
SEMANTIC SCENE UNDERSTANDING FOR THE AUTONOMOUS PLATFORM

B. Vishnyakov *, Y. Blokhinov, I. Sgibnev , V. Sheverdin, A. Sorokin, A. Nikanorov, P. Masalov, K. Kazakhmedov, S. Brianskiy, Е.

Andrienko, Y. Vizilter

FGUP «State Research Institute of Aviation Systems», Russia, 125319, Moscow, Viktorenko street, 7 - (vishnyakov, yuri.blokhinov,

sgibnev, sheverdin, ans, avnikanorov, masalov, kkirill, sbrianskiy, viz)@gosniias.ru

KEY WORDS: multi-sensor platform, autonomous vehicle, SLAM, CNN, dynamic scene analysis, semantic segmentation, off-road,

autonomous driving, camera calibration, LiDAR calibration.

ABSTRACT:

In this paper we describe a new multi-sensor platform for data collection and algorithm testing. We propose a couple of methods for

solution of semantic scene understanding problem for land autonomous vehicles. We describe our approaches for automatic camera

and LiDAR calibration; three-dimensional scene reconstruction and odometry calculation; semantic segmentation that provides

obstacle recognition and underlying surface classification; object detection; point cloud segmentation. Also, we describe our virtual

simulation complex based on Unreal Engine, that can be used for both data collection and algorithm testing. We collected a large

database of field and virtual data: more than 1,000,000 real images with corresponding LiDAR data and more than 3,500,000 simulated

images with corresponding LiDAR data. All proposed methods were implemented and tested on our autonomous platform; accuracy

estimates were obtained on the collected database.

1. INTRODUCTION

The autonomous car market is currently growing at an existential

rate and many companies develop their own concepts of

driverless vehicles. A self-driving car, also called an autonomous

vehicle, is a vehicle that uses a combination of sensors, cameras,

radars and artificial intelligence, to travel between destinations

without the need of any human effort.

Scientific community publishes huge number of papers on the

topics of object detection, scene segmentation, 3D-reconstruction

using cameras and LiDARs, radars. These algorithms

combination allows us to develop high level algorithms of

autonomous driving. However, most of the driving algorithms

are based on the vector map of the roads. So, autonomous driving

in off-road conditions, in the countryside is still a challenging

problem. The solution requires robust algorithms of semantic

segmentation, three-dimensional scene reconstruction, object

detection. All these algorithms work much better in the cities than

in the countryside.

In this paper we describe our multi-sensor off-road platform for

data collection and algorithm testing. We propose a new, fully

automatic technique for mutual calibration of machine vision

cameras and LiDARs, discuss algorithms for real-time semantic

3D-scene reconstruction.

2. AUTONOMOUS PLATFORM

Autonomous platform is a relatively large vehicle with

dimensions close to real cars (1.8m wide, 4.4m long).

2.1 Sensors

The core of the autonomous platform is a computer vision

hardware complex, which consists of ten short focus (5mm lens)

and two long focus (25mm lens) Prosilica GT2050C machine

vision cameras, four SWIR cameras Goldeye G-032 SWIR

TEC1, four Velodyne VLP-16 LiDARs. This system allows us to

* Corresponding author

collect video and three-dimensional data and try out algorithms

for three-dimensional reconstruction, semantic segmentation and

obstacle classification. This vision system is mounted on a metal

frame support that allows one to change the distance between the

cameras and quickly install or remove other sensors if necessary.

In addition, two AXIS M5525 PTZ cameras for object detection

are places on the platform. This computer vision subsystem is

designed to collect data and try out algorithms for object

detection and recognition, semantic segmentation, three-

dimensional scene reconstruction.

The sensors location on the platform is shown in Figure 1.

