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ABSTRACT: 

Semantic segmentation is a fundamental research task in computer vision, which intends to assign a certain category to every pixel. 

Currently, most existing methods only utilize the deepest feature map for decoding, while high-level features get inevitably lost during 

the procedure of down-sampling. In the decoder section, transposed convolution or bilinear interpolation was widely used to restore 

the size of the encoded feature map; however, few optimizations are applied during up-sampling process which is detrimental to the 

performance for grouping and classification. In this work, we proposed a dual pyramids encoder-decoder deep neural network 

(DPEDNet) to tackle the above issues. The first pyramid integrated and encoded multi-resolution features through sequentially stacked 

merging, and the second pyramid decoded the features through dense atrous convolution with chained up-sampling. Without post-

processing and multi-scale testing, the proposed network has achieved state-of-the-art performances on two challenging benchmark 

image datasets for both ground and aerial view scenes. 

1. INTRODUCTION

Semantic image segmentation is a dense classification task for 

image understanding, which has many practical applications such 

as autonomous driving and augmented reality devices. Since the 

proposal of fully convolutional network (FCN) (Long et al., 

2015) has led to an end-to-end trend for semantic image 

segmentation, most of the state-of-the-art models are based on 

the FCN to implement dense classification of images. FCN-based 

architectures (Ronneberger et al., 2015; Badrinarayanan et al., 

2017; Treml et al., 2016; Jiang et al., 2019; Jiang et al., 2020) 

utilized several pooling layers to extract high-level features and 

restored the extracted feature map to original resolution through 

transposed convolution. However, this process inevitably lost 

some information during each down-sampling layer, and it is 

difficult for low-resolution feature maps to group the inline 

relationship during up-sampling.  

Therefore, a great number of strategies were proposed to solve 

this contradictory, they mainly aim at how to minimize 

information loss during down-sampling and how to effectively 

aggregate different feature maps during up-sampling. Skipping 

connection architecture (Ronneberger et al., 2015, 

Badrinarayanan et al., 2017) was first proposed to compensate 

for the output of CNNs by connecting the feature maps between 

different layers. However, the feature maps in early stage of the 

neural network contain a large amount of noise, which sharply 

reduces the accuracy during classifying objects. Some neural 

networks (e.g., FCN-DenseNet (J´egou et al., 2017) and 

DenseASPP (Yang et al., 2018) utilized the concept of DenseNet 

(Huang et al., 2017) for the purpose of maximally increasing the 

inline connection among features of different scales. However, 

dense connections brought heavy computational cost coupled 

with increasing depth of the neural network. DeepLab series 

(Chen et al., 2015, Chen et al., 2017, Chen et al., 2018a, Chen et 

al., 2018b) proposed the ASPP module to enlarge the receptive 

field while maintaining the resolution. Specifically, atrous 

convolution (Holschneideret al., 1990) with various dilation rates 

are utilized to extract features in parallel. Although this kind of 

pyramid structure is effective in multi-scale feature extraction 

and can enhance the ability to classify and group ambiguous 

objects, it only captures contextual information from the deepest 

feature map by conducting a context module after the encoding 

stage. Therefore, we hold the view that the contextual 

information in early and middle stages can be further extracted to 

enhance feature extraction. 

Summarizing above proposals, the current methods are mainly 

confronted with followed issues. 1.) Low level features in early 

or middle stages of neural networks are insufficiently utilized, 

and it leads to ambiguous classification during final outputting. 

2.) Up-sampling through transposed convolution from shallow 

resolution feature map to original resolution results in the 

difficulty of grouping the objects. 3.) Receptive field size is 

difficult to be determined in high level feature maps, i.e., using 

large kernel size can cover large scale objects but the small-scale 

objects can be hardly detected. Vice versa, utilizing small kernel 

size can benefit to decoding small scale objects but it leads to the 

challenges for grouping of large-scale objects. 

