
AN AUTOMATIC KEY-FRAME SELECTION METHOD FOR VISUAL ODOMETRY  

BASED ON THE IMPROVED PWC-NET 

Yu Chen, Li Yan *, Xiaohu Lin 

School of Geodesy and Geomatics, Wuhan Univeristy, China 

chenyuphd@whu.edu.cn, lyan@sgg.whu.edu.cnf, xhlin214@whu.edu.cn 

Commission II, WG II/5 

KEY WORDS: VO/VSLAM, key-frame selection, motion state, improved PWC-Net, attitude change. 

ABSTRACT: 

In order to quick response to the rapid changes of mobile platforms in complex situations such as speedy changing direction or camera 

shake, visual odometry/visual simultaneous localization and mapping (VO/VSLAM) always needs a high frame rate vision sensor. 

However, the high frame rate of the sensor will affect the real-time performance of the odometry. Therefore, we need to investigate 

how to make a balance between the frame rate and the pose quality of the sensor. In this paper, we propose an automatic key-frame 

method based on the improved PWC-Net for mobile platforms, which can improve the pose tracking quality of odometry, the error 

caused by dynamic blur and the global robustness. First, a two-step decomposition is used to calculate the change of inter-frame attitude, 

and then, key-frames are added by the improved PWC-Net or automatically selected based on the motion state of the vehicle predicted 

by pose change with a short time interval. To evaluate the method, we conduct extensive experiments on KITTI dataset based on 

monocular visual odometry. The results indicate that our method can keep the pose tracking quality while ensuring the real-time 

performance. 

 

1. INTRODUCTION 

With the development of unmanned aerial vehicle (UAV) 

technology, autonomous flying, high precision localization and 

mobile mapping in an unknown environment are important. 

Recently, VO/VSLAM, as an effective complement to GNSS-

challenged environments, has ushered in unprecedented 

opportunities for developments, and it has become the focus of 

research due to its advantages of good autonomy, rich visibility, 

small size and low cost (Scaramuzza et al., 2011; Fuentes-

Pacheco et al., 2012; Nistér et al., 2006; Lin et al., 2019). 

However, with unpredictable texture structure and motion blur 

continuously exist in mobile platform visual imagery and 

seriously reduce the similarity between images, accurate, stable 

and well-distributed matches are difficult to obtain, thus real-time 

VO/VSLAM and largescale structure from motion pose severe 

challenges to limited computing resources (Chen et al., 2019). 

To address this problem, appropriate key-frame selection 

strategy can help increase the accuracy and consistency of local 

motion estimation of VO/VSLAM.  

At present, many scholars have make a series of studies on key-

frame selection of VO/VSLAM, and put forward many typical 

solutions (Klein et al., 2007; Tan et al., 2013; Qin et al., 2018; 

Lin et al., 2018; Wolf., 1996; Zhuang et al., 1998; Mur-Artal et 

al., 2015; Mur-Artal et al., 2017). It can be classified into the 

following categories: 

(1). Select key-frame according to a fixed time or frame interval. 

Like parallel tracking and mapping (PTAM) (Klein et al., 2007) 

requires a high quality with tracking result when selecting key-

frames. The selected key-frame needs to meet an exact 

transformation and rotation angle. The shortest distance between 
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the camera and the nearest key point of the map makes it difficult 

to triangulate the new feature points. 

(2). Insert key-frames according to the image overlap. For 

example, robust monocular SLAM in dynamic environments 

(RD-SLAM) (Tan et al., 2013) needs to meet the following three 

conditions to select key-frames when facing each new frame: a. 

the camera position and attitude can be successfully estimated; b. 

the number of feature points extracted in the current frame should 

exceed a specific threshold; c. shared feature points in existing 

key-frames are less than a specific threshold. 

(3). Insert key-frames according to parallax. It is well known that 

the VINS-Mono (Qin et al., 2018; Lin et al., 2018) has two 

requirements when selecting key-frames: a. average parallax, if 

the average parallax of tracking feature exceeds a certain 

threshold, the frame will be regarded as a key-frame; b. tracking 

quality, if the number of tracking features is less than a certain 

threshold, the frame will be selected as a key-frame. 

(4). Insert key-frame according to the image content index (Wolf., 

1996; Zhuang et al., 1998). This type of method first establish the 

feature clustering space of the current frames, then the feature 

distance between the current frame and the next frame is 

calculated, and the key frame is selected by the feature distance 

threshold. Its calculation efficiency is high, but its accuracy is 

difficult to guarantee. 