Figure 1. Ten short focus cameras (purple), two long focus

cameras (green), four LiDARs (grey circles), two PTZ cameras

(orange), four SWIR cameras (light red)

Hardware processing part consist of seven computing units –

Vecow RCS-9430FHR-RTX2080-256 industrial computer based

on Intel Core i7-7700 processor, Nvidia GeForce RTX 2080

graphics card and a special four-channel gigabit network card

with power over the network (PoE) function – PE-1004. All

machine vision cameras are connected to the PE-1004 board

since each camera generates a data stream of approximately 1

Gbit per second. Other devices are connected to a gigabit switch

and are in the same local area network. Also, a Delphi ESR-2.5

radar, GPS-receiver and xsens inertial system can be mounted on

the vehicle.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

637

We use UPS APC Smart-UPS SRT 1000VA / 900W

uninterruptible power supply with five 1500VA batteries, which

allows the computing unit and the set of sensors of the vision

system to run continuously up to 8 hours.

2.2 Software

We developed special software using ROS2 platform on

Ubuntu 18 basis, which allows us to synchronously record data

from all sensors in the system, including cameras, LiDARs,

radar, GPS-receiver and inertial system, to a specialized storage

called rosbag. Data streams from cameras and LiDARs are

synchronized at a hardware level with synchronization cables and

over PTP/PPS protocols.

An optional remote Wi-Fi connection of the operator to the

computing unit is also optionally provided for the purpose of

monitoring data collection processes or testing computer vision

algorithms.

3. VIRTUAL SIMULATION

A lot of scientific labs and groups of engineers use virtual

simulation as a most affordable way to generate extra data for

training of neural networks. We also use virtual simulation to get

image and LiDAR data in different conditions.

We chose Unreal Engine, a game engine developed and

supported by Epic Games, as a basic simulation tool. A game

engine (not a professional one, for example, Vega Prime) was

chosen due to the fact that the game engines currently provide the

most realistic scene visualization. Since 1998 (when the first

version of the Unreal engine was released), various versions of

the engine have been used in more than a hundred games and a

thousand of other projects, including scientific projects and

virtual simulation tools.

3.1 Modeling process

Our modeling process consists of three parts. The first part is

object placement and setting the routes for dynamic objects such

as people, cars, etc. The second part is the virtual travel along the

desired route. The third part is setting the weather conditions and

recording of images and LiDAR data. When recording video

from the camera, the calculation and recording of the boundaries

of objects on the screen are also performed. Borders are

calculated using Ray tracing.

The virtual world was created using the landscape from the tech

demo “A Boy and His Kite” with a total area of about 10 km2

with maximum detail on an area of about 2.5 km2, as well as our

own off-road scene (about 4 km2). Also, we created some extra

3D models, such as people, cars, stones, trees, grass and particle

filters to simulate weather conditions and increase the overall

quality of the simulation (Figures 2 and 3).

Figure 2. First virtual scene sample

Figure 3. Second virtual scene sample

3.2 LiDAR modelling

When modeling VLP-16 LiDAR, single measurement 16 rays are

emitted at different polar angles from the point where the LiDAR

is mounted, and for each ray the distance to the nearest object that

this ray intersects and information about this object, is written to

a file.

The saved data can be visualized using standard VeloView

application by Velodyne. You can see the example of LiDAR

data for simulated travels in Figure 4, where the objects of

interest (for example, a person, a tree, a stone are highlighted in

yellow).

Figure 4. Modelled LiDAR data

3.3 Automatic image and LiDAR data annotation

We developed automatic annotation modules for both object

detection and segmentation tasks. Our dataset consists of more

than 3,500,000 images and corresponding LiDAR data with

automatic annotation of all objects (2D bounding boxes of

objects and obstacles in images) and about 10% of images having

segmentation masks.

