed surface is rep-
resented as the zero set of a function defined in space, which
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Figure 1. There are 4 steps in our reconstruction pipeline. Step 1 (top left): generate a sensor mesh from each sensor, introducing
in Section 3.1 and Section 3.2; Step 2 (bottom left): detect and remove the inconsistent objects based on a combination of distance
and visibility, the detail is in Section 3.3; Step 3 (bottom right): select triangles based on a boolean optimization framework, refer to
Section 3.4.1; Step 4(top right): stitch the selected mesh pieces(cf Section 3.4.2).

values are positive outside and negative inside the solid scene.
This guarantees the watertightness of the resulting surface. A
triangle mesh discretizing this zero set can then be generated,
usually using the Marching Cubes method (Lorensen, Cline,
1987). The most widely used is Poisson surface reconstruction
(Kazhdan et al., 2006) which aligns the gradient of the function
with normals computed from the point cloud. Truncated signed
distance functions(TSDF) is another successful implicit method
that processes RGB-D datasets (Newcombe et al., 2011). An
elastic registration has been proposed to improve the perfor-
mance of TSDF (Zhou et al., 2013). An extensive experiment
of TSDF on multi-line Lidar point clouds has been proposed in
(Roldão et al., 2019).

(2) Explicit methods usually use local information to es-
timate the surface and produce a watertight or non watertight
surface (it might have boundaries). In (Ryde et al., 2013), the
surface is approximated locally using a voxel-based plane de-
tection. (Labatut et al., 2009) uses a Graphcut optimization
framework to find the surface in a 3D Delaunay triangulation
which is robust to noise. (Marton et al., 2009) proposed a
greedy surface triangulation algorithm relying on normal infor-
mation that also focuses on robustness to noise. Finally, sensor
meshing (Boussaha et al., 2018) is a simple and fast method that
makes use of the sensor topology to build triangles connecting
consecutive points in each scanline, and corresponding points
in consecutive scanlines.

1.2 Overview

In this paper, we propose a static mesh reconstruction method
considering moving objects based on merging two scans col-
lected at same time period from two 2D laser rangers. Sen-
sor meshes (Boussaha et al., 2018) are generated from the two
scans, with the difference that we store the optical center posi-
tions for each mesh vertex which will be mandatory for the sub-
sequent visibility analysis. This visibility analysis detects mov-
ing objects as volumetric inconsistencies by ray tracing both
within the same scan and between the two scans. A boolean op-
timization produces a mosaic of the two meshes by maximizing
surface coverage and minimizing seam line length while forbid-
ding overlaps. Finally, the resulting mesh pieces are stitched.

Figure 2. Panoramic image of the experimentation scene.

The paper is structured as follows: Section 2 presents the dataset
and scanned area. Details of the method are presented in Sec-
tion 3. Results and analysis are provided in Section 4. Finally,
conclusions are drawn and perspectives proposed in Section 5.

2. DATASET

The dataset used in this paper is acquired with a Navvis M3 trol-
ley (Marcus, Georg, 2017), which is mainly for indoor mobile
mapping. This platform integrates an IMU, three HOKUYO
UST-10LX 2D Lidar rangers and six cameras allowing to cre-
ate panoramic images of the surrounding scene as illustrated on
Figure 2. One of the laser rangers is mounted horizontally to
allow for 2D Lidar based simultaneous localization and map-
ping(SLAM). The other two are mounted vertically, one on the
left and the other on the right of the trolley so we will identify
them as “Left” and “Right” Lidars respectively. For the scene
shown in Figure 2, the point cloud is visualized in Figure 3.

The intrinsic parameters of the Lidar sensors are given in (Hokuyo,
2019). The intrinsic and relative extrinsic parameters are ob-
tained from calibration, and pose parameters can be obtained
from the Navvis system. As shown in Figure 4, the trajectory
of the system is not a straight line, and it includes rotations
in horizon plane during scanning, consequently some areas are
scanned twice by the same Lidar. In the experiment, consid-
ering the computation speed and device memory, the dataset is
divided into two blocks shown in Figure 4.
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Figure 3. The point cloud of the experimentation scene. Points
from left sensor are in , from right are in , and added virtual
points are in .

Figure 4. Trajectory of the trolley and blocks division.

3. METHOD

There are four steps in our pipeline shown in Figure 1: sensor
mesh generation including pre-processing(cf Section 3.1) and
mesh generation(cf Section 3.2), moving objects detection and
removal introduced in Section 3.3, triangle selection using a
boolean optimization, detail is in Section 3.4.1, and mesh pieces
stitching is in Section 3.4.2 respectively.