(5). Other type. The famous ORB-SLAM (Mur-Artal et al., 2015) 

and ORB-SLAM2 (Mur-Artal et al., 2017) adopt the key-frame 

selection strategy as a survival of the fittest by inserting key-

frames as quickly as possible, which can remove later redundant 
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frames, achieve robustness in difficult scenarios and avoid 

additional costs. 

Although numerous researches have been done on key-frame 

selection of VO/VSLAM, some methods that select key-frame at 

equal distances or intervals at the same amount of time may have 

lack flexibility, other key-frame selection methods, such as image 

overlap, parallax, content indexing, marginalization and 

information entropy may consume a lot of time to repeat feature 

extraction, to match and to calculate. 

In order to make a balance between the flexibility and the real-

time performance of key-frame selection strategy, we propose a 

simple and efficient way which is different from the current 

method. Our method based on the essential matrix estimation and 

improved PWC-Net (Niklaus et al., 2018).  

 

 

 

Figure 1. The prediction result of improved PWC-Net. The first 

and second images were taken by camera. The third image is an 

intermediate image predicted by the net. 

As shown in Figure.1, the improved PWC-Net is a context-aware 

synthesis approach that warps not only the input frames but also 

their pixel-wise contextual information and uses them to 

interpolate a high-quality intermediate frame. The method first 

use a pre-trained neural network to extract per-pixel contextual 

information for input frames, then it employ a state-of-the-art 

optical flow algorithm to estimate bidirectional flow between 

them and pre-warp both input frames and their context maps. 

Finally, the method feeds the pre-warped frames and their context 

maps to a video frame synthesis neural network to produce the 

interpolated frame in a context-aware fashion. 

This algorithm predicts the motion state of the corresponding 

mobile platform by the change of attitude between frames in a 

certain interval. If the attitude change between frames exceeds 

the given threshold, then the improved PWC-Net is used to 

associate the image content of the corresponding front and back 

frames, and then the intermediate frame is filled for the odometry 

as the key-frame. This makes the key-frames denser in complex 

cases, and relatively sparse in flat areas. 

The major contributions of this study can be summarized as 

follows: 

1. In order to verify the feasibility of the method, the pyramid 

layered KLT tracking (Lucas et al., 1981), five-point method 

(Nister et al., 2004) and RANSAC (Nister et al., 2005) algorithm 

are used to calculated the inter-frame attitude by two-step 

decomposition of essential matrix; 

2. The motion state of the vehicle is predicted by the change of 

inter-frame attitude within a certain interval. The improved 

PWC-Net is automatically used to add a middle frame between 

two key-frames when the estimated attitude fails to meet the 

requirements, which enables densely selection of key-frame in 

the complex situation, and sparsely in the flat area; 

3. The effectiveness of the method is verified by public dataset 

as KITTI. 

2. MRTHODOLOGY 

2.1 The overall architecture 

For all the mobile platforms with cameras, the slighter the 

attitude of the platforms change, the higher the image overlap rate 

will be, so a sparse frame rate can meet the accuracy requirements 

of platforms attitude estimation. However, a sharp turn, uphill, 

downhill or a lateral shaking can easily force the attitude of 

platforms to change greatly, so a higher frame rate is significantly 

required to help improving the estimate of the platforms’ motion 

state. As shown in Figure 2, the attitude of a mobile platform will 

generally face several situations: a. yaw (heading) angle changes 

around the Y axis when the platform moving along the horizontal 

plane; b. pitch angle changes around the X axis when the platform 

moving uphill and downhill; c. roll angle changes around the Z 

axis when the platform facing lateral jitter occurs; d. 

combinations of three cases. 

In the article, we through two-step decomposition to get the 

change of posture angle between frames (essential matrix 

→rotation matrix →attitude angle) to predict the motion statue 

of mobile platforms in a certain time interval. If the attitude 

change between frames do not exceeds the given threshold, the 

key-frames will be selected in certain interval. If the attitude 

change between frames exceeds the given threshold, then the 

improved PWC-net is used to associate the image content of the 

corresponding front and back frames. 
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Figure 2. Schematic diagram of attitude change between frames 
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In order to select key-frames when the local motion of camera is 

consistent within a short time interval, we propose a key-frame 

select and artificial make algorithm according to the change of 

attitude angle. The proposed method can be summarized in 

Algorithm 1 and Figure 3. 

