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ABSTRACT: 
 
In this work, a novel automatic 3D building reconstruction approach is proposed to extract accurate LoD1 building models from 
multi-view aerial images. The proposed approach consists of three main parts. The first step is to generate digital surface models 
(DSMs) from aerial images, which is implemented with the Smart3D software and can be replaced by other open-source multi-view 
stereo (MVS) algorithms as well. The second step is to produce structured 2D building footprints using combined deep learning and 
regularization. The initial building segmentation maps are obtained by the multi-scale aggregation fully convolutional network (MA-
FCN), which takes both the images and DSM as input, through supervised learning. The initial segmentation maps are further refined 
with another segmentation maps that are derived from the DSM. After that, the contour extraction and regularization technology are 
applied to produce structured building footprints. In the last step, the elevations of the top and base of each individual building are 
reliably estimated by adopting an adaptive terrain generation approach and the neighbourhood buffer analysis. The georeferenced 
building footprint polygons and the elevations of building top and base form the watertight LoD1 building models. The qualitative 
and quantitative evaluations in Jinghai District, Tianjin, China demonstrate the robustness and effectiveness of the proposed 
approach. 
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1. INTRODUCTION 

Building is the most representative entity of a city on the Earth. 
Three-dimensional (3D) building reconstruction from overhead 
images or lasers is one of the most key tasks nowadays for 
smart city construction, urban planning, population density 
analysis, mobile telecommunication, and disaster management 
(Bulatov et al., 2014). Although fully automatic building 
reconstruction systems had been envisioned from decades past, 
there are no mature algorithms or commercial software yet up-
to-now (Xiong et al., 2015). 3D building reconstruction is still a 
challenging and unsolved task considering the complexity and 
diversity of building styles and entangled complex backgrounds 
in urban scenes. 
 
The required levels of details of the reconstructed 3D building 
models vary for different applications. Levels of Details (LoDs), 
varying from zero to four, have been a widely accepted standard 
to represent the accuracy and completeness of the reconstructed 
3D buildings (Kolbe et al., 2005). The coarsest LoD0 model is a 
2.5D digital terrain model (DTM) overlapped with an 
orthophoto image or map, while a LoD4 model has detailed 
interior structures like rooms, doors, stairs, etc.  
 
Extensive methods have been presented in previous literatures 
to generate 3D building models of different LoDs semi-
automatically or automatically, from various data sources (Kada 
and McKinley, 2009; Akmalia et al., 2014; Kedzierski and 
Fryskowska, 2014; McClune et al., 2016; Rubinowicz, 2017; 
Alidoost et al., 2019). However, fully automatic and reliable 3D 
building model reconstruction is not possible beyond LoD2 
(Tack et al., 2012; Moreira et al., 2013). Many studies require 
data that are difficult to access or go out-of-date quickly, e.g., 

2D building ground plans from cadastral datasets (He et al., 
2012; Tack et al., 2012; Sugihara et al., 2015), or data that are 
expensive, e.g. very dense LiDAR cloud with high-accurate 
georeferencing (Akmalia et al., 2014; Kedzierski and 
Fryskowska, 2014; Rubinowicz, 2017). Compared to the 
LiDAR-based or 2D building vector map assisted methods, 
there are fewer studies that started from easily accessed multi-
view aerial images. The latter is more challenging that elevation 
information and building footprints are both unavailable. 

Due to the significant advances in deep learning,  the 
convolutional neural network (CNN) based semantic 
segmentation methods have increasingly been used for building 
footprint extraction from remote sensing images in recent years 
(Huang et al., 2016; Alshehhi et al., 2017; Yuan, 2017, Wei et 
al., 2020), and shown significant advantages against traditional 
methods. Image dense matching technologies, including 
conventional and machine learning based methods (Haala et al., 
2015; Kendall et al., 2017), have also gotten development and 
can generate high-accurate digital surface models (DSMs). The 
two advanced methods provide a new chance for automatic 3D 
building reconstruction of urban scenes from multi-view remote 
sensing images directly. 
 