3.1 Pre-Processing

The HOKUYO UST-10LX Lidar scans an angular sector of
270◦ such that it has a 90◦ blind angle, usually oriented to-
wards the ground as illustrated in Figure 5. In order to fill this
blind angle, some virtual points are added by intersecting lines
sampling the blind angle and the ground plane. Considering the
platform is mainly for indoor mobile mapping using 2D based
SLAM(Marcus, Georg, 2017), the ground plane is the z = 0
plane for the platform. The distance of the lidar sensors to the
plane and angle relative to the plane are fixed by the design of
the trolley, the ground plane is at a constant position in the Lidar
scans. The blind angle is divided into two parts symmetrically,
only the last scan length r is near to the hypothetical length,
points are added in the half of the blind sector, as the red points
are added shown in Figure 3.

Then, in order to reduce the noise level, smooth filter is consid-
ered. Whole mesh based smooth filter maybe better than scan
line based method, but scan line based smooth is fast. We rely
on the prior that indoor environment often presents piecewise
flat surfaces by using a Douglas-Peucker algorithm (Wu, Mar-
quez, 2003) to smooth the scan line. Douglas-Peucker creates
a polygonal approximation of the points along the scanline on
which the input points are projected along their ray, as shown
in Figure 6.

Figure 5. Blind angle of the Lidar (yellow) and virtual comple-
tion.

Figure 6. Douglas-Peucker smoothing: smoothed points (red) re-
sult from the projection of the input points (black) on a polygonal
approximation of the scanline (green) for the laser scan.

3.2 Sensor Mesh

In planar Lidars such as the HOKUYO UST-10LX, the laser
beam is directed at a rotating mirror such that the reflected beam
rotates in a plane. Points are acquired in order at a constant sam-
pling rate, such that each point have two natural neighbors, the
points acquired just before and just after. Moreover, the angle
of the beam can be accessed for each point, such that we can
define four additional neighbors for each point: the points with
the beam angle just over and under his own beam angle in the
preceding and following lines. These 6 neighbors allow to cre-
ate 6 triangles defining the sensor mesh, as explained in more
details in (Boussaha et al., 2018). Elongated triangles appear-
ing on objects borders (depth discontinuities) can be filtered out
based on simple geometric rules such as maximum edge length
or circumradius, such that the sensor mesh can have holes. Sen-
sor mesh of block 2(cf Figure 4) is shown in Figure 7.

3.3 Moving Objects Analysis

Moving objects are present in the Lidar scans thus in the sensor
mesh. We propose to detect them through a visibility analysis
as in (Xiao et al., 2015) for instance. Because a ray indicate
free space, if it intersects a sensor mesh triangle, either from
the other mesh or from the same mesh but acquired at another
time, then the intersected triangle belongs to a part of the scene
that has changed, this is considered moving in this situation.

As shown in Figure 8, to make the inconsistent situations more
clear, a virtually visibility analysis in 2D is performed. Fig-
ure 8(a) shows the two sensor meshes with visibility informa-
tion. Note that mesh1 has two different sight vectors mean-
ing the scanner has scanned the same part of the scene twice
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Figure 7. A sensor mesh from the left laser sensor. There are
holes in specular reflection areas(glass and metal).

(a) Input of the visibility analysis: two sensor meshes (in
dark blue and green) with visibility information (sight vec-
tors = rays)

(b) Output of the visibility analysis: mesh parts tagged as
inconsistent (in red for mesh1 and magenta for mesh2)

Figure 8. A 2D view (from above) of visibility analysis.

from two separate viewpoints, which special case called self-
intersection is handled by our method.

Visibility analysis consists in tagging as inconsistent the trian-
gles of each mesh that are traversed by a ray either from the
other mesh (cross-intersections) or from the same mesh (self-
intersections). Figure 8(b) illustrates the two types of inconsis-
tent areas:

1. 1 and 2 are cross-intersections (triangles from mesh1

intersected by rays from mesh2)

2. 3 is a self-intersection of mesh1

4 , 5 and 6 are not inconsistent but they are considered to
belong to the static part of the scene and will be the inputs of
the following mesh fusion. Note that 6 may be also belong to
a moving object as it is in the continuity of an inconsistent part,
but we do not have enough information to validate this (no rays
traverse it).

In our experiment, visibility analysis is performed by ray/triangle
intersection in 3D mesh. As the number of intersections to com-
pute is the product of the number of rays and of triangles which
can get huge, it is accelerated by building a AABB tree structure
in CGAL (The CGAL Project, 2018) for the triangles. In prac-
tice, when the same part of the scene is scanned multiple times,
many intersections can happen due to noise and uncertainty on
the trajectory which will generate many false alarms. Thus we
combine the visibility analysis with the distance analysis: if two
triangles are close enough (based on a distance threshold, can
be from the accuracy of the platform) and that they overlap, they
are considered consistent. In this case, the corresponding rays
are not intersected, and the consistency information is stored for
the next step.