Figure 5. Original image and its segmentation mask

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

638

4. AUTOMATIC CAMERA AND LIDAR

CALIBRATION

There is a number of works devoted to the calibration process of

video cameras with LiDAR: (Pusztai, Hajder, 2017), (Park et al.,

2014), (Pereira et al., 2016), (Xu, Li, 2014), (Guindel et al.,

2017), (Chai et al., 2018), (Dhall et al, 2017). All of them could

be classified into two groups, according to the sensor orientation

method each algorithm is based on. Algorithms from the first

group use 2D and 3D matching, in other words, coordinates of

some points that were directly obtained from cameras and

LiDARs (Pusztai, Hajder, 2017), (Park et al., 2014), (Pereira et

al., 2016), (Xu, Li, 2014).

Algorithms from the second group are based on the 3D matching
for orientation calculation (Guindel et al., 2017), (Chai et al.,

2018), (Dhall et al, 2017). Thus, a cameras stereoscopic pair is

essential for 3D coordinates calculation of angles on a pair of

images. Alternatively, ARUCO markers (Garrido-Jurado et al.,

2014), (Romero-Ramirez et al, 2018) could be used for 3D

coordinates calculation.

However, a major part of mentioned papers requires either a

human operator inference or sophisticated calibration facilities

usage for particular points detection (Pereira et al., 2016),

(Guindel et al., 2017), (Chai et al., 2018).

Current work argues automatic calibration process using

different types of sensors combined with simplest calibration

equipment.

4.1 Calibrated camera and LiDAR system

The system we calibrate consists of two, three or four Prosilica

GT2050C cameras with 5mm and 25mm lenses and a one or two

Velodyne VLP-16 LiDARs.

Both the camera and LiDAR system that needs to be calibrated

are shown in Figure 6. The system consists of two Prosilica

GT2050C cameras with 5mm lenses forming a stereo pair, two

Prosilica GT2050C cameras with 25mm lenses forming a stereo

pair, and a Velodyne VLP-16 LiDAR.

Figure 6. Camera and LiDAR system with for cameras and one

LiDAR

4.2 Cameras and calibration board

We use 1m x 1m calibration board with 25 ArUco markers on it.

Calibration board is bolted to the revolving plate, that is fixed on

the base. Revolving plate allows us to change angles positions

without shifting the whole frame. ARUCO markers provide

simple and accurate angles detection. We attached light-

reflecting stripes to the right edge of the calibration board, so we

can easily detect its edges in LiDARs point cloud (Figure 7).

Figure 7. Calibration board. Light-reflection stripes are attached

to the right edge of the board.

The accuracy of the developed procedures is estimated by

reprojection error. The projection matrix is calculated using

intrinsic parameters of the camera K, the rotation matrix R and

the displacement vector t as follows:

𝑃 = 𝐾𝑅𝑡.

4.3 LiDAR and camera calibration

Finding camera and LiDAR mutual position requires two sets of

points: calibrations plate angle position, calculated in 3D

coordinates and respective edge positions on both images. Whole

calibration procedure can be divided into two stages: data

preparation and transformation parameters calculation. First

stage requires collecting a certain number of calibration plate

images from cameras and LiDAR point clouds. Then we find

angles (edges) in images and in point clouds. At the second stage

we create a set of respective points. Main part of the second stage

is calculation of the transformation matrix, that gives us

correlation between camera and LiDAR frames.

In Figure 8 we show how calibration algorithm works for

different calibration plate positions. Regardless to plate rotation

angle and shifts of the frame, algorithm is capable to find angles

precisely.

Figure 8. Detected board edges

Detection of the board edges in the LiDAR point cloud is shown

in Figure 9.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

639

Figure 9. Board edges in LiDAR data

4.4 Calibration results

The result of the orientation procedure directly depends on the

quality of the source data, and therefore on the accuracy of

determining the board angles in the LiDAR cloud is relatively

low. However, making several calibration “attempts” and using

RANSAC algorithm (Fischler, Bolles, 1981) to select the best

result allows us to get quite low reprojection errors (Table 1).

