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ABSTRACT: 
 
The human body posture is rich with dynamic information that can be captured by algorithms, and many applications rely on this type of 
data (e.g., action recognition, people re-identification, human-computer interaction, industrial robotics). The recent development of smart 
cameras and affordable red-green-blue-depth (RGB-D) sensors has enabled cost-efficient estimation and tracking of human body posture. 
However, the reliability of single sensors is often insufficient due to occlusion problems, field-of-view limitations, and the limited 
measurement distances of the RGB-depth sensors. Furthermore, a large-scale real-time response is often required in certain applications, 
such as physical rehabilitation, where human actions must be detected and monitored over time, or in industries where human motion is 
monitored to maintain predictable movement flow in a shared workspace. Large-scale markerless motion-capture systems have therefore 
received extensive research attention in recent years. 
 
In this paper, we propose a real-time photogrammetric system that incorporates multithreading and a graphic process unit (GPU)-accelerated 
solution for extracting 3D human body dynamics in real-time. The system includes a stereo camera with preliminary calibration, from 
which left-view and right-view frames are loaded. Then, a dense image-matching algorithm is married with GPU acceleration to generate 
a real-time disparity map, which is further extended to a 3D map array obtained by photogrammetric processing based on the camera 
orientation parameters. The 3D body features are acquired from 2D body skeletons extracted from regional multi-person pose estimation 
(RMPE) and the corresponding 3D coordinates of each joint in the 3D map array. These 3D body features are then extracted and visualised 
in real-time by multithreading, from which human movement dynamics (e.g., moving speed, knee pressure angle) are derived. The results 
reveal that the process rate (pose frame-rate) can be 20 fps (frames per second) or above in our experiments (using two NVIDIA 2080Ti 
and two 12-core CPUs) depending on the GPU exploited by the detector, and the monitoring distance can reach 15 m with a geometric 
accuracy better than 1% of the distance. 
 
This real-time photogrammetric system is an effective real-time solution to monitor 3D human body dynamics. It uses low-cost RGB stereo 
cameras controlled by consumer GPU-enabled computers, and no other specialised hardware is required. This system has great potential 
for applications such as motion tracking, 3D body information extraction and human dynamics monitoring. 

 

1. INTRODUCTION 

Human body dynamics and posture evaluation have been an 
intensive research area for decades, in areas such as facial feature 
point-recognition algorithms (Ranjan et al., 2017; Xiong and De la 
Torre, 2013) and single- or multiple-person gesture recognition 
(Ghidoni and Munaro, 2017; Zanfir et al., 2013). Another area of 
interest is human-computer interaction (Jaimes and Sebe, 2007), 
which has been further specific to target hand keypoint recognition 
(Sridhar et al., 2013; Zimmermann and Brox, 2017). The next key 
technology integration will be posture estimation from whole-body 
data (Cao et al., 2018), and with the development of computer 
hardware technology, such as smart cameras (Carraro et al., 2016) 
and affordable RGB-depth sensors (Wu et al., 2019; Tang et al., 
2016), some researchers have switched from developing static 
human posture recognition from a single image (Shotton et al., 
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2013) to image sequence and dynamic human posture recognition 
from video (Jalal and Kim, 2014). 
 
Accelerated advances in graphic processing unit (GPU) technology 
and the advent of multithreading-capable CPUs have recently led 
to the popularity of deep learning approaches, as exemplified by 
algorithms for real-time human posture evaluation, such as mask 
regional-based convolutional neural network (R-CNN) (Abdulla, 
2017), OpenPose (Cao et al., 2018) and regional multi-person pose 
estimation (RMPE) (Fang et al., 2017). These deep learning-based 
object-detection and pose-evaluation algorithms can accurately 
obtain the 2D keypoints of human posture. RMPE, also called 
‘AlphaPose’, is the most reliable and accurate multi-person pose 
estimator, with a mean average precision (mAP) of 80+ on the 
common objects in context (COCO) dataset and can achieve 20+ 
frames per second (fps) on the fast PyTorch version (Fang et al., 
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2017), whereas the first multi-person pose estimation algorithm 
OpenPose has a mAP of almost 70+ but only achieves 
approximately 10+ fps running on the same platform (Cao et al.,  
2018). Of these, only OpenPose achieves single-person real-time 
3D human body keypoint-detection and posture estimation when 
applied to a specific stereo camera. It has a low frame rate with 
seconds of delay, which is equivalent to its 2D human keypoint 
posture-evaluation applied to a monocular camera. Additionally, 
the above algorithms have been used in some studies in RGB-depth 
sensors to obtain 3D human body keypoints for tracking (Schwarz 
et al., 2015) and indoor posture-estimation (Srivastav et al., 2018). 
However, the RGB-depth sensor is limited with respect to 
measurement distance and field-of-view, and sufficiently reliable 
only enough in for close-range real-time applications (Haggag et 
al., 2013). 
 
