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ABSTRACT:

In this paper, a solution for vehicle speed estimation using unmanned aerial videos is described. First, convolutional neural networks
and Kalman filtering using deep features are used for detecting and tracking vehicles. Then, a photogrammetric approach is
developed for estimating the three-dimensional (3D) position of the tracked vehicles on the road, which allows determining their
speed. No assumptions are made about either the 3D structure of the road (e.g., constraining it to be a planar surface) or the camera
pose (e.g., restricting it to be stationary). Therefore, this solution applies to videos acquired by a moving unmanned aerial vehicle
from complex road structures (e.g., multi-level highways). This solution is also robust to changes of viewpoint and scale, which
makes it applicable to situations where cars undergo orientation and resolution changes as observed from the sky (e.g., in
roundabouts). Experiments showed that a high detection accuracy could be achieved with an Fl-score of 94.54%. Besides, the
tracking technique performed well, with a multiple-object tracking accuracy of 89.8% at a speed of 11 frames per second on videos of

2720x1530 pixels. Vehicle positioning (and thus, speed estimation) could be performed with an average accuracy of 0.6 m.

1. INTRODUCTION

Automated traffic monitoring plays a significant role in
Intelligent ~ Transportation  Systems (ITS) and the
implementation of smart cities (Ismagilova et al., 2019; Zhu et
al., 2019). Traditional methods of traffic monitoring are based
on static sensing systems installed on stationary ground
infrastructure, such as surveillance cameras, radar sensors, and
loop detectors. With the advancements of computer vision and
artificial intelligence techniques, surveillance cameras have
gained unprecedented value for video-based traffic monitoring
(Jain et al., 2019). Applications of video-based surveillance
include vehicle re-identification (Lou et al., 2019), detecting
traffic congestion (Ke et al., 2019), measuring the speed of
vehicles (Hua et al., 2018), predicting traffic density (Chung
and Sohn, 2017), detecting accidents (Thomas et al., 2018), and
many more. While efficient, video surveillance systems are
expensive to mount and maintain and have a limited field of
view (Ke et al., 2017; Leitloff et al., 2014; Niu et al., 2018).
Video-based traffic monitoring using Unmanned Aerial
Vehicles (UAVs) is an alternate solution to stationary systems.
UAV-mounted cameras can capture videos of the traffic-flow
from various viewpoints to provide a thorough insight into road
conditions (Biswas et al., 2019; Cao et al., 2011; Li et al.,
2019).

A fundamental component of traffic monitoring is speed
estimation (Buch et al., 2011; Karim and Dehghani, 2010;
Moranduzzo and Melgani, 2014; Nemade, 2016). Speed
estimation from stationary cameras is generally a less
challenging task since the camera’s exterior orientation
parameters are fixed. However, in the case of UAV videos, the
UAYV moves continuously. Thus, one should detect not only the
movements of the cars, but also the movements of the UAV.
Besides, the movements detected in the image space must be
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transformed into displacements in the object space with a true
scale so that the estimated speeds are accurate (Costa et al.,
2020). A standard solution to this problem is to determine an
approximate image-to-object scale factor (photo scale) using
features of known length, e.g., road markings (Ke et al., 2017,
Najiya and Archana, 2018) and the approximate length of the
cars (Biswas et al., 2019; Li et al., 2019). Some studies assume
that the scene can be approximated as a planar object, whose 3D
model relative to the UAV is known (Feng et al., 2018).
Although effective most of the time, this assumption fails at
multi-level roads or the ones with considerable changes in
slope.

In this paper, we present a solution for detecting, tracking, 3D
positioning, and measuring the speed of vehicles from
unmanned aerial videos. This approach is fast and can be
applied at the video’s frame rate (up to 11 frames per second on
color videos of 2720x1530 pixels). The main differences of this
approach with the existing literature are that 1) a deep-learning
tracking-by-detection method is used to track the cars; 2)
geometric calibration of the wide-angle camera of the UAV is
performed to increase the accuracy of speed estimation; 3) no
assumptions are made about the kinematics of the UAV; 4) no
pre-assumption are made about the road structure, the road
markings or the size of the vehicles.