This work presents an automatic and robust 3D building 
modeling approach which takes the multi-view aerial images as 
input and outputs the LoD1 building models with full 
automation and high accuracy, no 2D building vector maps or 
operator intervention is required. Generally, the basic idea is to 
combine the image dense matching derived DSM and the CNN-
based building segmentation algorithm to extract the 2D 
building polygons first, and then the elevations of the base and 
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the top for each individual building are estimated by adopting 
the adaptive terrain generation approach and the neighbourhood 
buffer analysis. The located building footprints, the elevations 
of top and base form a LoD1 level building model in 3D space. 
The reconstructed 3D entities were qualitatively and 
quantitatively evaluated according to completeness and 
robustness, the effectiveness of the proposed approach was 
demonstrated. 
 

2. METHODOLOGY 

Our proposed approach can be divided into three main stages 
and the corresponding workflow is shown in Figure 1. The first 
step is generating DSM from multi-view aerial images, which 
were captured from a 5-view oblique camera, which is 
implemented with the Smart3D software in our study. It can 
also be replaced by other conventional or recent deep learning 
based algorithms. The corresponding depth maps of the down-
looking aerial images are generated as well, as the elevation 
information of each pixel on images would be used to help the 
CNN-based method in 2D building segmentation in the second 
step.  
 
The second step is to produce structured 2D building footprints. 
The multi-scale aggregation fully convolutional network (MA-
FCN) (Wei et al., 2020) is adopted to extract the initial building 
segmentation maps from the down-looking aerial images and 
the corresponding depth maps. The original MA-FCN predicts 
building segmentation maps from images by concatenating the 
feature maps from four convolution layers at different scales, 
which has been proven effective for remote sensing building 
extraction. Considering the depth maps can provide 
supplementary topographic information for further improving 
the performance of image-based building segmentation, we take 
the depth map as an extra input channel (i.e., concatenated to 
the red, green, and blue channels). 
 
The implementation process of the building segmentation is 
summarized as follows. The parameters of the MA-FCN are 
pre-trained on a large open remote sensing building dataset (Ji 
et al., 2018) firstly. Then, the parameters are adjusted by using a 
certain amount of aerial images and manually labelled building 
footprints at the study area. Note that the corresponding depth 
maps are fed into the network only at the fine adjustment and 
testing stages. 
 
After the binary building segmentation maps are produced by 
the MA-FCN, initial building contours are extracted from these 

segmentation maps and projected to the ground (DSM) with 
interior and exterior parameters for further adjustment. However, 
the elevation information provided by the image dense 
matching unavoidably contains some errors on building edges, 
the elevation of each corner point of the contours needs to be 
judged before projecting. In our work, a thresholding 
mechanism is adopted, if the elevation of the roof corner point 
is close to the ground (the difference is small than the 
predefined threshold), it would be replaced with an average 
elevation of its inward neighbourhood window. 
 
After that, the initial building segmentation result is further 
modified with another assistant building segmentation map that 
is derived by classifying the points of DSM into buildings and 
ground through the scanline method. The scanline window of 
each building is first located, which is obtained by expanding 
the building bounding box which was generated by applying the 
pre-trained Mask R-CNN (He et al., 2017). Though NVDI is 
unavailable in our study due to lack of the infrared band, the 
trained CNN from optical images can distinguish buildings 
from vegetation well and effectively eliminate the impact of tall 
vegetation. Then each pixel in the scanline window is classified 
into ground and non-ground (building) by the directional 
scanline-based terrain filtering approach (Mousa et al., 2017). 
The point with the second minimum elevation on each scanline 
is selected as the initial ground point. The lowest elevation 
value may be caused by exceptional cases, such as mismatches 
or shade, therefore the second one is selected to avoid such 
cases. After that, the remaining points are determined as ground 
points if their elevation differences with the initial ground 
points are smaller than a predefined empirical threshold.  
 
In general, the building segmentation maps from the MA-FCN 
provide more accurate building boundaries, while the assistant 
segmentation maps derived from the DSM can distinguish the 
ground regions from non-ground regions accurately but are 
often blurred at the building boundaries (due to the smoothing 
constraints during image matching). The morphological filter 
open operation is performed to remove the false building 
boundaries on the assisted segmentation maps. Then, depending 
on the assistant segmentation maps, the missing building 
regions and the misclassified ground areas in the initial 
segmentation maps are complemented and removed, 
respectively. After that, the contour extraction operation, and 
polygon regularization (Wei et al., 2020), are performed to 
produce the structured 2D building footprints. The Douglas-
Peucker (Douglas and Peucker, 1973) polygonal approximation 

 
Figure 1. The workflow of our proposed 3D building reconstruction approach. 
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method is utilized to simplify the building contours and the 
distance threshold ε is set to 0.2m in our case study. 
 