To improve the running frame rate and efficiency of real-time 3D 
human body keypoint-detection and posture estimation in a large-
scale real-time response, here we describe a novel real-time 
photogrammetric system that incorporates multithreading and GPU 
acceleration. This system comprises a low-cost RGB stereo-pair 
sensor deployed on a consumer GPU-enabled computer with two 
NVIDIA RTX 2080Ti graphic cards and two 12-core CPUs. The 
2D human body features are extracted by RMPE on the images 
collected by the stereo cameras and extended to 3D human 
keypoints with distance computed according to the disparity 
generated by dense image matching from the left-view and right-
view images of the stereo camera. At the same time, we use 

multithreading and GPU acceleration to accelerate and optimise the 
algorithm to achieve real-time 3D human body feature acquisition 
with nearly 20 fps in a specific video resolution. The effective 
monitoring distance can reach 15 m in the same resolution with a 
geometric accuracy of better than 1% of the actual distance. As the 
3D body skeleton information can be applied to human-movement 
monitoring and tracking, this system can simultaneously obtain the 
distance, direction and speed information of human body 
movement for various applications. 
 

2. REAL-TIME PHOTOGRAMMETRIC SYSTEM 

The real-time photogrammetric system has four threads, with each 
thread handling different tasks as an individual model, as shown in 
Figure 1. Thread 1 loads a side-by-side (SBS) RGB image from the 
camera and uses semi-global matching (SGM, Hirschmuller, 2007) 
as the dense-image matching method to generate a disparity map. 
According to the disparity of each pixel and the camera orientation 
parameters, a 3D map array with three-dimensional coordinates of 
each pixel is generated by triangulation in thread 1. An additional 
stitching image with a left-view of the SBS image and disparity 
map is simultaneously generated in the first thread and stored in a 
queue with the 3D map array and SBS image, for other thread use. 
Thread 2 reads the SBS image and 3D map array from the queue, 
extracts 2D human body features by RMPE from the left-view of 
SBS image and then extends these to 3D body-feature coordinates 
associated with the 3D map array. The 3D body features are store 
in the same queue as a list for further use. Thread 3 reads the list of 

Figure 1. Workflow of the real-time photogrammetric system with 
multithreading and graphics-processing unit (GPU) acceleration  
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3D body features from the queue and simultaneously outputs 3D 
body dynamics of moving speed and knee pressure angle. All the 
results are stored in the same queue as in the previous thread. 
Thread 4 loads all the results from the queue for visualisation, 
namely the stitching image, 3D body features, moving speed and 
knee angle. These four threads work separately and individually, 
which means that each thread does not need to wait for the other 
threads to run after its task is completed, and thus can directly 
process the next frame and other information stored in the queue.  
 
2.1 Disparity estimation and triangulation 

The disparity estimation and triangulation are processed in thread 
1, and a GPU-accelerated semi-global matching (SGM) method 
(Hernandez-Juarez et al., 2016) is applied to the real-time stereo 
estimation to obtain a disparity map. As shown in Figure 2, each 
frame of the stereo images in the rectified pipeline is captured by 
the preliminary calibrated cameras as an SBS image and saved in 
the host memory. The GPU device copies this image from the host 
memory space and splits it into left-view and right-view images, in 
preparation for dense-image matching by SGM. The features are 
extracted from the two images and used for a similarity comparison 
to generate a local-matching cost for each pixel and potential 
disparity. SGM is then used to aggregate a smoothing cost that 
considers the similarity of the neighbouring points and disparities 
along different paths, to reduce errors. In this system, the number 
of paths is set as four to lower computational consumption and to 
ensure both the quality and the performance of the real-time result. 
The disparity of each pixel is computed and a 3 × 3 median filter is 
applied to remove outliers. The resulting disparity image is copied 
back to the local host memory and stitched with the left-view image 
to form a new image array, which is then saved in the queue for 
visualisation. 
 
