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ABSTRACT: 

 

In this paper we propose a new SLAM algorithm that is robust to the changing environment of the countryside. The hardware part 

consists of two separate machine vision cameras, joined in stereo, and can be supplemented with LiDAR, IMU and GPS. We introduce 

a method that can be used to reliably calculate the position of a vehicle in natural environments. To estimate the pose and produce a 

three-dimensional reconstruction we use a stereo camera rig, inertial measurement unit and the global positioning system. While solving 

the problem of visual odometry in outdoor scenes we faced a number of difficulties, arising from high dynamic range, as well as the 

presence of a large number of "similar elements", such as leaves, grass, trees and etc. Under these conditions, it becomes difficult to 

match feature points in image sequences. HOG-based methods, such as SIFT, SURF and others often do not obtain good matching due 

to noise, lack of a sufficient number of gradients, and the presence of identical domains. Using neighborhood-based detectors such as 

DAISY often allows to identify the correct matches, but using them is worth it too expensive. These methods are very demanding on 

the computational resources and prone to drift. We needed a method that is less expensive, but at the same time provides sufficient 

accuracy in the trajectory estimation. Direct methods, such as optical flow calculating or direct image matching allow us to map point-

to-point in these conditions with high reliability. They also have disadvantages that can be eliminated by using an IMU and modern 

algorithms. To improve the quality of the algorithms, we solve the reconstruction problem for several frames using the Levenberg-

Marquardt optimization method for bundle adjustment. Each pass optimizes frames that are directly related to the last one, we use two 

threads that perform partial and full optimization of the entire trajectory using graphs to significantly increase the performance of the 

method.

1. INTRODUCTION 

Methods of simultaneous localization and mapping use sensors 

of a very different nature to improve their quality. In particular, 

visual sensors, LiDARs, inertial measuring devices, GLONASS 

and GPS systems, and radars are used. In this paper, we consider 

using two machine vision cameras combined into stereo, IMU 

and GPS to solve the problem of SLAM. Simultaneous 

localization and three-dimensional scene reconstruction involve 

the joint solution of two subtasks: determining own position 

(odometry) and reconstructing a three-dimensional scene 

(building a spatial model). 

There are basically two classes of methods for solving the SLAM 

problem using visual sensors: feature-based and direct. 

The first one is based on matching feature-based image tracking 

and performs sparse reconstruction of three-dimensional space 

(Sparse reconstruction). The second set of methods, called direct 

methods, compares the images themselves or some of their parts 

connected by topology, allowing you to get a dense and semi-

dense reconstruction of space (Dense and Semi-dense 

reconstruction). 

Feature-based class of methods includes such implementations as 

PTAM (Klein, Murray, 2007), monoSLAM (Davison et al., 

2007), ORB-SLAM (Mur-Artal, Tardós, 2017), ProSLAM 

(Schlegel et al., 2018), OpenVSLAM (Sumikura et al., 2019) e.g. 

in Figure 1. Direct class includes, for example, DSO (Engel et al., 

2018), SVO (Forster et al., 2014), DTAM (Newcombe et al., 

2011), LSD-SLAM (Engel, 2017) can be seen in Figure 2. 

 
* Corresponding author 

 

Figure 1. Sample of ORB-SLAM. 

 

 

Figure 2. Sample of LSD-SLAM. 

 

These approaches have both advantages and disadvantages. For 

example, direct methods show good stability, although they 

require some pre-processing. They require fewer computing 

resources, but at the moment the class of these odometry methods 

is still undergoing a stage of active development and has some 

problems. Good results can be achieved by combining the 

solution of direct and indirect methods using the Kalman filter 

and other Bayesian filters (Lee et al., 2019). 
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Feature point detection and matching techniques, based on 

histograms of oriented gradients, such as SIFT (Lowe, 2004), 

SURF (Bay et al., 2008) and others often do not obtain good 

matching due to noise and insufficient number of gradients, 

presence of identical domains. Neighborhood-based feature point 

detectors such as DAISY (Tola et al., 2008) often allow to 

identify the correct matches, but using them reduces the 

algorithm speed drastically. 

Reliable solution of the SLAM problem requires joint modelling 

using a variety of methods, sensors, and probabilistic filtering 

algorithms – sensor fusion. Moreover, the science society is now 

actively researching algorithms that work with event cameras, 

which are able to increase the stability of reconstruction in 

conditions of fast movement and insufficient lighting. 

In this paper we propose a complex solution for off-road and 

countryside scene reconstruction. Our method is based on the 

following key steps: 

• Gradient-based camera auto exposure.  

• Adaptive filtering of captured images to reduce noise. 