Based on above observations, the Dual Pyramids Encoder-

Decoder Network (DPEDNet) is proposed. As shown in Fig.1 (a), 

our proposed deep neural network consists of two pyramids: 

multi-resolution feature aggregation pyramid for the encoder and 

multi-scale dense atrous convolution pyramid for the decoder. 

The first pyramid fuses the neighboring feature maps in order to 

sufficiently encode the different scale features. Different from 

FCN based neural network, our proposed neural network 

employs the multi-scale merging technology, which maximizes 

the utilization rate of the features from basenet and adapts them 

to the current scene. And the other pyramid aims at enlarging the 

receptive field and decoding the final feature map with minimal 

information loss. Different from the original usage of 

DenseASPP, we employ it as the decoder. As the multi-scale 

features are encoded as one feature block, the decoder scans the 

feature block in multi-receptive fields and densely decodes the 

features from multi-scales. The chained upscaling process is 

employed to verify the multi-scale strategy and avoid the noises 

of early stage feature maps (The features are not fine-tuned but 

directly concatenated with the deconvolution layers) from using 
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skipping connection. 

 

To prove the efficiency and effectiveness of our proposed deep 

neural network, we compared the DPED network with other 

state-of-the-art methods on two common image datasets from 

both ground and aerial view - CamVid (Brostow et al., 2008) and 

Crowded mapping (Mapping Challenge). Our proposed neural 

network has obtained 60.4% mIoU in the CamVid dataset, and 

90.8% in the Crowded mapping challenge. Apart from the 

ordinary evaluation of the proposed neural network, we also 

evaluated the performance loss between RGB model and gray 

scale model. Specifically, we directly train the model with only 

gray-value image dataset to evaluate the model on RGB dataset. 

And we found that there is very limited accuracy loss on our 

model compared with training on RGB dataset, which means that 

the model shows a good ability to generalize. Our contributions 

in this paper can be summarized as follows: 

 

1. Presenting a pyramid encoding architecture through stack 

merging strategy which sufficiently utilizes the multi-

resolution features 

2. Combined with the multi-scale dense atrous convolution 

pyramid, the whole network turns into a dense encoder-

decoder structure with a denser receptive field through {3 - 

15} dense atrous pyramid decoding for dense prediction 

tasks. 

3. Evaluating the proposed network on two challenging 

benchmark datasets for both ground and aerial view image 

segmentation tasks by achieving state-of-the-art 

performances. 

 

 

2. PROPOSED NETWORK 

In this section, we elaborate the architecture and preliminary 

knowledge of our proposed deep neural network. The overall 

architecture of our proposed network is shown in Fig.1 and it 

consists of four parts, multi-resolution feature aggregation 

pyramid, residual convolution unit, chained residual pooling and 

multi-scale dense atrous convolution pyramid. 

 

2.1 Multi-resolution feature aggregation pyramid 

Currently, most deep neural networks only employ the deepest 

feature map after the encoding stage, and then use it as the sole 

input to context modules such as ASPP (Chen et al., 2018a) and 

SPP (Zhao et al., 2017). This process is not efficient enough to 

extract the dense feature for the decoding stage, and certain 

information can get lost during the encoding process. 

 

In order to improve the feature utilization and the flow of 

information, we propose a multi-resolution feature aggregation 

pyramid to merge all feature maps from different resolutions. 

Firstly, we employed the widely used ResNet (He et al., 2016a, 

He et al., 2016b) as backbone to extract initial features, and the 

backbone is pretrained in ImageNet (Russakovsky et al., 2015) 

dataset to secure improved result. Referring to the RefineNet (Lin 

et al., 2017), we use the residual convolution unit (RCU) and 

chained residual pooling (CRP) to refine the feature, which can 

greatly increase the receptive field without much extra 

computational cost, and we add batch normalization in RCU as 

well as change the pooling size of CRP to 3x3 for smoothing  

results. The Fig.1 (b) and (c) represent the detailed structure of 

RCU and CRP. 