Algorithm 1 An Automatic Key-Frame Selection Method for 

Visual Odometry. 

Input: Sequence images or videos. 

Output: local motion state estimation of camera, key-frames 

sequence F. 

1: Read sequence images 𝑓1, 𝑓2, … , 𝑓𝑖  or videos and 

preprocessing. 

2: Initialize the key-frames sequence F: the first frame image 

and the second frame image are separately stored into F, and 

tracking the next frame, if fails, the adjacent two frames are 

sequentially selected and stored into F. 

3: KLT tracking: for new frame 𝑓𝑖 , 𝑖 > 3 , using FAST 

algorithm to detect feature points in 𝑓𝑖 , then tracking these 

feature points in 𝑓𝑖+1; if the number of feature points tracked 

is less than a certain threshold, redetect the feature points in 

𝑓𝑖, and tracking corresponding feature points in 𝑓𝑖+1 to obtain 

corresponding feature point pairs between frames. 

4: For the feature point pairs in step3, Nister’s five-point 

method and the RANSAC algorithm are used to calculate the 

essential matrix 𝐸𝑖. 

5: The essential matrix 𝐸𝑖  is decomposed into a rotation 

matrix 𝑅𝑖 and a translation vector 𝑡𝑖. 

6: Determine whether the rotation matrix 𝑅𝑖  is nonsingular 

and the translation vector 𝑡𝑖 is small, if not, return to step 3. 

7: Decompose the rotation matrix 𝑅𝑖 into pitch angle α along 

the 𝑋 axis, heading angle 𝛽 along the 𝑌 axis, and roll angle γ 

along the 𝑍 axis. 

8: If α < 𝑚𝛼||𝛽 < 𝑚𝛽||𝛾 < 𝑚𝛾 , then 𝐹 ← 𝑓𝑛𝑒𝑡 ← 𝑓𝑖 , where 

𝑚𝛼 , 𝑚𝛽 , 𝑚𝛾 are thresholds of attitude angle change, 𝐹 is the 

key-frame sequence, 𝑓𝑛𝑒𝑡  is the key-frame that made by the 

improved PWC-net between 𝑓𝑖−1  and 𝑓𝑖 , 𝑖 = 1,2, … , 𝑛  (𝑛  is 

the number of frames), go to step 3; otherwise 𝐹 ← 𝑓𝑖 ← 𝑓𝑖
𝑘 , 

(𝑘 is the number of maximum interval frames, less than half 

of the frame rate in this paper),where 𝑘 = 1 and 𝑖 = 1,2, … , 𝑛, 

go to step 3. 

9: Return local motion state estimation of camera and key-

frame sequence 𝐹. 
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Figure 3. The flow of key-frame selection method 
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Figure 4. The flow of the improved PWC-Net 

2.2 Two-step decomposition 

If the two sets of same image coordinate points corresponding to 

frames 𝐹𝑝 and 𝐹𝑞  in two given space as 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} and 

𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} , respectively, and the frame 𝐹𝑝  coincides 

with the frame 𝐹𝑞 after rotation and translation of the elements 

with external orientation (𝑅, 𝑡), which can be expressed as: 

𝑄 = 𝑅𝑃 + 𝑡 (1) 

Where 𝑅 = [

𝑟00 𝑟01 𝑟02

𝑟10 𝑟11 𝑟12

𝑟20 𝑟21 𝑟22

], 𝑅 ∗ 𝑅𝑇 = 𝐼, det(𝑅) = 1. 

This group of Euler angles, pitch angle, yaw angle and row angle, 

can describe the motion state of the mobile platform, also known 

as the attitude angle. Assuming that the attitude angle of the 

platform rotating on three coordinate axes 𝑋, 𝑌 and 𝑍 is divided 

as pitch angle α, yaw angle β and roll angle γ, the calculation 

formula of direction cosine matrix (DCM) 𝑅 is as follows: 

𝑅(𝛼, 𝛽, 𝛾) = 𝑅𝑧(𝛾)𝑅𝑦(𝛽)𝑅𝑥(𝛼) 