Test

Attempt

count

Reprojection errors (pixels)

Max Min Average Median

1 5 22.27 2.27e-13 9.49 8.70

2 9 30.06 2.27e-13 7.82 6.51

3 13 31.42 0 7.20 5.81

4 17 28.64 0 6.96 5.73

Table 1. Reprojection errors in orientation calculations for

different numbers of attempts.

We calibrate every side of the autonomous platform separately.

We align the resulting point cloud knowing the relative position

of all sensors.

5. SEMANTIC SEGMENTATION

A vision system based on semantic segmentation algorithms is

one of the key elements of an off-road autonomous robotic

vehicle. Semantic segmentation is used for recognition of the

underlying surface type, for calculation of patency map, for

detection, recognition and tracking of objects and obstacles. The

imposition of semantic segmentation on a three-dimensional

model or point cloud gives us the class of each point and adjust

the patency map of the robotic vehicle.

Currently, the task of semantic segmentation is being generally

solved by using convolutional neural networks, which can take

an image of arbitrary size as an input and output an appropriate

predict.

5.1 Off-road dataset

Recently, semantic segmentation algorithms have been actively

developed due to their application in various fields. Autonomous

transport is one of the ways to apply these algorithms.

However, most databases of images, annotated with

segmentation masks, were collected in urban street scenes. This

implies the presence of buildings, paved roads, sidewalks,

pedestrians and many different vehicles. Therefore, for semantic

off-road scene understanding we created our original dataset

consisting of around 100,000 annotated images in addition to the

simulated dataset of 350,000 annotated images, in which we

included forests, groups of trees, bushes, embankments, ravines,

ditches, stones, fields, various types of dirt roads, buildings,

structures and other types of obstacles. It was captured in the

countryside at every time of the year, at different times of day, in

different weather conditions.

Subsequently, we found the terrain and lighting conditions in

which the models predicted wrong labels, so we added more data

for them. We defined 14 classes: hard ground, soft ground,

building, fence, impassable vegetation, passable vegetation, sky,

people, vehicle, water, traffic sign, pole, other obstacles and void.

5.2 CNN Architecture

We propose an architecture (Figure 10) that can handle U-Net

(Ronneberger et al., 2015) and DeepLabV3 (Chen et al., 2017) as

a decoder inspired by works (Siam et al., 2018), (Gamal et al.,

2018) and (Pavel Yakubovskiy, 2020). At the start we also

considered Pyramid Attention Network (Li et al., 2018) and

Receptive Field Block (Liu et al., 2017), but they either did not

work in the real-time, or provided poor quality for the off-road

data.

Figure 10. Proposed backbones and decoders

We experimented with Resnet18, Resnet34 (Kaiming He et al.,

2015), MobileNetV2 (Mark Sandler et al., 2018), ShuffleNetV2

(Ningning Ma et al., 2018) and EfficientNet-B0 (Mingxing Tan

et al., 2019) backbones that demonstrated similar results on the

ImageNet dataset. Also, we used various pre-trained weights for

train models to compare them and achieve boost of accuracy of

semantic segmentation.

Method Top-1 error (%)

ResNet18 30.2

ResNet34 26.7

MobileNetV2 28.1

ShuffleNetV2 30.6

EfficientNet-B0 23.7

Table 2. Top-1 error on ImageNet

Moreover, used encoders and decoders were reimplemented and

adapted for converting to ONNX model and then to NVIDIA

TensorRT engine.

Finally, we chose the ResNet34+DeepLabV3 combination, as it

gives us real-time processing with a very good performance in

terms of quality (see the “Results” paragraph below).

5.3 Results

Datasets were divided into train set (80%) and test set (20%). We

evaluate our models on simulated dataset, original off-road

dataset and Cityscapes (Cordts et.al, 2016). Intersection-over-

union (IoU) metric is used as an assessment of accuracy.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

640

Firstly, we trained models on our simulated dataset that was

created on the Unreal Engine 4 and on the Cityscapes train set to

get pre-trained weights.