 

As shown in Fig.1 (a), four different layers from ResNet 

backbone first go through a 1x1 convolution for input adaptation 

and followed by two RCU blocks to further refine the information, 

and CRP is used before every feature fusion step. Then, a stack 

architecture is employed to fuse every two feature maps of 

different resolution, the fusion can be expressed as the following 

formula: 

 

𝐹𝑛 = 𝑓(𝑚𝑛−1) + 𝐹𝑛−1                              (1) 

 

Figure 1. The overall structure of the proposed DPEDNet 
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Here 𝑚𝑛−1 denotes the feature map with the lower resolution, 𝑓 

is the function used to enlarge the image size by making it the 

same as feature map 𝐹𝑛−1, here we use 3x3 convolution followed 

by the transposed convolution to upsample the feature map. 

Finally, we combine these two feature maps together and 

generate a new feature map 𝐹𝑛. Once the size of the feature map 

reaches one fourth of the original input, we stop the feature fusion 

and use the final layer as input for the decoding stage. The overall 

architecture allows an effective encoding procedure, which 

sufficiently utilizes the features from different resolutions and 

outputs an encoded feature map with large resolution (i.e., the 1/4 

of the original size). 

 

2.2 Multi-scale dense atrous convolution pyramid 

To effectively decode the encoded feature map, an effective 

scale-variant decoder with large receptive field is needed, and 

here we selected the DenseASPP as decoder. To address the issue 

of limited inline connection among the scales, Yang et.al (Yang 

et al., 2018) proposed the DenseASPP which takes advantages of 

both Atrous Spatial Pyramid Pooling (Chen et al., 2018a) and 

DenseNet (Huang et al., 2017). Using the 𝐻𝑘,𝑑(𝑥) to represent an 

atrous convolution, then the general ASPP can be written as: 

 

𝑦 =  𝐻3,6(𝑥) + 𝐻3,12(𝑥) + 𝐻3,18(𝑥)+𝐻3,24(𝑥)           (2) 

 

𝑘 represents the kernel size and d denotes the dilation rate of 

atrous convolution. The neural network employed the atrous 

convolution block with the dilation ratio series {6,12,18,24}. 

Such convolutional filter has the ability to cover 122 receptive 

field, which is quite larger than ASPP (e.g., 55 in the same ratio). 

Apart from the receptive field, the dense connection among the 

different scale feature maps also allow a closer inline connection 

to further decode the multi-scale features. Therefore, a flexible 

receptive field provides a global information decoder for 

different scales’ objects, which allows the DenseASPP 

succeeding in decoding the fused feature map from various 

scales. 

 

As shown in Fig.1 (d), the DenseASPP utilizes the dense feature 

extraction pyramid to decode the feature map, and dense 

connections are employed to aggregate diverse layers with 

different dilation rates and receptive fields. The procedure can be 

summarized as follows: 

 

𝑦𝑙 = 𝐻𝑘,𝑑𝑙
([𝑦𝑙−1, 𝑦𝑙−2, … , 𝑦0])                 (3) 

 

where 𝑑𝑙  represents the dilation rate of layer l, and […] denotes 

the concatenation operation. [𝑦𝑙−1, 𝑦𝑙−2, … , 𝑦0] means the feature 

map formed by concatenating the outputs from all previous layers. 

 

After the DenseASPP, two transposed convolution layers were 

employed to upsample the output and restore the resolution to the 

same as the original input, and we termed this process as Chained 

up-sampling. Specifically, every transposed convolution is 

followed by a lightweight DenseASPP to refine the upsampled 

feature map (dilation rates 3, 6, 9 with convolution depth 32). The 

lightweight chained up-sampling step allows the neural network 

to further decode the feature maps during the de-convolution 

steps. Currently, other methods generally classify the image in 

the deeply down-sampled feature map, and the DNN recover the 

size of feature map by simple bilinear up-sampling operation. 