• Fast stereo correspondence calculation 

• Using IMU measurements for sensor initial extrinsic 

• Using a semi-direct method for calculating visual 

odometry 

• Obtaining semi-dense reconstruction by using DAISY 

features descriptor or block matching algorithm 

 

2. EXPOSURE CORRECTION AND FILTERING 

During full-scale tests we almost every time encountered 

overexposed and underexposed regions within a single outdoor 

image due to high dynamic range. To overcome this issue, we use 

auto exposure control method for maximizing the number of 

image gradients, such as in (Zhang et al., 2018), but in a simpler 

way. Areas with weak gradients suffer from normally distributed 

Gaussian noise. The first thing to do is to suppress this noise, 

leaving only significant features. We use a combination of a 

median filter with Gaussian blur. This allows us to obtain 

consistent weak gradients between neighbor images without 

noise (Figure 3).  

Figure 3. Noise suppression 

 

Then, we calculate the average image intensity that we would like 

to have based on the values of weak gradients. In other words, we 

want to find an average brightness value that increases the 

contribution of weak gradients and reduces the contribution of 

strong ones. At the moment, we use a very simple linear method 

for calculating the center of mass of pixels according to the 

gradient contribution: 

 

𝐼𝑎 =
∑ 𝑓(|𝛻𝐼|)∗𝐼

∑ 𝑓(|𝛻𝐼|)
   (1) 

Here 𝐼𝑎 is the average pixel intensity of the image, and 𝑓 is the 

gradient contribution function, which has higher values on weak 

gradients, and lower values on strong ones, 𝐼 is the pixel intensity 

value.  

Undoubtedly, the quality of three-dimensional reconstruction 

directly depends on the quality of images received from the 

camera. Factors that influence the result are the length of the 

exposure time, the sensitivity of the sensor, lens distortion, 

vignetting. In order to improve the quality of the algorithm, we 

implement automatic exposure and sensitivity control 

algorithms. Unlike everyday cameras, where auto exposure is 

designed to improve the quality of human visual perception, in 

machine vision, the main quality parameter is the number of 

features in the image (Znang et al., 2017). The more differences 

(gradients) of brightness can be distinguished, the more accurate 

and high-quality the result will be achieved. 

There is a large number of methods for correcting the effects of 

brightness changes, ranging from heuristic to methods, based on 

neural networks and machine learning. High quality results are 

obtained using the camera response function. This is a function 

linking the pixel brightness and the natural logarithm of the 

exposure time of a frame We correct the exposure time based on 

the camera response function on Figure 4 (Debevec, Malik, 

2008). 

If there is not enough information about gradients, the standard 

auto-exposure method, based on the brightness distribution 

histogram, is used. 

 

Figure 4. Camera response function. 

 

After capturing images, adaptive filtering is performed to 

suppress noise in areas with small gradients. Just as in the 

previous step, the image is filtered with a median filter with a 3- 

pixel frame window, and both images are combined by the 

gradient function: 

𝐼 = 𝑓(|𝛻𝐼𝑠|) ∗ 𝐼𝑠 + (1 − 𝑓(|𝛻𝐼𝑠|)) ∗ 𝐼𝑓 (2) 

Here 𝐼 is the resulting pixel intensity, 𝑓 is the weight function of 

the gradient intensity, 𝐼𝑠 is the original image, and 𝐼𝑓 is the 

filtered value intensity. Thus, in areas with large gradients, the 

original values are used, while in places with small gradients, 

they are filtered out (Figure 5). 

Figure 5. Adaptive noise suppression  
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3. STERERO CORRESPONDENCIES 

There are many methods for pixel matching in stereo normal 

case, from simple block matching to convolution neural network 

approaches. 

A point is called a “point of interest” or an “interest point” 

(Figure 6) if there are a sufficient number of characteristics in its 

neighbourhood that make it possible to distinguish it from others 

and compare with points in another image. 

  

Figure 6. Interest Points. 

 

In frames that containe a large number of similar elements, the 

relative position of the interest points must be calculated. 

Given two images 𝐼1 and 𝐼2 in the sequence, we can formulate the 

following statement: 

𝐼2 = 𝐼1(𝑥 + 𝑢(𝑥, 𝑦), 𝑦 + 𝑣(𝑥, 𝑦))  (3) 

where 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) denote the displacement of pixel between 

images. In the stereo normal case, we can write: 

𝑢 = 𝛥𝑥 

𝛥𝑥 ≥ 0   (4) 

𝑣 = 0 

𝐼2 = 𝐼1(𝑥 + 𝛥𝑥, 𝑦) 

In the linear case, for infinitesimal u, v: 

𝐼2 = 𝐼1 + 𝐼1𝑥𝑢 + 𝐼1𝑦𝑣  (5) 

or, in stereo normal case: 

𝐼2 = 𝐼1 + 𝐼1𝑥𝑑𝑥  (6) 

After that, the problem is solved by using the standard pyramid 

method of optical flow (Lucas, Kanade, 1981). Using this 

approach allows us to significantly speed up the comparison 

process, so we can quickly establish the stereo correspondences 

(Figure 7).  