3.4 3D Mesh Fusion

The objective of mesh fusion is to create a single mesh from all
the remaining triangles. After removing inconsistent triangles
and defining consistent ones, the remaining triangles can be in
one of two cases:

1. Single: the triangle has no corresponding triangles, which
means this part of the scene was seen only once, and by a
single sensor.

2. Redundant: the triangle has corresponding triangles either
in the other mesh, either in the same mesh (this part of the
scene has been scanned more than once by the sensors)

While single triangles should trivially be kept in the merged
mesh, some redundant triangles should be eliminated in order
to keep a single mesh layer in all the parts of the scene. This is
the aim of triangle selection.

3.4.1 Triangle Selection generalizes to 3D mesh the notion
of 2D mosaicking for images. Once the images to mosaic are
resampled in the same geometry, the remaining problem is to
decide which pixels to keep in the overlaps. This is usually done
by a labelling (one label per pixel in input images) optimization
in a way that minimizes relief displacement and radiometric dif-
ferences across seam lines (Lin et al., 2015). In 3D, the over-
laps are defined by redundant triangles, and we will also aim
at minimizing seam length, but it is not a grid labelling prob-
lem anymore as the sampling is different in the various meshes.
Thus we pose the problem as a boolean optimization with the
constraint that two overlapping triangles should not be kept to-
gether.

Considering two meshes : M1 andM2, we define the following:

• xji ∈ {0, 1} is a boolean on each triangle T i
j of mesh Mi,

indicating if the triangle is selected (1) or removed (0) in
the result. x is a vector concatenating all the xji .

• Q(T i
j ) is the quality of triangle T i

j which choice will be
discussed later.

• C is the set of all consistent pairs of triangles (from the
same mesh or not), which means they are below the dis-
tance threshold and that they overlap, as computed in the
previous step.

• Bi is the set of triangles of mesh Mi with at least one
boundary edge. For a triangle T j

i ∈ Bi, we call L(T j
i )

the length of its boundary edge(s).

• For two triangles T i
j1 , T

i
j2 of the same mesh Mi sharing an

edge, L(T i
j1 , T

i
j2) is the length of their common edge.

• XOR(x1, x2) = x1 + x2 − 2x1.x2 the exclusive OR log-
ical operator.

Then the triangle selection problem is defined as finding the
minimum of:

E(x) =−
∑
Mi

∑
T i
j
∈Mi

Q(T i
j )xji + P

∑
(T i

j
,T i′

j′
)∈C

xji .x
j′

i′

+
∑
Mi

∑
T i
j
∈Bi

L(T i
j )xji

+
∑
Mi

∑
(T i

j1
,T i

j2
)∈Ai

L(T i
j1 , T

i
j2)XOR(xj1i , x

j2
i )

(1)
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1. The first term ensures that the result has as many input
triangles as possible and encourages to select higher qual-
ity triangles when triangles overlap. Quality definition can
combine resolution and noise/uncertainty metrics. In our
case with similar noise levels, we focus on resolution with
the very simple choice Q(T i

j ) is square root of area size of
the triangle, as higher resolution means more triangles for
the same area of the scene, i.e. smaller triangle.

2. The second term forbids overlapping triangles to be se-
lected (P is a very large constant). This is easier to imple-
ment and optimize than a strict constraint with the same
result.

3. The last two terms measure boundary length as there are
two types of boundaries in the output mesh: boundaries
from the input for which the corresponding triangle is kept
and edges between a triangle kept and a triangle removed.

Note that while quality should be maximized, the other terms
(overlap and boundary length) should be minimized, explain-
ing the signs. The result of this optimization consists in a small
number of quite compact, non overlapping mesh pieces (con-
nected components) as the boundary penalty discourages creat-
ing many pieces and pieces with complex boundaries, and over-
laps are very highly penalized. These pieces are not connected
so the resulting mesh have gaps that need to be filled, which we
describe in the next section.

3.4.2 Seam Line Stitching is to create bands of triangles
to connect the mesh pieces together to recover the continuous
nature of the scene. It is performed in two steps:

(1) match boundaries between pieces: Thanks to the
halfedge data structure in CGAL (The CGAL Project, 2018),
the boundary edges of each mesh piece and their orientation
can be accessed efficiently. The boundary matching is done in a
greedy manner: we look for the closest pair of edges from sep-
arate pieces, then grow two boundaries starting at these edges
while the two boundaries are close enough. This creates a first
pair of matched piece boundaries. This process is then iterated
on the remaining edges while the pair of closest edges is close
enough. A k-d tree structure in CGAL is used to accelerate
nearest edge search.