Through the procedure, the object boundary is hard to be 

accurately delineated. Another trend is to employ the 

deconvolution combined with skipping connection, but this 

strategy usually leads to an ambiguous output. The proposed 

chained up-sampling employed a continuous and gradual up-

scaling step. The light-weight DenseASPP effectively enlarges 

the shallow-sized feature map. The procedure avoids the noises 

from skipping connection and enables to produce the feature map 

to classify in proper resolution without information loss. Through 

our process, the decoded feature map can be further refined with 

clear boundary, and the gradually up-sampling enables to classify 

the images with better performance. In the end of our DNN, a 

softmax layer was employed to produce pixel-level segmentation 

results. Our proposed method can be regarded as two parts, the 

first pyramid encodes the features from different scales and 

densely merges them. The second pyramid decodes the encoded 

information in large receptive field. The chained up-sampling 

scale procedures enables the neural networks to adjust the 

shallow feature map to original size with gradually enlarging 

step-size. 

 

3. EXPERIMENTAL RESULTS 

To evaluate the proposed method, extensive experiments are 

implemented on CamVid and Crowded mapping challenge. We 

describe detailed experimental settings in Sec. 3.1 and present 

both qualitative and quantitative results of two datasets in Sec.3.2. 

 

3.1 Experimental Settings 

CamVid: This is a street scene dataset for autonomous driving 

applications. It contains 421 training image, 112 validation 

images and 168 test images, and all images have a resolution of 

720 x 960 with 32 semantic categories (which is distinguished 

from simple CamVid dataset with 19 classes and 360 x 480 

resolution). We use this dataset for ground view segmentation 

task. Employing very limited number of images to train the 

model in various items in complicated street scene is the major 

challenge of the CamVid test.  

Figure 2. Qualitative examples of the semantic segmentation 

on CamVid dataset 
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Crowded mapping challenge: This is an open source 

competition dataset, which contains 281,423 training images and 

60,314 validation images with 300 x 300 resolutions. There are 

two categories contained by the dataset, i.e., buildings and 

background. We use this dataset for testing aerial view images. 

As there are no open-access ground truth labels for test set, we 

utilized the validation set to serve as test set and the number of 

validation images is supposed to be large enough for objective 

evaluation. The shadow, complicated shape and changeable 

illumination situations restrict the models to obtain very 

promising accuracy in the building segmentation task. 

 

Implementation details: For fair comparison, all the 

experiments were deployed on the TensorFlow platform under 

Ubuntu OS. Our desktop uses the I7 8700 CPU with 16GB 

memory and a single GTX 1080Ti GPU. To maximize the GPU 

memory usage and fast convergence, we maximized the batch 

size as large as possible during the training. We use the Adam 

optimization with a large minibatch size 5 to make full use of the 

GPU memory and set an initial learning rate as 0.0001 with 

learning rate decay 0.995 in every 1000 steps for the two datasets.  

 

The number of training epochs is 400 for the CamVid and 10 for 

the Crowded mapping challenge. Finally, we random cropped the 

images to 256 x 256 in the Crowded mapping challenge and 512 

x 640 for the CamVid dataset. 

 

3.2 Evaluation Results on RGB Dataset 

We report the quantitative segmentation examples in Fig.2 and 

Fig.3, and the results of both ground and aerial view images have 

proven that our DPEDNet effectively captured the contextual as 

well as the detailed information. Following the common 

procedure of semantic segmentation, we reported the precision, 

recall and mean Intersection over Union (IoU). 

 

Segmentation results for ground view data are shown in Table 1. 

Our proposed DPEDNet obtained 90.7% precision, 89.5% recall, 

and 60.4% mIoU, which are the highest among all the methods. 

The high precision and recall represent that our approach detects 

most items in the challenging road scene only predicted a limited 

number of false negative samples. On figure 2, the visualization 

images show that our proposed DPEDNet enables to accurately 

detect and segment the objects in various scales, complicated 

scene and very challenging illuminate situation. This is benefitted 

by the double pyramids’ encoder-decoder architecture. The first 

pyramid allows the neural network to encode the features to adapt 

street scene. The second pyramid decodes the engaged features, 

and output by the chained decoding DenseASPP, which makes 

the network segment the objects with proper boundary. In 

addition, our model can process every image in 0.11 seconds (9.1 

FPS), which almost reaches the real-time requirement.  