Secondary, we used these pre-trained weights to finetune models

on our original off-road dataset to compare results. Using the pre-

trained weights on our simulated dataset, model with backbone

of ResNet34 and DeepLabV3 decoding increased

2.7% mIoU compared to the pre-trained weights on Cityscapes

(see comparison in Table 4 below).

This increase in accuracy allows us to use ResNet34 as encoder

instead of more heavyweight backbone such as ResNet50,

ResNet101 etc. At the same time, we improve inference time and

get a comparable accuracy that is a distinct advantage of this

approach.

In Table 3 we present results on Cityscapes validation set.

Calculations were made using NVIDIA GeForce RTX 2080.

Method mIoU Time(ms)

HRNetV2 81.1% -

DeepLabv3 (ResNet101+ASPP) 78.5% 491

Our (ResNet34 + DeepLabV3) 75.6% 157

Table 3. Cityscapes validation set results

In Table 4 we show results on our simulated validation set.

Decoder Backbone mIoU (%)

U-Net ResNet18 68.8

ResNet34 70.3

MobileNetV2 67.5

ShuffleNetV2 67.0

EfficientNet-B0 65.3

DeeplabV3 ResNet18 95.2

ResNet34 95.5

MobileNetV2 94.5

ShuffleNetV2 93.2

EfficientNet-B0 90.1

Table 4. Our simulated validation set results

In Table 5 we present results on our own validation set of the off-

road dataset, consisting only of real images.

Pretrained Decoder Backbone mIoU (%)

Cityscapes U-Net ResNet18 62.4

ResNet34 63.9

MobileNetV2 60.7

ShuffleNetV2 57.3

EfficientNet-B0 54.1

DeeplabV3 ResNet18 80.8

ResNet34 82.5

MobileNetV2 78.1

ShuffleNetV2 75.3

EfficientNet-B0 72.8

Our

simulated

dataset

U-Net ResNet18 64.0

ResNet34 66.4

MobileNetV2 63.5

ShuffleNetV2 59.1

EfficientNet-B0 57.1

DeeplabV3 ResNet18 83.3

ResNet34 85.2

MobileNetV2 81.0

ShuffleNetV2 78.7

EfficientNet-B0 74.9

Table 5. Our off-road validation set results.

(a)

(b)

Figure 11. Original images (a) from our off-road dataset and

results of the proposed algorithm (b)

5.4 Optimizations

The inference of neural networks is expected to have minimal

latency, maximum throughput, optimal memory consumption

usage and power efficiency.

Inference of almost any model can be implemented using deep

learning frameworks (Caffe, MxNet, Keras, Tensorflow,

PyTorch) and special compiler-optimizers that rebuild the neural

network architecture for a hardware device (CPU, GPU, NPU).

PyTorch is an extremely useful tool for training neural networks,

but it does not provide fastest inference time on GPU. Therefore,

we used compiler-optimizer NVIDIA TensorRT, which performs

optimization of a neural network for NVIDIA GPU platforms.

This tool allows to speeds up the inference time using various

optimizations such as vertical and horizontal layer fusion etc.

NVIDIA TensorRT as an input parameter takes a model of a

neural network that has been converted from PyTorch to ONNX

and serialize engine.

Implementation of this model on NVIDIA GeForce RTX 2080

using NVIDIA TensorRT requires about thrice less time to

process in comparison with PyTorch version of this model on a

stronger NVIDIA GeForce RTX 2080 Ti (Table 6). Pre-

processing and post-processing operations were also performed

on GPU.

Method Time(ms)

on

PyTorch

(NVIDIA

2080 Ti)

Time(ms)

on

TensorRT

(NVIDIA

2080, fp16)

ResNet18 +

DeepLabV3

56 22

ResNet34 +

DeepLabV3

85 27

MobileNetV2 +

DeepLabV3

65 54

Table 6. Inference time for a 1,024×1,024 input on PyTorch and

NVIDIA TensorRT

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

641

6. OBJECT DETECTION

Real-time object detection in autonomous driving systems got

serious boost in last years (Zhong-Qiu Zhao et al., 2019).

