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ABSTRACT: 

This paper is devoted to the problem of image semantic segmentation for machine vision system of off-road autonomous robotic 

vehicle. Most modern convolutional neural networks require large computing resources that go beyond the capabilities of many robotic 

platforms. Therefore, the main drawback of such models is extremely high complexity of the convolutional neural network used, 

whereas tasks in real applications must be performed on devices with limited resources in real-time. This paper focuses on the practical 

application of modern lightweight architectures as applied to the task of semantic segmentation on mobile robotic systems. The article 

discusses backbones based on ResNet18, ResNet34, MobileNetV2, ShuffleNetV2, EfficientNet-B0 and decoders based on U-Net and 

DeepLabV3 as well as additional components that can increase the accuracy of segmentation and reduce the inference time. In this 

paper we propose a model using ResNet34 and DeepLabV3 decoding with Squeeze & Excitation blocks that was optimal in terms of 

inference time and accuracy. We also demonstrate our off-road dataset and simulated dataset for semantic segmentation. Furthermore, 

we present that using pre-trained weights on simulated dataset achieves to increase 2.7% mIoU on our off-road dataset compared pre-

trained weights on the Cityscapes. Moreover, we achieve 75.6% mIoU on the Cityscapes validation set and 85.2% mIoU on our off-

road validation set with a speed of 37 FPS for a 1,024×1,024 input on one NVIDIA GeForce RTX 2080 card using NVIDIA TensorRT. 

 

 

1. INTRODUCTION 

Reliable and stable semantic model of the surrounding scene, 

detection of objects and all kinds of obstacles that may appear in 

the path of an autonomous car is a difficult task for any machine 

vision system. 

 

Object detection is a two-step approach. At first, we need to 

localize the instances of interest in the image, then to classify 

them. Using deep convolutional neural networks, we can build a 

bounding box for each object in the image. However, this 

approach does not convey the exact shape of the object and does 

not consider the entire context of the image because the bounding 

boxes are rectangular. Therefore, object detection does not 

provide a complete understanding of the surrounding scene. 

 

Semantic segmentation is essentially a pixel-by-pixel 

classification, so it gives a more detailed view of the shape of 

objects in an image and provides a much more complete 

understanding of the surrounding scene compared to the 

detection methods. Today we can see an increasing number of 

applications of semantic segmentation, such as autonomous 

vehicles, robotic systems and virtual reality for which an 

understanding of the scene is necessary. Image semantic 

segmentation is crucially important for the automatic control 

system of modern autonomous vehicles.  An accurate 

understanding of the surrounding scene is important for 

navigation and decision-making by control system of robotic 

platform. 

 

A vision system based on semantic segmentation algorithms is 

one of the key elements of an off-road autonomous robotic 

vehicle. Its characteristics largely determine the efficiency of the 

robotic complex, as it directly affects such problems as 

recognition of the underlying surface type, calculation of patency 

map, accuracy of detection, recognition and tracking of objects 

and obstacles. The imposition of semantic segmentation on a 

three-dimensional model or point cloud gives us the class of each 

point and adjust the patency map of the robotic vehicle. 

Currently, the task of semantic segmentation is being generally 

solved by using convolutional neural networks, which can take 

an image of arbitrary size as an input and output an appropriate 

predict. New methods that are based on deep convolution neural 

networks significantly outperform old methods, based on 

clustering, histogram and color, compression, edge detection, etc. 

 

2. RESEARCH OVERVIEW 

2.1 Lightweight backbones 

In (Kaiming He et al., 2015) there was presented ResNet, which 

was able to solve the problem of a vanishing gradient in the 

process of training deep neural networks by adding shortcut 

connections. Scientists were given a way to train deeper neural 

networks than was previously possible. The authors in numerous 

experiments demonstrated the possibility of effective training of 

deep neural networks. The results obtained at various 

competitions made ResNet one of the most popular architectures 

for solving various problems of computer vision. MobileNetV2 

(Mark Sandler et al., 2018) was designed specifically for mobile 

devices. The authors sought to create a model that would provide 

high accuracy with a minimum number of parameters and 

FLOPs. It was necessary to apply this model to solve various 

computer vision tasks on devices with limited resources. 

MobileNetV2 bottleneck with expansion layer block is based on 

depthwise and pointwise convolutions, which allowed authors to 

significantly reduce the number of parameters and calculations. 