2. METHODOLOGY
2.1 Study area

The study area is a roundabout (Figure 1) located in Uxbrdige,
ON, Canada. This location was selected since it was not a
crowded area outside of rush hour. This way, the UAV could
get closer to the road without disobeying the regulations of
Transport Canada concerning the legal distance limit to
pedestrians. In addition, our car (equipped with a real-time
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kinematic (RTK) GNSS positioning system) could be driven in
the test area to collect some ground-truth information.

b
Figure 1. Sample frames of a video captured by the UAV as it
first looked towards East (a) and then moved around and
changed its viewpoint (b)

Roundabouts represent a challenging environment for UAV-
based vehicle tracking due to the following reasons. First, when
the traffic moves through a roundabout, the complete trajectory
of the vehicle cannot be retrieved using traditional surveillance
camera setups due to their limited field of view. Second, as a
vehicle completes its maneuver through the roundabout, its
appearance features change aggressively. An example of such
changes in the viewpoint can be noticed for a vehicle with ID
“271” in Figure 2. First, the car’s back, then its side, then its
front and again its side are observed in different frames of the
video. If the UAV also moves and re-orients itself during data
collection (as shown in Figure 1), then more severe appearance
changes are expected. Therefore, it becomes exceptionally
challenging to robustly track the vehicle and steadily re-identify
it through its entire trajectory.

Figure 2. Trajectory of a vehicle around the roundabout causing
severe changes in its appearance features

2.2 Camera calibration

The UAV used in our experiments was a DJI Phantom 4,
equipped with a camera with a 4.5-mm lens capable of
capturing 2K videos at 30 frames per second. In an offline
procedure, using the test-field of Figure 3, the camera of the
UAV was calibrated. A traditional pinhole perspective
projection model augmented with three radial distortion
coefficients, two tangential lens distortion coefficients, and two
sensor affine distortion parameters was used in a free-network
self-calibrating bundle adjustment (Shahbazi et al., 2017).

2.3 Vehicle detection and tracking in aerial videos

In this paper, our previous approach, based on deep-learning
tracking-by-detection, is applied (Wang et al., 2019). This
approach is intended to be invariant to substantial orientation
and scale variations in the videos. The detection procedure is
performed by a state-of-the-art object detector, You Only Look
Once (YOLOV3). To track the vehicles, deep appearance
features are used for vehicle re-identification, and Kalman
filtering is used for motion estimation. The focus of this paper is
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on speed estimation. A comprehensive discussion about the
performance of the applied tracking-by-detection approach can
be found in (Wang et al., 2019).

|

Figure 3. Camera calibration test-field
2.4 3D positioning and speed estimation

Assuming that a small number of well-distributed feature points
on the road have known 3D coordinates and that the 3D mesh
model of the road is available, a photogrammetric approach is
suggested for determining the 3D position of each car in the
scene. To achieve the two conditions mentioned above, first,
before starting the tracking mission, the UAV flies a grid-like
trajectory over the road. From the videos captured by the UAV
during this flight, an adequate number of frames are extracted.
Then, the frames are down-sampled to half their original sizes
and are processed through a conventional structure-from-motion
approach to generate a sparse point cloud of the road. Poisson
reconstruction is applied next to create the 3D triangulated mesh
model of the road. Amongst the sparse tie points reconstructed
during this procedure, a small number of well-distributed and
visually distinctive points are selected, and their 3D coordinates
are stored. These tie points are referred to as salient road
features.

In the first frame of the tracking video, the salient road features
are manually detected. Since these features have known 3D
coordinates, photogrammetric space resection can be applied to
determine the exterior orientation parameters (EOPs) of the first
frame. These features are then automatically tracked in the next
frames of the video using a pyramidal implementation of Lucas
Kanade feature tracking (Bouguet, 2000). Successfully tracked
features are used for re-estimating and updating the EOPs of
each frame.