Triangulation is used to gauge a 3D map array of each pixel from 
the disparity. Figure 3 shows the variables used in triangulation, 
which are as follows: i) the optical centre of the left camera C1 and 
right camera C2; ii) the focal length f1 of the left camera and f2 of 
the right camera; iii) the left-image plane IP1 and the right-image 
plane IP2; and iv) the pixel points p1 and p2. For any point P of the 
object in the real world, p1 and p2 are pixel-point representations of 
P in the IP1 and IP2 images taken from the stereo cameras at C1 and 
C2 respectively. The baseline is the offset distance between the 
optical centre of cameras C1 and C2. The following formula (Eq. 
(1)) describes the geometric relation of the above triangulation 
procedure: 

 

 

  (1) 

where D represents the distance of object P in the real world,  
 b is baseline of the camera pair, 
  f is the camera focal length,  
 d is the disparity value of the corresponding pixel point,  
 (u, v) are the image plane coordinates of any pixel point,  
 (cx, cy) is the optical centre of the corresponding sensor.  

The 3D coordinates of the object in the real world in the camera 
coordinate system are represented by (xp, yp, D), with the original 
at the centre of the camera sensor. The focal length of a single 
sensor is fixed, hence the distance of different points varies solely 
based on its disparity component, where the disparity of each point 
from the left-view to the right-view images is calculated in the 
previous process. This disparity allows calculation of the actual 
distance of each pixel in the real world from the SBS images. The 
result of each pixel should therefore have 2D coordinates in the 
image plane coordinate system and 3D coordinates in the camera 
coordinate system. All these results are saved as a 3D map array in 
the queue for future use. 
 
2.2 Extraction of 3D human body features  

The 3D body feature extraction is processed in thread 2. In this 
system, we use the RMPE (AlphaPose) library as the pose estimator 
to extract and track the 2D body features of each person. This is an 
open-source CNN-based single person pose estimator (SPPE) 
method used in conventional pictorial structure models for pose 
estimation, and is particularly well-suited for real-time detection of 
RGB images. This yields a well-trained posture estimation model 
of the COCO dataset with 17 default keypoint outputs of human 
body joints, which are listed in Figure 4 with the corresponding 
order number. 
 
We adopt this well-trained RMPE model in the system to extract 
the body features of each person in the left-view image. Each body 
feature is a 2D skeleton of each person in the image, which contains 
a set of 2D joints following the human model depicted in Figure 4. 
Their relationship can be represent by the following equations (Eqs. 
(2)): 
 

 
 

 
 

(2) 

Figure 2. Dense image matching and triangulation processing  

Figure 3. Triangulation of the parallel stereo camera 
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where  is a set of human body skeletons  of k 
people detected by RMPE in the image. Each skeleton S is the set 
of 2D joints  of each person that contain 2D 
coordinates  detected on the left-view image, and m is the 
total number of body parts listed in Figure 4 We use the 2D 
coordinates of each joint as an index to search corresponding 3D 
coordinates from the 3D map array. Thus, a set of 3D body features 
of each person containing distance information is derived in this 
step and saved in the queue for use in the following step.  
 
2.3 Measurement of human movement dynamics 

A dynamic model of a 3D human body captures how body parts 
change in 3D over a small interval of time. We therefore formulate 
this problem as the geometric relationship changes of human body 
keypoints in 3D space on thread 3. We apply 3D coordinate 
information of body joints derived from the previous section on 
knee kinematics for a straightforward illustration of human 
dynamics in this system. 
 
The knee is the most affected site during walking and running 
injuries, some of which are believed to be caused by abnormal knee 
motion (Lysholm and Wiklander, 1987). Thus, 3D joint 
information is useful for performing an effective assessment of 
knee kinematics during human movement, as it reveals potential 
injuries in which knee angles play an important role. Specifically 
this involves estimation of muscle activation and investigation of 
the possible influence of different knee angles on muscle inhibition 
(Suter and Herzog, 1997). There are six essential joints in 3D body 
features that are used to formulate the knee angle computation, as 
shown in Figure 5. The calculation of knee angle is simplified to a 
geometric problem as follows (Eq (3)):  
 

  (3) 

where   represents the shortest angle between two vectors of 
knee-hip and knee-ankle as the knee angle, 

  is vector from knee to hip,
  is the vector from knee to ankle. 