In ShuffleNetV2 (Ningning Ma et al., 2018) there were added 

pointwise group convolution and channel shuffling used to 

exchange information between channels of feature maps. This 

neural network focuses on maintaining maximum accuracy with 

significant computational limitations (<200 MFLOPS), thereby 

focusing on applications for mobile phones, robots, drones, etc. 

 

In (Mingxing Tan et al., 2019) the authors created basic neural 
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Figure 1. Sample images from our off-road datasets 

 

network by doing a Neural Architecture Search then scaled it 

along different dimensions using proposed scaling. Thus, there 

were presented several models with balancing network width, 

depth, and resolution to any resource constraints with 

maintaining model efficiency – one of such CNNs was 

EfficientNet-B0.  

 

Models that are based on such neural networks allow us to solve 

the problem of semantic segmentation on devices with limited 

resources. 

 

2.2 Decoders 

Modern models that solve the problem of semantic segmentation 

are mostly based on encoder-decoder networks, which are also 

successfully used to solve many computer vision tasks such as 

object detection, pose estimation, etc. However, due to the 

presence of objects of various shapes and sizes on the image, they 

have a problem with the classification of small objects. To solve 

this problem, the architecture of the neural network DeepLabV3 

was presented in (Liang Chieh Chen et al., 2017).  As a decoder, 

Atrous Spatial Pyramid Pooling (ASPP) was developed to 

effectively increase the receptive field of feature maps by using 

dilation convolution with different dilation rate. Therefore, ASPP 

provides quality descriptors for objects of various sizes. 

 

U-Net (Olaf Ronneberger, et al., 2015) was developed especially 

for Biomedical Image Segmentation and contained two paths 

such us encoder and decoder. U-Net is an improved version of 

the simple SegNet (Vijay Badrinarayanan, et al., 2015) in which 

authors added skip connections to decoder to use encoder feature 

maps with upper levels of the convolutional neural network to 

increase accuracy.  

 

Experiments confirm the effectiveness of these decoders in 

semantic segmentation tasks 

 

2.3 Additional components 

In work (Jie Hu et al., 2017) Squeeze & Excitation block was 

presented, that could be integrated into the architecture of any 

convolutional neural network. Using this module, recalibration 

of feature maps is carried out, which increases the components of 

the strong features and reduces the components of the weak ones. 

Moreover, a slight increase in the complexity of the model is   

accompanied by a significant increase in the accuracy of 

segmentation. 

 

Image augmentation is a widely used technique for increasing the 

size and variety of datasets. Deep learning frameworks 

implement basic image transformations such as reflection, 

scaling, rotation, etc. Albumentations (A. Buslaev et al., 2018) is 

an efficient data augmentation package which designed 

specifically for image augmentation. This tool provides many 

additional transformations, such as RGBShift, ChannelShuffle, 

Blur, etc., which can be composed in complex pipelines. 

 

3. PROPOSED METHOD 

3.1 Off-road datasets 

Recently, semantic segmentation algorithms have been actively 

developed due to their application in various fields. Autonomous 

transport is one of the ways to apply these algorithms.  

 

However, most databases of images, annotated with 

segmentation masks, were collected in urban street scenes. This 

implies the presence of buildings, paved roads, sidewalks, 

pedestrians and many different vehicles. Therefore, for semantic 

off-road scene understanding we created our original dataset 

consisting of around 100,000 annotated images, in which we 

included forests, groups of trees, bushes, embankments, ravines, 

ditches, stones, fields, various types of dirt roads, buildings, 

structures and other types of obstacles. It was captured in the 

countryside at every time of the year, at different times of day, in 

different weather conditions. 

 

Subsequently, we found the terrain and lighting conditions in 

which the models predicted wrong labels, so we added more data 

for them. We defined 14 classes: hard ground, soft ground, 

building, fence, impassable vegetation, passable vegetation, sky, 

people, vehicle, water, traffic sign, pole, other obstacles and void.
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Figure 2. Proposed backbones and decoders 

 

Moreover, we created simulated off-road dataset consisting of 

3,500,000 images, around 10% of them being automatically 

annotated with segmentation masks. We used our own software 

package based on Unreal Engine 4 graphics engine that provides 

a large set of tools for creating 3D projects. “Forest terrain”, 

“hilly terrain”, “wetland terrain”, “snowy terrain” and “mountain 

landscape” scenes with different weather conditions and lighting 

settings were modelled. The resulting maps have a unique 

landscape covering an area of about 4 to 20 square kilometers. 