(2) link the pairs of matched boundaries: To connect
the pairs of matched piece boundaries, we start by snapping
the vertices that are close enough to the opposite boundary to
the closest vertex. For the remaining unsnapped boundary, we
create stitching triangles by filling the hole formed by the two
matched boundaries connected at their endpoints by adapting
a standard hole filling algorithm (Liepa, 2003). This dynamic
programming algorithm needs a comparison operator “<” def-
inition which is the best between two triangles. We found that
the proposition of (Liepa, 2003) that minimizes the sum of tri-
angle area and largest dihedral angle, produces elongated trian-
gles, so we propose the following comparison operator integrat-
ing the perimeter of the triangle:

T1 < T2 ⇐⇒
µ1 < µ2 if µ1 < ε and µ2 < ε

Ω1 +
1

2

(
C1

3

)2

< Ω2 +
1

2

(
C2

3

)2

else

(2)

(a) Reference mesh. (b) Distance based result.

(c) Inter ray tracing based result. (d) Self ray tracing based result.

(e) Reference mesh. (f) Distance based result.

(g) Inter ray tracing based result.. (h) Self ray tracing based result.

Figure 9. Inconsistent object detection exhibit two types of dy-
namic object: (a),(e) is the reference mesh, (b),(c),(d) is a mov-
ing person, (f),(g),(h) is a shortly standing person. Color code:
Inconsistent , single and triangles behind inconsistent in

.

where for the triangle Ti, µi is the maximum dihedral angle
between Ti and its neighboring triangles, Ωi is the area of Ti,
andC(Ti) is the perimeter of Ti (sum of its edges lengths). This
choice favors smoothness of the reconstructed hole surface for
small dihedral angles, but acknowledges that noise maiy imply
some large dihedral angles in which case optimizing the filling
triangle shapes is prefered (the second criteria). The parameter
ε is a threshold on the dihedral angle to switch between these
two behaviors, and 90◦ is used in our experiment.

4. RESULTS AND DISCUSSION

In order to illustrate the performance of the proposed method,
we experiment it on the Navvis dataset described in Section 2.

4.1 Moving Object Detection

In the dataset, the present people may move fast or stay still for
a short time. The moving object detection is based on inconsis-
tency analysis through ray tracing and distance computation.

A focus on an inconsistent area is shown in Figure 9, there
are two type of inconsistent objects: moving object and shortly
static object. As shown in Figure 9(b), 9(c), 9(d), only the com-
bination of distance computation, inter ray tracing and self ray
tracing can recover all the moving objects without false alarms
on the static part of the scene. In Figure 9(g) and 9(h), the blue
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(a) Mesh from left sen-
sor.

(b) Mesh from right
sensor.

(c) Mesh fusion result.

Figure 10. An example of mesh fusion on triangle quality. In (a)
and (b), triangles in red rectangles are elongated. In (c), the left
mesh is in , and right mesh is in .

(a) Mesh from left sensor. (b) Mesh from right sensor.

(c) Result of triangle selection

Figure 11. An example of triangle selection. The left mesh is in
, right mesh is in .

rectangle shows self ray tracing can remove self inconsistence
objects in the single area between two meshes.

4.2 3D Mesh Fusion

There are two steps in the mesh fusion : triangle selection and
stitching. In the triangle selection, we emphasize the triangle
quality and self overlap. After triangle selection, stitching is
utilized to obtain a continuous mesh.

(1) triangle quality: Because of the different scan di-
rection of the two laser sensors, some mesh triangles can be
very large. The label optimization selects the highest quality
(=smallest) triangles, as shown in Figure 10, the high quality
triangles are selected rather than the elongated triangles in the
red rectangles due to the depth discontinuity.

(2) self overlap triangles: Some areas are scanned sev-
eral times. In the experiment shown in Figure 11, most self
overlaps occur on the ground areas: in Figure 11(a), the red
area is covered several times while in Figure 11(c), only one
layer is selected.

(3) mesh stitching: Mesh stitching is the last step to pro-
duce a continuous mesh. The gaps between mesh pieces result-

Figure 12. An example of mesh stitching. The left mesh is in
, right mesh is in , and the added triangles are in .

ing from triangle selection are filled by triangles. As shown in
Figure 12, the triangles in magenta are added to fill the gaps.
Boundary which are close enough are merged to avoid creating
very small triangles.