Table 1. Evaluation results on the CamVid test set. 

 

Segmentation results for aerial view data are shown in Table 2. 

Our approach again achieved the leading performance. We 

obtained 91.6% precision, 91.9% recall, and 90.8% mean IoU, 

which is much superior to the second-place FCN-DenseNet. 

Fig.3 shows that the proposed network successfully segmented 

the edges of the buildings and overcame the occlusion problem 

of trees and shadow. This proves that the DPED architecture 

allows to detect and segment with large scale receptive field. 

Even the buildings are sheltered by the trees or other background 

noises, the DPED architecture enables to discover the inline 

relation among the neighbor pixels, and accurately classify the 

objects. Both the results on ground and aerial view data prove 

that our DPEDNet sufficiently extract the multi-scale 

information through the double pyramid encoder decoder 

architecture, and allows better adaption to the environment 

compared with other state-of-art methods.  

Table 2. Evaluation results on Crowded mapping challenge 

validation set. 

Method Precision (%) Recall (%) mIOU (%) 
UNet 82.9 82.3 81.2 
GCNet 83.2 82.9 82.2 

PSPNet 84.9 84.6 83.2 

DeepLabV3 85.1 84.9 83.8 

DenseASPP 86.7 87.0 85.6 

DeepLabV3+ 87.5 87.6 85.8 
RefineNet 87.2 87.3 86.2 
FCN-DenseNet 87.2 87.1 86.4 

DPEDNet 91.6 91.9 90.8 

Method Precision (%) Recall (%) mIOU (%) 
DenseASPP 84.3 82.6 44.8 
DeepLabV3 87.0 85.1 46.6 

PSPNet 86.8 85.0 52.9 

UNet 88.7 87.2 53.0 

DeepLabV3+ 88.0 86.8 53.1 
FCN-DenseNet 90.0 88.4 54.8 
GCNet 89.4 87.9 56.1 
RefineNet 90.4 89.0 57.8 

DPEDNet 90.7 89.5 60.4 

Figure 3. Qualitative examples of the segmentation results on 

Crowed mapping challenge Dataset 
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Table 3. Evaluation results on Crowded mapping challenge 

validation set with one channel image. 

 

3.3 Evaluation Results on One-Channel Dataset  

Apart from the RGB image, the single channel imagery is 

widely used as the source input in the community of remote 

sensing. Therefore, we evaluated the performance loss in the 

corresponding one channel dataset on the building 

segmentation dataset. The same parameters as the RGB dataset 

are employed in one channel evaluation. 

 

The results are shown in table 4, the models trained and tested 

by the gray scale imagery retained the same level accuracy as 

the RGB dataset. All the deep neural networks retained similar 

accuracy both in precision rate, recall rate and mIoU in the 

corresponding gray dataset. These results illustrate that the 

models trained by the gray scale features also allow effectively 

pixel-level segmentation and classification in the aerial image 

scene.  

 

One hypothesis arises that if the single channel gray-value 

image results can be transferred and benefit to the usage of 

RGB channels image. Thus, we can directly use the model 

trained by single channel dataset to test in RGB dataset. As 

shown on Table 4, the results which we have thoroughly 

checked are greatly beyond the common sense. The results do 

not have any significantly accuracy loss even directly using the 

gray scale model to test in RGB dataset for all deep neural 

networks. The results illustrated that the difference between 

using RGB and gray scale models are slight, which implies that 

they could be directly interoperated. 