Detecting a pedestrian crossing AV trajectory, as well as

potential obstacles are the crucial problems. It is useless to say

that detection algorithms must be reliable and robust to all kind

of alternations (Zhongmin Liu et al., 2018). These algorithms

must be fast enough to work in real time.

A major part of recent practical works in this domain

demonstrated adequate results on cityscapes. However, off-road

areas make important part of whole environment and remain

partially covered by practitioners. Even if savage nature poses

additional difficulties for object detection, solution for such

circumstances could be used in domains beyond autonomous

driving.

A number of recent papers propose object detection algorithm

showing remarkable results. Nevertheless, we obtain modest

results when apply these algorithms directly to our countryside

datasets. Most of the popular datasets used as quality standard are

not difficult enough, especially for occlusions and partially

visible objects. Considering only minor changes to algorithm and

hyperparameters adjustment we conclude that data preparation is

the main issue. We argue that thorough data analysis and dataset

composition may compensate shortcomings from algorithms

elaborated and tested on standard datasets.

Our pipeline is based on RFB Network algorithm. Basis of our

DCNN is RFB-block (Songtao Liu et al., 2018), it provides

sufficient quality to be used for object detection. On the other

hand, it is fast enough to be used for real time detection on board

of mobile platform.

6.1 Special conditions

Nature features within off-road areas lead to particular problems

to be solved in object detection domain (Dong-Ki Kim et al.,

2017). Even a term “off-road area” is not defined distinctly. The

certain thing that it’s not a cityscape or highway, but it’s all the

rest. Off-road areas are more prone to landscape seasonal

changes.

In northern regions white color prevails in winter time, while it’s

not the same in southern. Autumn and Spring have their own

particular colors and textures (green grass, yellow leaves, black

earth, etc.). Different regions possess their particular textures and

gradations. In contrast, cityscapes gammas do not vary a lot. Grey

color prevails almost everywhere, excluding some regional

particularities.

6.2 Gradients distribution

Within city area a majority of objects possess strict geometrical

forms, even trees and bushes are aligned and trimmed. Gradient

distribution of background areas on an image taken in city and in

off-road landscape differs noticeably (Pezzementi et al., 2017).

(a)

(b)

Figure 12. Gradient distribution in city landscape (a) and in off-

road landscape (b)

This is one of the reasons why object detection in cityscapes is

not exactly the same problem as off-road object detection, which

is shown in Figure 12 (Tabor et al., 2015).

6.3 Savage nature

 Natural phenomena like wind does not influence objects in

cityscape as much as it does in off-road landscape. Strong wind

affects high grass, bushes, trees. It severely changes their shapes

and slopes. Thus, it can make changes in other objects on scene

or change occlusion sectors.

6.4 Objects poses

While we are looking for a cityscape pedestrian detection

problem, we expect people to appear in certain positions on

scene, they are walking or standing. Most of datasets contain

images with people in mentioned positions. You cannot expect

all imaginable positions people can take in off-road scenes:

people can be partly occluded by grass or other vegetation. It

depends on area, situation, circumstances, it can vary largely.

6.5 Dataset

The dataset was collected in several areas with diverse landscape

and at vary seasons and weather conditions. Main problem of

datasets is that data is imbalanced in terms of object classes

appearance frequency and background homogeneity. To create a

balanced, heterogeneous and sufficiently large dataset that

generalize all desired object features in all possible conditions is

a challenging task that takes time. From a crude data collected

from different cameras we obtained about 1,000,000 images.