Once the EOPs of a frame are known, the next step is to
determine the 3D position of the vehicles detected in that frame.
Each vehicle is detected with a rectangular bounding box. The
center of the box is considered as the point whose 3D position
relative to the road represents the location of the car. Since both
the object point (vehicle) and the camera (UAV) are moving,
the 3D position of the vehicle should be estimated only from a
single frame, i.e., stereo or multiple views are unavailable for
the conventional spatial intersection. To this end, a ray-tracing
approach is applied for directly determining the 3D position of
the car from its observation in one frame. The direction of the
ray that originates from the perspective center of the camera and
passes through the center of the car can be determined using
Equation (1).

x,»,j—cx+5x,-’j
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In Equation (1), D, ; is the direction of the ray originating from

the perspective center of frame j and passing through vehicle 7
observed in frame j. Rj is the rotation matrix from the image

space of image j to the object space. (.2 p;,,) are the

detected/tracked location of vehicle i in frame j, expressed in
the image principal coordinate system. The interior orientation
parameters (IOPs) of the camera include (¢rcy f), and

(6,.6,) are the distortion corrections that are modeled as

follows. All the distortion coefficients and the IOPs are
estimated through the calibration procedure.
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where:

2 2
nj= \/(xi,j -e) + (yi,j -cy)
ki, ky, ks : radial lens distortion parameters
Py, D, - decentering lens distortion parameters

51,8, : sensor affine distortion parameters

This ray hits one of the faces of the roads’ triangular mesh,
where the hit position defines the 3D location of the car, as
shown in Figure 4. The Optimized Collision Detection
(OPCODE) library is used to implement this ray-casting
concept (Terdiman, 2003). Given the changes in the 3D position
of a vehicle between two consecutive frames and the constant
frame rate of the camera, the speed of the vehicle can be simply
calculated.

o]

Figure 4. Concept of ray-casting to estimate the position of the
vehicles observed in a frame with known EOPs

3. EXPERIMENTS AND RESULTS
To calibrate the camera, a total of 35 images (Figure 5.a) were

captured. The test-field included 88 targets, and a total of 2660
observations were made in the calibration images. Also, 15
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independent images were captured for check purposes (Figure
5.b), where the known corners of the checkerboard were used as
checkpoints. The root-mean-square (RMS) and the standard
deviation (StD) of the re-projection errors on the checkpoints
were 0.16 and 0.08 pixels, respectively.

102
101.5
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Z(m)

100.5
100

Figure 5. Network of (a) calibration images and (b) check
images

Before the UAV started its detection-and-tracking mission, it
moved around the study area in a grid-pattern and captured
videos. Using commercial software, Pix4D Mapper Pro, a
conventional structure-from-motion technique was applied to
these videos to reconstruct a low-density point cloud (Figure
7.a). From the point cloud, a triangular mesh model was
generated using the open-source software, CloudCompare
Stereo (Figure 7.b). In our experiment, to ensure that the 3D
model of the road had a real scale, few Ground Control Points
(GCPs) were established (as shown in Figure 6), whose
coordinates were measured using RTK GNSS with an accuracy
of 3-5 cm. In general, one can argue that external distance
observations, e.g. the length of road markers, could also be used
to set the scale of the 3D model. The quality of such methods
for scale definition depends on the geometric configuration of
the external observations as well as their accuracy. To detect
and label the GCPs in images, the approach of Shahbazi et al.
(2015) was applied.
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Figure 6. Eleven GCPs established in the study area to ensure

that the road’s mesh model was generated with a correct scale

Certain features among the mapped 3D points were selected as
the salient road features. These features are denoted in Figure
7.a using blue rectangles. When tracking these features in
consecutive frames, the EOPs of the frame were updated only if
1) the features were moved more than two pixels in average; or
2) the total number of successfully tracked features fell below
five features. Otherwise, the EOPs of the previous frame were
assigned to the current frame. This condition allowed saving
considerable computational time as space resection required an
iterative, time-consuming adjustment.
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Figure 7. The 3D model of the scene reconstructed before the
tracking mission starts; a) 3D point cloud; b) 3D mesh

In total, two videos were captured for this study. Figure 8 and
Figure 9 represent the position and orientation of the UAV in
these test videos. One video was captured from approximately
40 meters above the road, and the other one was captured from
roughly 80 meters above the road. This meant the approximate
spatial resolution was 21 mm in the first video and 42 mm in the
second video. The first video was 2 minutes long, and the
second video was 14 minutes long. The videos were both
captured with a frequency of 30 frames per second. Please note
that, in Figure 8 and Figure 9, only every other 30 frames are
displayed to avoid overloading the figures.
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Figure 8. Orientation of the camera during capturing one of the
tracking videos from ~40 m above the road. The points on the
ground represent the salient road features
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Figure 9. Orientation of the camera during capturing one of the
tracking videos from ~80 m above the road