Figure 7. Stereo correspondences of some points 

 

To achieve maximum efficiency and speed of the algorithm, we 

limit the number of considered interest points to the minimum 

value, necessary for a reliable solution, by iteratively adding the 

new elements and discarding the unreliable ones until an 

acceptable accuracy is achieved. We believe that to reliably 

determine the position of the camera at the next frame, it is 

necessary to correlate 𝐾 = 27  elements located throughout the 

entire image. First, we select and compare 𝑁 = 28 most 

prominent singular points in different parts of the image. We 

discard unreliable items through RANSAC fundamental matrix 

estimation algorithm (Fischler, Bolles, 1981). In case of 

insufficient number of matched interest points, the initial number 

of points doubles, and the procedure is repeated. This approach 

allows us to increase the speed of the algorithm by using only a 

small number of features in each frame. 

 

4. VISUAL-INTERTIAL ODOMETRY 

The next step is evaluation of our own trajectory. First, we 

perform triangulation of the corresponding points of the stereo 

rig and determine the mathematical expectation and dispersion of 

their spatial coordinates (𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧). 

A sufficient distance between the sensors allows us to determine 

the spatial coordinates with great accuracy, but at the same time 

it increases the frequency of mapping errors due to distortions 

and occlusions. Each spatial point in addition to mathematical 

expectation and variance also contains the baseline length value 

for determining outlier probability. A shorter baseline length is 

less likely to match incorrectly, and can be used by subsequent 

RANSAC algorithm. 

After the stereo reconstruction, we need to calculate the trajectory 

of the camera when moving to the next frame. The direct 

method (3) is used for this purpose. The functions 𝑢 and 𝑣 (3) are 

defined by a projective transformation of consecutive frame in 

homogeneous coordinates: 

(𝑢, 𝑣, 𝜆)𝑡 = 𝐾 (𝑅2 [𝐼 | − 𝑋2] − [𝐼 | 0]) 𝑝 (7) 

Here 𝐾 is the camera matrix, 𝑅2, 𝑋2 specify the relative 

movement of the camera, 𝑝 is the point of the three-dimensional 

space, and 𝜆 is the homogeneous coefficient. Since these relations 

are in homogeneous coordinates, the equations for u and v are not 

linear and contain irrationality. 

Minimization error cannot be performed using the least squares 

approach by SVD decomposition, so iterative algorithms, such as 

Levenberg-Marquadt should be applied. For some of the 

equations, the coordinates of point 𝑝 are known from the stereo 

reconstruction; for others we need to select several close points 

to obtain the desired number of equations. We assume that very 

close points have the same spatial coordinates.  
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Figure 8. Points tracing 

 

Iterative optimization algorithms require a good initial 

approximation, for this purpose we use the IMU data. Also, these 

algorithms suffer from outliers, which is why we use the 

RANSAC algorithm. We also use the g2o library to implement 

windowed Bundle Adjustment in separate thread (Kuemmerle et 

al., 2011). For solving optimization task, we construct a dynamic 

structure – a graph (Figure 9), which describes the relative 

position of the sensors, points of three-dimensional space, their 

projections at different points in time and covariance matrix. 

 

Figure 9. Scene graph. 

 

After solving the visual odometry equations, we combine the 

results with the IMU and GPS data using the Extended Kalman 

Filter approach (Thrun et al., 2005). The resulting trajectory is 

shown in Figure 10. 

Figure 10. Sparse visual-inertial odometry 

 

5. SEMI-DENSE RECONSTRUCTION 

There are different approaches for stereo mapping, such as block 

matching, using global descriptors, and dense optical flow, deep 

learning and others. In our work, we use DAISY descriptors and 

a simple block matching method. A semi-dense point cloud is 

calculated twice per second and aligned in the world frame. This 

allows us to perform a good quality reconstruction in real time 

(Figure 11). 

Figure 11. Spatial reconstruction process 

 

6. СONCLUSIONS 

The combined use of an inertial measurement system and visual 

sensors has improved the reliability and quality of the algorithm. 

Odometry is calculated at twenty frames per second at a 

resolution of 2048x2048 pixels. The map is reconstructed at a 

rate of about ten frames per second. Using IMU and GPS allows 

us to eliminate the drift that accumulates over time and adjust the 

result. GPS systems can also be used to reliably close loops in 

natural scenes, but this is a line of our future work. 

 

Figure 12. Semi-dense scene reconstruction. 
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