= [

𝑐𝛽𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾 𝑠𝛼𝑠𝛾 + 𝑐𝛼𝑠𝛽𝑐𝛾

𝑐𝛽𝑠𝛾 𝑐𝛼𝑐𝛾 + 𝑠𝛼𝑠𝛽𝑠𝛾 𝑐𝛼𝑠𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾

−𝑠𝛽 𝑠𝛼𝑐𝛽 𝑐𝛼𝑐𝛽

]         (2) 
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The pitch angle and roll angle cannot be divided after the heading 

angle is determined, so it can be assumed that these two angles 

are influenced and determined by each other. Generally, if the 

roll angle is assumed to be zero, the attitude angle can be 

expressed as follows: 

                               {

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛(−𝑟12, 𝑟11)

𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛(−𝑟20)

𝛾 = 0
                           (3) 

2.3 Improved PWC-Net (Niklaus et al., 2018) 

The goal of the improved PWC-Net is to generate an intermediate 

frame 𝑓�̂� between the given two consecutive video frames 𝑓1 and 

𝑓2. The improved PWC-Net runs in three stages that is illustrated 

in Figure 4. The method first estimates the bidirectional optical 

flow between  𝑓1 and 𝑓2 and extracts the pixel-level context map. 

Then the input frame and its context mapping are distorted 

according to the optical flow.  The method final inputs them into 

a deep frame to synthesize neural networks to generate 

intermediate frame image. 

The method estimates the bidirectional optical flow 𝐹1→2  and 

𝐹2→1 between the two frames using the recent PWC-Net method 

(Sun et al., 2018), which combines warpage and cost volumes. 

The method also uses multi-scale feature pyramid, so it performs 

well in standard benchmark test and has high calculation 

efficiency. 
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Figure 5. Building block of the frame synthesis neural network 

in Figure 4, adapted from the GridNet architecture. 

As shown in Figure 5, the method modifies the horizontal and 

vertical connections, so a GridNet can learns how information at 

different scales should be combined on its own, making it well-

suited for pixel-wise problems where global low-resolution 

information guides local high-resolution predictions. 

3. EXPERIMENTAL RESULTS AND ANALYZES 

In this section, description of datasets, implementation details 

and experimental results are provided. 

3.1 Description of datasets 

KITTI datasets:  In order to evaluate the performance of our 

key-frame selection method proposed in this paper, the KITTI 

dataset experiments were carried out respectively. The data 

collection environment incudes urban areas and suburbs. 

 

 

Figure 6. Examples of city and suburb scene in the KITTI dataset 

3.2 Implementation details 

In terms of threshold setting, in order to ensure that the KLT 

tracking is not lost and the motion state of the vehicle is 

accurately recovered, the threshold of the inter-frame attitude 

angle change and the interval step size should be smaller. The 

change of the inter-frame attitude angle and the interval step size 

are usually determined by the running speed of the vehicle and 

the camera frame rate. Therefore, they are used as the basis for 

selecting the threshold of attitude angle change and the interval 

step size when performing key-frame selection. We implemented 

our approach using PyTorch with improved PWC-Net. We have 

carried out our experiments with an Intel® Core™ i9-8950HK 

(2.90GHz) and 32GB RAM. 

3.3 Experimental results and analyses 

3.3.1 Analysis of the intermediate frames make by improved 

PWC-Net. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The experimental result of road scene. (a) and (c) are 

the input frames captured by KITTI. (b) is the intermediate frame 

make by improved PWC-Net. 
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(a) 

 
(b) 

 
(c) 

Figure 8. The experimental result of woodland scene. (a) and (c) 

are the input frames captured by KITTI. (b) is the intermediate 

frame make by improved PWC-Net. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The experimental result of town scene. (a) and (c) are 

the input frames captured by KITTI. (b) is the intermediate frame 

make by improved PWC-Net. 

Figures 7 to 9 show the effect of the selected scenario on the 

network’s frame complement results under the improved PWC-

Net architecture. As shown in Figures 7-9, whether it is an open 

road, a wooded forest, or a town with a large number of buildings, 

the improved PWC-Net is very robust facing input frames 

containing different scenes. 

However, the PWC-Net still has some shortcomings when it 

automatically generating intermediate frames. For example, in 

Figure 7, on the far right side of the generated image (b), the tree 

is virtual, this is because when the sensor is acquiring images, 

due to the running speed or dynamic vibration of the mobile 

platform, or the significant change of the object shooting angle, 

the acquired image has visible object deformation at the edge of 

the image (especially the left and right sides of the image).  The 

deformation of the object makes the network unable to grasp the 

specific shape and position of the corresponding object when it 

generates intermediate image. This situation is more obvious 

when the edge objects of the current image disappear in the next 

frame, such as the car on the left of Figure 8 and the stone pillar 

on the left of Figure 9. So in the future research, we will focus on 

the improved PWC-Net structure, hoping to solve or improve the 

corresponding problems. 