Vehicles were detected and tracked in these videos using the
technique of Section 2.3. It should be mentioned that some
frames from the low-altitude video were used in the training
dataset of YOLOV3 network. As such, the performance of the
tracking-by-detection algorithm was only evaluated on the high-
altitude video. The precision, recall and Fl-score of the
detection algorithm in the high-altitude video were 100%,
89.64% and 94.54%, respectively. This meant that no other
objects were wrongly detected as vehicles, but some vehicles
were not detected at all (false negative rate of 10.34%). The
tracking performance is presented by a measure called multiple-
object tracking accuracy (MOTA). It is the most widely used
metric that summarizes the tracking accuracy in terms of false
negatives, false positives, and ID switches (i.e., when the same
vehicle is wrongly identified as two different entities in
consecutive frames). The MOTA in the high-altitude video was
89.8%.

Figure 10.a and Figure 11.a show the trajectories of all the cars
that were visible and tracked in the test videos. From the 3D
position of each vehicle in each frame, and with the knowledge
of frames time interval (0.033 seconds), the ground speed of
each vehicle could be determined (Figure 10.b and Figure 11.b).

Speed (m/s)
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Figure 10. Position of the tracked cars observed in the low-
altitude video; a) different colors correspond to different car
IDs; b) located vehicles are colored by their speed.
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Figure 11. Position of the tracked cars observed in the high-
altitude video; a) different colors correspond to different car
IDs; b) located vehicles are colored by their speed.

To estimate the accuracy of our 3D positioning method, we held
a GNSS receiver outside the window of a car and drove around
the roundabout while the video was captured. The position of
the car was recorded every second (Figure 12). Once the video-
based position of the car was computed, we determined the
difference between the two positions (Figure 13 and Figure 14).
Since the GNSS antenna was held approximately 0.5 m below
the car roof and was also slanted, only the differences in the
horizontal plane (2D positions) were considered for accuracy
assessment. The distribution of the errors in the estimated
position of the test vehicle compared to its measured position is
presented in the histograms of Figure 15. In most cases, the
positioning error was below 1.5 m. The mean and StD of the
positioning were 0.619 m and 0.340 in the low altitude video,
and they were 0.599 m and 0.378m in the high-altitude video.
However, it should be noted that the GNSS antenna was located
beside the window while the tracking positions correspond to
the center of the car. Thus, a considerable portion of the
positioning error could be naturally related to the difference in
the location of the GNSS antenna and the car’s center.

35(m)
Figure 12. Estimated position of the test vehicle using the
proposed vision-based approach in the low-altitude video (blue)
and its measured position using real-time kinematic GNSS (red)

Distance (m)

35(m)
Figure 13. Distance of the estimated position of the test vehicle
in the low-altitude video from its measured position using RTK
GNSS; the trajectory includes two tours around the roundabout.

4. CONCLUSION

In this paper, the results of our approach for vehicle speed
estimation from unmanned aerial videos were reported. The
proposed method used the concepts of optical flow detection,
space resection, and ray casting for tracking vehicles in 3D
relative to the road structure. From the positioning results, the
vehicles’ speed could be estimated. Tracked positions in our
experiment were compared to the ground-truth data measured
via RTK GNSS positioning. The deviations of the estimated
positions from the measured ones were mostly under 1.5 meters.
While our study shows that UAVs are effective platforms for
traffic monitoring, their commercial application in this context
sounds futuristic. UAV-based traffic monitoring still faces
fundamental challenges such as regulatory restrictions, lack of
autonomy, low power endurance, and high sensitivity to
environmental conditions like strong winds.
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Figure 14. Distance between the estimated position of the test
vehicle in the high-altitude video and its measured position
using RTK GNSS; the trajectory includes seven tours around
the roundabout.
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Figure 15. Histograms of vision-based positioning errors in both
low-altitude and high-altitude videos
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