In our experiment, if there are no self overlaps in the mesh, all
the nodes can be labeled using QPBO method. If there is self
overlap, not all the nodes are labeled so the QPBO-I method
is used to improve the label ratio, which is slow if there are
too many unlabelled triangle nodes. After mesh stitching, a
few small holes may remain in the mesh, so the filling hole
method of (Liepa, 2003) can be used to improve visualization
and completeness.

4.3 Comparison

In order to show the effectiveness of the proposed method, re-
sults are compared with the Poisson method of (Kazhdan et
al., 2006) and the greedy triangulation reconstruction method
of (Marton et al., 2009) available in the PCL library (Rusu,
Cousins, 2011). To ease comparison, the virtual points(cf Sec-
tion 3.1) are also added to the point cloud as the input of the
Poisson and triangulation methods.

After Poisson reconstruction, the mesh can be trimmed with
density. In the greedy triangulation reconstruction, input point
cloud is smoothed using bilateral smoothing in CGAL (The
CGAL Project, 2018). The experiment shows that the Poisson
method is robust to noisy points, but points on moving objects
are different. As shown in Fig. 13(a), the result is different
along to it density. Using density, some triangles are removed,
but if there are a lot points, the triangles are remained as shown
in Figure 13(b). The origin points are coarse, even Poisson
give a rough reconstruction. And triangulation reconstruction
is sensitive to noise points, as shown in Figure 13(c), even after
smooth, the result is rough. Our method can produce a clean
mesh.

Another example is that, if a person stays static shortly, because
there are a lot points on the back, the person is reconstructed
well as shown in Figure 14(a). In our method, most part of the
points are removed.

4.4 Block Stitch

For large scale indoor reconstruction, QPBO-I method may be-
come too slow if having too many triangles. We can divide the
scene into blocks as shown in Figure 4, and use the triangle se-
lection optimization framework block by block, then stitch all
the resulting pieces as shown in Figure 15.

5. CONCLUSIONS AND FUTURE WORK

Emphasizing on moving objects removal and mesh fusion, this
paper proposes a static indoor scene reconstruction method, us-
ing visibility analysis to remove moving objects, then using
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(a) Poisson reconstruction w/o
smooth and w/o trimmer.

(b) Poisson reconstruction w/o
smooth with trimmer.

(c) triangulation reconstruction
with smooth.

(d) Our method.

Figure 13. A comparison if there is a moving person with Pois-
son reconstruction(implicit method) and triangulation reconstruc-
tion(explicit method).

boolean optimization to select the triangles and a stitching method
to fill the gaps. An important aspect of the method is that
it relies on preserving sensor information, both optical center
position for ray tracing and sensor topology for sensor mesh
generation. Sensor information is important for 3D geometry
analysis as advocated in (Xiao et al., 2015). Most 3D mesh
reconstruction methods lose the sensor information despite it
being physically significant (space is empty along the rays).
Sensor topology mesh generation is an extremely fast way to
produce a high quality mesh, but it does not cope with self over-
laps that are very frequent as soon as the acquisition platform is
moving freely, and it does not allow to integrate multiple data
sources, which is why our proposed approach is a mandatory
post-processing for such meshes. However, any reconstruction
method adapted to keep the sensor information (in fact only the
optical center position for each mesh vertex) such as the Graph-
cut method of (Labatut et al., 2009) can be used in our pipeline.
It should also be well adapted fo fusing depth maps from dense
matching, as the optical center is the same for all the points from
the same depth map, and this information is often available.

Many objects in indoor scenes are unsustainable along the time.
For example, in our experiment, only people are moving, but on
a longer time scale objects and furniture could also move. Thus
an interesting future work would be to perform a time series
analysis of several scans acquired at different times of day and
even at different dates to analyse the dynamic behavior of the
scene at various time scales.

In the optimization step, all the triangles are treated as a graph
node which does not scale up very well. If the mesh is very
large, memory and time consumption will grow quadratically.
A possible solution to this problem would be a divide and con-
queer approach where the data is divided until the block sizes
become reasonable enough to be processed at once, then the
results can be iteratively stiched.

(a) Poisson reconstruction w/o
smooth and w/o trimmer.

(b) Poisson reconstruction w/o
smooth with trimmer.

(c) triangulation reconstruction
with smooth.

(d) Our method.

Figure 14. A comparison if there is a shortly static person with
Poisson reconstruction(implicit method) and triangulation recon-
struction(explicit method).

(a) Mesh from block 1 and 2. (b) Mesh stitch result from block
1 and 2

(c) A detail of block stitch result.

Figure 15. A block stitching experiment. Block 1 is in , block
2 is in , added triangle is in .
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