On each map, more than 120 routes were created by which we 

virtually drove more than 200 times having various objects and 

obstacles in the field of view of our virtual cameras. In this 

dataset we included objects of 7 classes: ground, building, 

impassable vegetation, passable vegetation, sky, water and other 

obstacles. 

 

3.2 Meta-Architecture 

Encapsulating lightweight models as a backbone architecture in 

decoders can achieve significant performance boost with a 

relatively little loss in accuracy. We propose an architecture 

(Figure 2) that can handle U-Net and DeepLabV3 as a decoder, 

inspired by works (Mennatullah Siam, et al., 2018), (Mostafa 

Gamal, et al., 2018), (Vladimir Iglovikov, et al., 2018) and (Pavel 

Yakubovskiy, 2020). 

 

We experimented with Resnet18, Resnet34, MobileNetV2, 

ShuffleNetV2 and EfficientNet-B0 backbones that demonstrated 

similar results on the ImageNet dataset. Also, we used various 

pre-trained weights for model training to compare them and 

achieve boost of accuracy of semantic segmentation. In Table 1 

we show Top-1 error percent of our backbones, achieved on 

ImageNet dataset. 

Method Top-1 error (%) 

ResNet18 30.2 

ResNet34 26.7 

MobileNetV2 28.1 

ShuffleNetV2 30.6 

EfficientNet-B0 23.7 

Table 1. Top-1 error on ImageNet 

 

We transformed encoders and decoders, trained using PyTorch, 

into ONNX format that is supported by TensorRT.  

 

Datasets were divided into train set (80%) and validation set 

(20%). We evaluate our models on simulated dataset, original off-

road dataset and Cityscapes (Cordts et.al, 2016). Intersection-

over-union (IoU) metric is used as an assessment of accuracy. 

 

4. EXPERIMENTAL RESULTS 

4.1 Training 

Firstly, we trained models on our simulated dataset that was 

created on the Unreal Engine 4 and on the Cityscapes train set to 

get pre-trained weights. 

Decoder Backbone mIoU (%) 

U-Net ResNet18 68.8 

ResNet34 70.3 

MobileNetV2 67.5 

ShuffleNetV2 67.0 

EfficientNet-B0 65.3 

DeeplabV3 ResNet18 95.2 

ResNet34 95.5 

MobileNetV2 94.5 

ShuffleNetV2 93.2 

EfficientNet-B0 90.1 

Table 2. Our simulated validation set results 

 

Pretrained Decoder Backbone mIoU (%) 

Cityscapes U-Net ResNet18 62.4 

ResNet34 63.9 

MobileNetV2 60.7 

ShuffleNetV2 57.3 

EfficientNet-B0 54.1 

DeeplabV3 ResNet18  80.8 

ResNet34 82.5 

MobileNetV2 78.1 

ShuffleNetV2 75.3 

EfficientNet-B0 72.8 

Our 

simulated 

dataset 

U-Net ResNet18 64.0 

ResNet34 66.4 

MobileNetV2 63.5 

ShuffleNetV2 59.1 

EfficientNet-B0 57.1 

DeeplabV3 ResNet18  83.3 

ResNet34 85.2 

MobileNetV2 81.0 

ShuffleNetV2 78.7 

EfficientNet-B0 74.9 

Table 3. Our off-road validation set results 
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Figure 3. Input images from our off-road datasets (a), ground-truth images for our datasets (b), result images of the proposed 

approach (c) 

 

Secondary, we used these pre-trained weights to finetune models 

on our original off-road dataset to compare results. Using the pre-

trained weights on our simulated dataset, model with backbone 

of ResNet34 and DeeplabV3 decoding increased  

2.7% mIoU compared to the pre-trained weights on the 

Cityscapes dataset (Table 3). 

 

This increase in accuracy allows us to use ResNet34 as encoder 

instead of more heavyweight backbone such as ResNet50, 

ResNet101, etc. At the same time, we improve inference time and 

get a comparable accuracy that is a distinct advantage of this 

approach. 