3.3.2 Analysis of visual odometery trajectory prediction 

results 

 
Figure 10. The experimental result of full trajectory of KITTI 

datasets. 

As shown in Figure 10, the result of the improved PWC-Net 

based key-frame selection strategy are compared with the 

ground-truth. The red trajectory is made according to the 

groundtruth and the blue trajectory is the running result of our 

algorithm. As can be seen from the Figure 10, the trajectory shape 

of the experimental results in this paper is complete, and the 

radian prediction when turning basically conforms to the actual 

trajectory given by the true value. The blue trajectory did not 

form an ideal closed loop in the end, mainly due to the 

accumulation of errors generated during each turn. However, it 

can be seen from the figure that the algorithm of this paper is 

extremely accurate when the moving receipt is driving in a 

straight line.  

 
Figure 11. The experimental result in the multi curve scene. 
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Figure 12. The experimental result in the large curve scene. 

As shown in Figure 11 and Figure 12, they are the trajectory 

prediction results made by our key-frame selection strategy when 

facing turning. It can be seen from the figures that the 

experimental results of the algorithm in this paper are acceptable 

at the turning compared with the groundtruth trajectory. This is 

because our strategy realizes the dense filling of key-frames to a 

large extent when the field of vision changes greatly in the face 

of large-scale or multiple turns. 

 
Figure 13. The experimental result in the straight scene. 

As can be seen in Figure 13, the algorithm in this paper can 

achieve better racking result when the mobile platform moving 

straight or facing right angle turn. However, the slight error after 

turning will always produce a large error accumulation after the 

long-distance straight-line movement. To some extent, the offset 

error of the algorithm in this paper is due to the use of optical 

flow method visual odometer. In the absence of inertial 

navigation information, the optical flow algorithm is difficult to 

have robust performance in the face of the change of light 

brightness and the lack of brightness feature points in a certain 

range.  

We plan to replace the optical flow visual odometer with the 

feature point visual odometer in the future research, and plan to 

focus the matching on the central area of each image.  

3.3.3 Comparison of key-frame selection method with the 

method without key-frame selection. 

From Figure 10 to Figure 13, it can be seen that the key-frame 

selection method can achieve better accuracy both in global and 

local enlargement. Correspondingly, Table 1 shows the total 

frames (TF), the number of key-frames (NKF) and time 

consuming of the proposed method with key-frame selection 

(KFS) and without KFS. 

Methods TF NKF Time(s) 

With KFS 1590 1099 280.378 

Without KFS 1590 1587 354.492 

Table 1. Comparison of key-frame selection method with the 

method without key-frame selection 

As can be seen from Table 1, the number of key-frames and time 

consuming of the proposed method with key-frame selection are 

greatly reduced compared to the method without key-frame 

selection. Proper key-frame selection can increase the accuracy 

of feature point triangulation, and then improve the local 

accuracy.  

4. CONCLUSIONS AND FUTURE DIRECTIONS 

This paper proposed an automatic key-frame selection method 

based on the improved PWC-Net for monocular visual odometry. 

In order to verify the proposed method, we conducted extensive 

experiments with KITTI datasets in complex scenarios. The 

results showed that we achieved sparsely selection of key-frame 

at the straight line area and densely at the sharp turn area. To 

evaluate the proposed method, from qualitative aspects: the 

effectiveness of the key-frame selection method is intuitively 

displayed from the comparison of the key-frame trajectories with 

different steps and reference trajectories in the global and local 

enlargement. From quantitative aspects: the relationship between 

the number of key-frames and time consuming of the experiment 

with different thresholds were counted. We draw the conclusion 

that the proposed method can greatly reduce data redundancy and 

improves the real-time performance of VO/VSLAM with 

relatively high accuracy. 

However, due to the influence of Covid-19 and the closure of 

Wuhan, many comparative experiments and data acquisition of 

this method are limited. We hope to improve the key-frame 

selection and filling strategy after returning to Wuhan University, 

change the structure of the reference neural network, and 

compare with the existing algorithm, so as to further verify the 

feasibility and effectiveness of the algorithm proposed in this 

paper.  
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