After thorough analysis and refinement, we picked about 50,000

labeled images. The whole set was divided into train and test sets

in proportion 90/10.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

642

6.6 Artificial negative mining

As dataset was formed gradually in a period of 6 month. After

slowly feeding small collection with mostly clear and distinct

objects presented in images, we realized that occasional difficult

cases are not being detected. Thus, we created such occasions

artificially overlapping human figures by bushes, high grass,

encouraging cases of occlusions and intersections. We struggled

to present our objects in dataset in all imaginable perspectives.

Finally experiments with lighting either natural or artificial and

camera adjustments permitted us to inflate the dataset with

unique data.

6.7 Implementation

We implemented whole algorithm on board of out autonomous

platform. We were limited in CPU and GPU computing

resources, as object detection algorithm is just a part of the whole

system that should work in real-time, providing sufficient

quality. Since we use computing unit with the Nvidia RTX2080

graphics card, we chose TensorRT as the inference framework. It

is a C++ library that facilitates high-performance computations

on Nvidia GPUs compared to other inference frameworks.

TensorRT optimizes the network by combining layers and

optimizing kernel selection for improved latency, throughput,

power efficiency, and memory consumption. We transform our

model, trained using PyTorch, into ONNX format that is

supported by TensorRT. We created our own high-level library

to perform all image processing operations (resizing,

transposition, channel swap etc.) on GPU. Finally, the whole

algorithm shows 38 FPS.

6.8 Training and results

Our network is implemented with PyTorch. The batch size is 16

per GPU, optimizer is Adam with default parameters. We trained

our network for 100 epochs with learning rate 0.001,

downgrading it 10 times for each 100 epochs. You can see

pedestrian detection results in the Figures 13-15.

Figure 13. Detection results

Figure 14. Detection results

Figure 15. Detection results

7. CONCLUSIONS

In this paper we described several methods of a complex

approach to autonomous driving problem in off-road conditions,

in the countryside is still a challenging problem. Our solutions

are based on robust algorithms of sensors calibration, semantic

segmentation, three-dimensional scene reconstruction, object

detection.

We created a large database containing field data (more than

1,000,000 images and LiDAR data), as well as virtual data (more

than 3,500,000 images and simulated LiDAR data).

ACKNOWLEDGEMENTS

The reported study was funded by RFBR project № 19-07-01248

А.

REFERENCES

Chai, Z., Sun, Y., Xiong, Z. A, 2018. Novel Method for LiDAR

Camera Calibration by Plane Fitting // In Proceedings of the 2018

IEEE/ASME International Conference on Advanced Intelligent

Mechatronics (AIM), Auckland, New Zealand, pp. 286–291.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

643

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L.

Yuille, 2016. DeepLab: Semantic Image Segmentation with

Deep Convolutional Nets, Atrous Convolution, and Fully

Connected CRFs.

L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, 2017.

Rethinking Atrous Convolution for Semantic Image

Segmentation. arXiv:1706.05587v3 [cs.CV]

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R.

Benenson, U. Franke, S. Roth, and B. Schiele, 2016. The

Cityscapes Dataset for Semantic Urban Scene Understanding //

In Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

Dhall A, Chelani K, Radhakrishnan V, et al., 2017. LiDAR-

Camera Calibration using 3D-3D Point correspondences.

arXiv:1705.09785 [cs.RO]

M. A. Fischler and R. C. Bolles, 1981. Random Sample

Consensus: A Paradigm for Model Fitting with Applications to

Image Analysis and Automated Cartography. Comm. Of the

ACM, vol. 24, 381-395, 1981.

M. Gamal, M. Siam, M. Abdel-Razek, 2018. ShuffleSeg: Real-

time Semantic Segmentation Network.

Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-

Jiménez MJ, 2014. Automatic generation and detection of highly

reliable fiducial markers under occlusion. Pattern Recognition

47(6). pp. 2280-2292.

Guindel, C., Beltrán, J., Martín, D. and García, F., 2017.