The magnitude of the two vectors changes with the hip, knee and 
ankle during movement, hence the knee angle  varies on the 
basis of the 3D coordinates of the above joints. As before, all the 
results are saved in the queue for visualisation in the next section. 
 

3. EXPERIMENTAL EVAULATION 

The visualisation is an individual thread that loads all the 
information saved in the queue and displays it on the screen. Once 
the threading detects that the queue is full of the stitching map from 
thread 1, the 3D body features extended from the 2D skeleton in 
thread 2, and the knee angles computed from the 3D body features 
in thread 4, it automatically displays all of the results in a window. 
As shown in Figure 6, all the results are loaded and visualised in 
thread 4 from the queue. The stitching map is loaded as the 
background of the visualisation window. All the 3D body features 
are loaded from the queue and drawn on the left side of the 
background, according to the image-plane coordinates of each joint. 
Each joint is connected by different-coloured lines, and the distance 
information is directly displayed beside each joint. The knee angles 
of the left and right legs are also loaded from the queue and directly 
shown on the right side of the background enable for real-time 
human dynamic monitoring. The system is run on a computer 
equipped with two NVIDIA RTX 2080Ti graphics cards, 64 GB of 
RAM and two 12-core CPUs. The achievable average framerate is 
20 fps at a resolution of 1377 × 376 pixels (with each view being 
677 × 376 pixels). 
 
The maximum effective measurement distance of this system 
reaches 15 m, as assessed by a person moving back and forth from 
near to far along the direction of the optical axis of the left camera.  
The assessment result is shown in Figure 7. The system captures 
6,000 frames and records the distance value of the waist, which is 
the middle point of the left and right hips when a person moves 
away from the camera and returns along the same route. When the 
person moves to ~100 cm, the system can extract the 3D body 
features of the left and right hips and start to record their 3D 
coordinates. The distance cannot be measured when the person 
moves more than 1500 cm away, because the person becomes so 
small on the screen that the system cannot extract 2D body features. 
Therefore, the maximum measurement distance is 1570 cm, and the 
minimum distance is 111 cm. 
 
To assess the accuracy of the distance measurements achieved in 
this system over a specific resolution, we had one person stand still 

Figure 5. Geometry between knee, hip and ankle used in 
moving dynamic computation 

Figure 4. Default keypoints outputs of human body part 
in RMPE 
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in front of the camera at different distances (Figure 8) and compare 
the distance measurements with the ground truth. As shown in 
Figure 9, the system captures 100 frames of the person standing still 
in front of the camera at distances of 230, 410, 1200 and 1500 cm. 
The measurements are close to the ground truth when the person is 
230 and 410 cm away with respective root mean square errors 
(RMSEs) of 0.37 and 2.56 and accuracies of 0.16% and 0.63%. 
When the person moves to 1200 cm, the measurements begin to 
destabilise, as shown by an RMSE of 8.74 and an accuracy of 
0.73%. When the person stands 1500 cm away from the camera, the 
measurements are extremely unstable, as shown by an RMSE of 
47.88 and an accuracy of 3.2%. Therefore, this system provides an 
average geometry accuracy of better than 1% of the distance within 
an effective measurement distance of 15 m. 
 

4. CONCLUSIONS AND DISCUSSION 

The novel real-time photogrammetric system described herein 
provides a solution for 3D feature extraction of different human 
body parts and potential applications. However, 3D body features 
cannot be extracted if the person stands more than 15 m from the 
camera, because at this distance the resolution is too low for 
computing the disparity value. Furthermore, the body features 
cannot be detected, as the person becomes smaller on the screen 
with increasing distance.  
 
These problems will be solved by optimising algorithms and 
programming code, which we will undertake in future work. We 
expect that this system will be operable at high resolution to 
increase the measurement distance and geometric accuracy. It is 
suited for use on a portable integrated processing unit for 
application of real-time photogrammetry to a wider range of 
scientific fields and industries. 
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