In the last step, the elevations of individual building's top and 
base are estimated by combining the DSM and the structured 
2D building footprints. The non-ground points of each 
building’s neighbourhood on the DSM, which would impact the 
correct estimation of the height of the building base, are filtered 
using a modified DTM extraction approach, we named it as 
adaptive NGPs that developed from (Mousa et al., 2017). The 
filtering window is determined adaptively by expanding the 
bounding rectangle of each individual building footprint.   
 
By applying the adaptive NGPs, a series of buffers with 
different distances from the building boundary are set up. The 
buffers are used to count the stable ground elevation surrounded 
the buildings considering possible errors in the DSM especially 
at those areas with dense buildings, shadows, or tall vegetation. 
The minimum elevation of each buffer (i.e. the elevation of the 
bin where the elevation histogram has been accumulated to the 
frequency of predefined threshold (5% in our case study) from 
low to high) is recorded and used for fitting the local terrain. 
Considering that most buildings are located on a plane or slope, 
a simple linear function is adopted to fit the local terrain. The 
base elevation of each individual building is obtained according 
to the fitted local topographic surface and the building footprint 
position. The highest elevation inside the building boundary is 
recorded as the top elevation after removing some obvious 
outliers. Combining the building footprints and the elevations of 
building top and base, the watertight LoD1 building models are 
generated. 
 

3. EXPERIMENT AND ANALYSIS 

An experimental area located in the Jinghai District, Tianjin, 
China, was chosen for evaluating our proposed approach, which 
covers an area of around 3.96 km2 and various residential and 
factory buildings. As shown in Figure 2 (left), sub-area 1 and 
sub-area 3 are used to train the MA-FCN, and the sub-area 2 
was used for accuracy verification of our proposed approach. 
The aerial images were captured from a five-view oblique 
camera-rig in April 2019 with 0.04 m GSD and a size of 
7952×5304 pixels. The DSM with a resolution of 0.2 meters 
was generated from the Smart3D software with give ground 
control points. The 3D building ground truth was manually 
edited from the OSGB surface model generated by Smart3D 
and carefully checked, as shown in Figure 2 (right).  
 
To evaluate the completeness and reliability of the reconstructed 
individual 3D building models, the evaluation criteria of the 
object-level rather than pixel-level is adopted. We took the 
precision and recall at the different 3D intersection over union 
(IOU) threshold as the final criteria. For example, the threshold 
of 3D IOU = 0.5 means when the 3D IOU between an 
individual 3D building model produced by our proposed 
approach and its corresponding ground truth model reaches or 
exceeds 50%, it was counted as a valid instance. The precision 
and recall were calculated using all reconstructed individual 
instances at a certain 3D IOU threshold, which varied from 0.5 
to 0.9. Note that 0.9 is a very rigorous threshold, for example, 
for a 10×10×10 m3 building model a maximum 0.18 m shift is 
allowed at each side to reach 0.9 IoU. Besides, we also 

calculated some intermediate criteria for comparing with other 
recent methods, including the building footprint extraction 
methods and height estimation strategies, as shown in table 1 
and table 2. 
 
Table 1 shows the performance of different 2D building 
footprint extraction methods. We compared the original MA-
FCN (Wei et al., 2020) which represents the current state-of-
the-art CNN-based building segmentation methods, the MA-
FCN+ which takes the DSM as an extra input channel, and the 
MA-FCN++, in which the DSM is used for training first and 
then for modification by producing assist building segmentation 
maps. The images and corresponding depth maps were cropped 
into 512×512 tiles before they were fed into these networks. All 
three networks shared the same training configurations, the 
Adam algorithm was used for gradient optimization, a mini-
batch contained 5 images/depth maps, and the weights were 
updated using the learning rate of 10-4. All the experiments were 
conducted in a Windows PC equipped with an Nvidia GTX 
1080 Ti 11G GPU. The performance of the DSM assisted MA-
FCN (MA-FCN+) is improved greatly compared with the 
original MA-FCN, and the modification based on the terrain 
classification approach further improves the performance of 
MA-FCN+. 
 