 

Table 4. Evaluation results on the Crowded mapping challenge 

validation set by using the model trained by single channel 

images testing in RGB images 

Method Precision (%) Recall (%) mIOU (%) 
UNet 80.5 79.9 79.3 
GCNet 79.8 79.4 78.5 

PSPNet 82.8 82.4 80.8 

DeepLabV3 83.6 83.4 82.5 

DenseASPP 83.4 82.9 82.4 

DeepLabV3+ 85.9 85.4 84.5 
RefineNet 85.6 85.4 84.5 
FCN-DenseNet 86.3 86.1 85.5 

DPEDNet 90.4 89.6 89.1 

 

The phenomenon is surprising and different from our common 

sense. The destruction process from converting RGB channels 

to one channel imagery has unrecoverable information loss thus 

the rule of decoding the image for the two types of images 

should be different. The models trained by one channel imagery 

only learn the rule of decoding in gray scale imagery, but it has 

the strength to decode in RGB channels imagery. The reason is 

also not attributed to the basenet as the FCN-DenseNet and 

UNet have similar phenomenon.  

 

Currently, we have one hypothesis about it, i.e., if the decoding 

strength can break the dimensionality once the number of low 

dimension training dataset is adequate. However, the 

quantitative test is not suitable to be deployed as the decrease 

in accuracy is difficult to be summarized as the reason for 

accuracy reducing or because of other factors. Currently, we 

have not found the answer and it is good to open the discussion 

to the community. 

 

4. DISCUSSION 

The proposed DPED network has proved its benefits in the two 

public and challenging benchmark datasets (i.e. one of them 

features a large class number but with limited training samples, 

another one only has binary classification but with sufficient 

training samples) compared with state-of-art deep neural 

networks. The DPED network employed multi-resolution feature 

aggregation pyramid to densely and maximally utilize the image 

samples. Then, the encoded feature map is decoded by the 

DenseASPP which enlarged the receptive field in {3, 6, 9 …15} 

dilated convolution to enable the detection in the street view 

scene, and the chained upscale strategy allows gradual up-

sampling operation to avoid the information loss and ambiguous 

Method Precision (%) Recall (%) mIOU (%) 
UNet 82.9 82.4 81.1 
GCNet 83.2 83.1 82.2 

PSPNet 84.9 84.5 83.1 

DeepLabV3 85.0 84.5 83.8 

DenseASPP 86.6 85.9 85.5 

DeepLabV3+ 87.4 87.2 85.7 
RefineNet 87.2 86.5 86.2 
FCN-DenseNet 87.1 87.2 86.3 

DPEDNet 91.5 91.2 90.8 

Figure 4. Qualitative examples of the segmentation results on 

Crowed mapping challenge dataset with single channel images 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-605-2020 | © Authors 2020. CC BY 4.0 License.

 
609



 

classification caused by deconvolution from shallow size to large 

size feature map. 

 

The results also support our opinions. In the street view scene 

imagery (CamVid), the DPED obtained 60.9% MaP which 

outperformed another multi-scale encoder (RefineNet) by 2.6 %. 

The result illustrates that our proposed method has the strength 

on maximally utilizing the features, which allows it to segment 

and classify the scene with limited number of training samples. It 

also obtained 90.8% MIoU for the crowdedAI dataset, and 

surpassed the second one by 4.5%. The DenseASPP and chained 

up-sampling strategy also contributed to allowing the DPED 

network to decode the image in large receptive fields which is 

shown in the crowdedAi building detection. It helps our DPED 

network to segment the objects by overcoming shadows, 

occlusions etc, due to the fact that the two architectures could 

enhance the inline relationship among the pixels. The overall 

architecture makes our DPED network to become a competitive 

neural network toward semantic segmentation. 

 

 

5. CONCLUSION  

In this paper, we proposed the DPEDNet which integrates multi-

resolution feature aggregation from multi-scale feature extraction 

with contextual decoding capacity from DenseASPP, which 

allows the neural network to sufficiently utilize the features from 

multi-layer convolution with limited information loss. We have 

demonstrated the effectiveness of our model by carrying out 

comprehensive experiments on both ground view and aerial view 

image to perform the semantic segmentation task, and the 

proposed DPEDNet achieved remarkable results on two 

challenging benchmark datasets.  
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