Automatic Extrinsic Calibration for Lidar-Stereo Vehicle Sensor

Setups // IEEE International Conference on Intelligent

Transportation Systems (ITSC), pp. 674–679.

K. He, X. Zhang, S. Ren, J. Sun, 2015. Deep Residual Learning

for Image Recognition // IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-

778.

D-K Kim., D Maturana, M Uenoyama, S Scherer, 2017. Season-

invariant semantic segmentation with a deep multimodal

network. Field and Service Robotics, pp. 335-350.

H. Li, P. Xiong, J. An, L. Wang, 2018. Pyramid Attention

Network for Semantic Segmentation.

Liu Z., Chen Z., Li Z., Hu W., 2018: Mathematical Problems in

Engineering Volume 2018, Article ID 3518959, 10 pages. An

Efficient Pedestrian Detection Method Based on YOLOv2.

Liu S., Huang D., Wang Y, 2018. Receptive Field Block Net for

Accurate and Fast Object Detection. In: Computer Vision –

ECCV 2018. Lecture Notes in Computer Science, vol 11215.

Springer, Cham.

S. Liu, Di Huang, Y. Wang, 2017. Receptive Field Block Net for

Accurate and Fast Object Detection. arXiv:1711.07767 [cs.CV]

N. Ma, X. Zhang, H.-T. Zheng, J. Sun, 2018. ShuffleNet:

ShuffleNet V2: Practical Guidelines for Efficient CNN

Architecture Design // In ECCV 2018. Lecture Notes in

Computer Science, vol 11218. Springer, Cham.

Y. Park, S. Yun, C.S. Won, K. Cho, K. Um, S. Sim, 2014.

Calibration between color camera and 3D LIDAR instruments

with a polygonal planar board // Journal of Sensors. Vol. 14, Issue

3, pp. 5333-5353.

Pereira M, Silva D, Santos V, et al., 2016. Self-calibration of

multiple LIDARs and cameras on autonomous vehicles //

Robotics & Autonomous Systems, 83(C), pp. 326-337.

Pezzementi Z., Tabor T., Hu P., Chang J.K., 2017: Comparing

Apples and Oranges: Off-Road Pedestrian Detection on the

NREC Agricultural Person-Detection

Dataset.arXiv:1707.07169, 2017 [cs.CV]

Z. Pusztai, L. Hajder, 2017. Accurate calibration of LiDAR-

camera systems using ordinary boxes // 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW) – pp.

394-402.

F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer,

2018. Speeded up detection of squared fiducial markers // Image

and Vision Computing, vol 76, pp. 38-47.

O. Ronneberger, P. Fischer, and T. Brox, 2015. U-Net:

Convolutional Networks for Biomedical Image Segmentation.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and

L.-C. Chen, 2018. MobilenetV2: Inverted residuals and linear

bottlenecks // 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, 2018, pp. 4510-

4520.

M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, M.

Jagersand, 2018. RTSeg: Real-time Semantic Segmentation

Comparative Study.

T. Tabor, Z. Pezzementi, C. Vallespi and C. Wellington, 2015.

People in the weeds: Pedestrian detection goes off-road, IEEE

International Symposium on Safety, Security, and Rescue

Robotics (SSRR), West Lafayette, IN, pp. 1-7.

M. Tan, Q. V. Le, 2019. EfficientNet: Rethinking Model Scaling

for Convolutional Neural Networks. arXiv:1905.11946v3

[cs.LG]

Xu Z, Li X, 2014. A method of extrinsic calibration between a

four-layer laser range finder and a camera // IEEE Control

Conference, pp. 7450-7455.

P. Yakubovskiy, 2020. Segmentation Models PyTorch.

https://github.com/qubvel/segmentation_models.pytorch

Zhao Z-Q., Zheng P., Xu S-T., Wu X., 2019: Object Detection

with Deep Learning: A Review, arXiv:1807.05511 [cs.CV]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

644