Table 2 shows four different building height estimation methods 
using the DSM and the ground-truth building footprints as the 
input. The multi-directional and slope dependent method (MSD) 
(Perko et al., 2015) and the original network of ground points 
(NGPs) method (Mousa et al., 2017) first generate the digital 
terrain model (DTM) and then subtract the DTM from the DSM 
to generate the normalized DSM (nDSM). Combining the 
building footprints and the nDSM, the building heights are 
obtained directly. The elevation difference model (EDM) (Zeng 
et al., 2014) estimated building heights based on neighbourhood 
analysis. Our method combines an adaptive NGPs and buffer 
analysis strategy to fit local terrain and then calculate the 
building heights. From Table 2, our method performs better 
than the other three methods on estimating the building heights. 
 
Table 3 shows the precision and recall of our proposed 3D 
building reconstruction workflow from the input aerial images. 
Our proposed approach can reach an average precision of 
0.6672 and an average recall of 0.6226 when the 3D IOU 
threshold varies from 0.5 to 0.9, which is very inspiring without 
any requirement of extra 2D map data and operator intervention.  
 
The qualitative results of the reconstructed 3D buildings are 
shown in Figure 3. We projected the facades and roofs of the 
reconstructed 3D buildings to the original aerial images with 
light yellow masks and light cyan masks respectively, to 
visualize the degree of agreement between the reconstructed 
models and the real buildings. It is observed that the masks of 
the reconstructed 3D buildings can cover the whole buildings 
accurately in most cases, indicating our method is robust and 
reliable. The tall vegetation and building shadows caused some 
inaccurate edges of buildings and several failed reconstructions 
(e.g. the one in the red dotted box of the first row, third column 
in figure 3), which need to be further improved in future work. 
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Figure 2. The digital orthophoto image of the study area (left) and the 3D building ground truth (right) which has been carefully 
edited and reviewed by the operators.  

 

Method Input Criterion 2D IOU=0.5 2D IOU=0.6 2D IOU=0.7 2D IOU=0.8 2D IOU=0.9 Average 

MA-FCN Aerial Images 
Precision 0.7134 0.6743 0.6219 0.5078 0.2614 0.5558 

Recall 0.7063 0.6676 0.6156 0.5027 0.2587 0.5502 

MA-FCN+ 
Aerial Images 

+ 
DSM 

Precision 0.8450 0.8207 0.7792 0.6779 0.4200 0.7086 

Recall 0.8097 0.7863 0.7466 0.6495 0.4024 0.6789 

MA-FCN++ 
Aerial Images 

+ 
DSM 

Precision 0.8761 0.8511 0.8102 0.7284 0.4528 0.7438 

Recall 0.8176 0.7943 0.7561 0.6797 0.4226 0.6941 

Table 1. The comparison of different building footprint extraction methods. 

 

Method Input Mean Absolute Error Standard Deviation Root Mean Squared Error 

MSD DSM+Building Polygon 0.4047 0.7387 0.7805 

NGPs DSM+Building Polygon 0.3482 0.6963 0.7130 

EDM DSM+Building Polygon 0.3699 0.6552 0.6557 

Ours DSM+Building Polygon 0.3136 0.6382 0.6433 

Table 2. The test results (in meter) of four different building height estimation methods. 

 

Method Input Criterion 3D IOU=0.5 3D IOU=0.6 3D IOU=0.7 3D IOU=0.8 3D IOU=0.9 Average 

Ours Aerial images 
Precision 0.8449 0.8108 0.7580 0.6233 0.2989 0.6672 

Recall 0.7884 0.7566 0.7073 0.5817 0.2789 0.6226 

Table 3. The performance of our proposed 3D building reconstruction method.   
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Figure 3. Samples of the reconstructed 3D buildings, which were projected on to the original aerial images. Left: the original aerial 

images, middle: the original aerial images covered with the projection masks of the building ground truth, right: the original aerial 

images covered with the reconstructed 3D building masks from our method. The light-cyan masks color the roofs and the light-

yellow masks color the facades of the buildings.

4. CONCLUSION 

This work presents a fully automatic and robust 3D building 
reconstruction workflow, which takes the multi-view aerial 
images as input and produces the accurate LoD1 3D building 
models. In summary, the proposed approach has shown a 
promising solution for 3D building reconstruction only starting 
from the aerial images, the accurate reconstruction results have 
also been demonstrated from the qualitative and quantitative 
evaluations. We also proved the intermediate results, including 
2D building footprint extraction and building height estimation, 
exceeded the other recent relevant methods. 
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