 

Thirdly, using pre-trained weights on our original dataset we 

finetuned models on the Cityscapes training set and tested on the 

Cityscapes validation set.  

Method mIoU (%) Time(ms) 

HRNetV2 81.1 - 

DeepLabv3 (ResNet101+ASPP) 78.5 491 

Our (ResNet34 + DeeplabV3) 75.6 157 

Table 4. Cityscapes validation set results for 2,048×1,024 input 

on PyTorch 

 

In Table 4 we show results on Cityscapes validation set, 

calculated on NVIDIA GeForce RTX 2080 Ti in PyTorch. 

Method with extractor of ResNet34 and DeepLabV3 decoder 

with SE blocks demonstrated optimal result in terms of inference 

time and accuracy on all tests. 

 

To increase the diversity of the train set, a standard set of 

techniques was used: flipping, cropping, rotating, scaling and 

their compose. Also, we used «Albumentations» (A. Buslaev et 

al., 2018) augmentation such as «Cutout», «Hue Saturation 

Value», «Random Brightness Contrast», «Random Gamma», 

«RGB Shift» to improve accuracy. 

 

At the pretraining stage, we used backbone, pre-trained on the 

ImageNet dataset, Adam optimizer, batch size = 8, learning rate 

= 0.01, which changes by cyclical learning rate politics. 

 

Final models were trained with stochastic gradient descent. As a 

result of the experiments, optimal parameters were established: 

batch size = 8, learning rate = 0.001, which decreased every 

epoch using reduce learning rate on plateau politics, momentum 

= 0.90 and Nesterov momentum update.  The models and 

learning steps were implemented in PyTorch 1.2.  

 

4.1 Inference 

The inference of neural networks is expected to have minimal 

latency, maximum throughput, optimal memory consumption 

usage and power efficiency. 
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Inference of model can be implemented using deep learning 

frameworks (Caffe, MxNet, Keras, Tensorflow, PyTorch) and 

special compiler-optimizers that rebuild the neural network 

architecture for a hardware device (CPU, GPU, NPU). PyTorch 

is an extremely useful tool for training neural networks, but it 

does not provide benefits in inference time on GPU. Therefore, 

we used compiler-optimizer NVIDIA TensorRT which performs 

optimization of a neural network for NVIDIA GPU platforms. 

This tool allows to speed up the inference time using various 

optimizations such as vertical and horizontal layer fusion, etc. 

 

TensorRT optimizes the network by combining layers and 

optimizing kernel selection for improved latency, throughput, 

power efficiency, and memory consumption. We created our own 

high-level library to perform all image processing operations 

(resizing, transposition, channel swap, etc.) on GPU. 

 

NVIDIA TensorRT takes a model of a neural network that has 

been converted from PyTorch to ONNX as an input parameter, 

and serializes engine.  

Method Time(ms) 

on 

PyTorch  

(NVIDIA 

2080 Ti) 

Time(ms) 

on 

TensorRT 

(NVIDIA 

2080, fp16) 

ResNet18 + 

DeepLabV3 

56 22 

ResNet34 + 

DeepLabV3 

85 27 

MobileNetV2 + 

DeepLabV3 

65 54 

Table 5. Inference time for 1,024×1,024 input on PyTorch and 

NVIDIA TensorRT 

 

Implementation of this model on NVIDIA GeForce RTX 2080 

using NVIDIA TensorRT requires about thrice less time to 

process in comparison with PyTorch version of this model on 

NVIDIA GeForce RTX 2080 Ti. Pre-processing and post-

processing operations are also performed on GPU. 

 

5. CONCLUSIONS 

Currently, approaches based on convolution neural networks, 

have achieved significant success in various computer vision 

tasks, such as image classification, object detection, and semantic 

segmentation. Architectures of convolution neural networks 

continue to evolve towards increasing the complexity and 

performance in terms of accuracy, but it makes them inapplicable 

to real-time semantic segmentation. In this paper we propose an 

approach that allows us to use lightweight architectures as a 

backbone and additional components for real-time solution of 

semantic segmentation problem for off-road autonomous robotic 

vehicle. Our approach provides boost of inference time and 

achieves improvement of segmentation accuracy, which makes it 

possible to run the semantic segmentation modules in real-time. 
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