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ABSTRACT: 

 

In this paper we describe a new multi-sensor platform for data collection and algorithm testing. We propose a couple of methods for 

solution of semantic scene understanding problem for land autonomous vehicles. We describe our approaches for automatic camera 

and LiDAR calibration; three-dimensional scene reconstruction and odometry calculation; semantic segmentation that provides 

obstacle recognition and underlying surface classification; object detection; point cloud segmentation. Also, we describe our virtual 

simulation complex based on Unreal Engine, that can be used for both data collection and algorithm testing. We collected a large 

database of field and virtual data: more than 1,000,000 real images with corresponding LiDAR data and more than 3,500,000 simulated 

images with corresponding LiDAR data. All proposed methods were implemented and tested on our autonomous platform; accuracy 

estimates were obtained on the collected database. 

 

 

1. INTRODUCTION 

The autonomous car market is currently growing at an existential 

rate and many companies develop their own concepts of 

driverless vehicles. A self-driving car, also called an autonomous 

vehicle, is a vehicle that uses a combination of sensors, cameras, 

radars and artificial intelligence, to travel between destinations 

without the need of any human effort. 

 

Scientific community publishes huge number of papers on the 

topics of object detection, scene segmentation, 3D-reconstruction 

using cameras and LiDARs, radars. These algorithms 

combination allows us to develop high level algorithms of 

autonomous driving. However, most of the driving algorithms 

are based on the vector map of the roads. So, autonomous driving 

in off-road conditions, in the countryside is still a challenging 

problem. The solution requires robust algorithms of semantic 

segmentation, three-dimensional scene reconstruction, object 

detection. All these algorithms work much better in the cities than 

in the countryside. 

 

In this paper we describe our multi-sensor off-road platform for 

data collection and algorithm testing. We propose a new, fully 

automatic technique for mutual calibration of machine vision 

cameras and LiDARs, discuss algorithms for real-time semantic 

3D-scene reconstruction. 

 

2. AUTONOMOUS PLATFORM  

Autonomous platform is a relatively large vehicle with 

dimensions close to real cars (1.8m wide, 4.4m long). 

 

2.1 Sensors 

The core of the autonomous platform is a computer vision 

hardware complex, which consists of ten short focus (5mm lens) 

and two long focus (25mm lens) Prosilica GT2050C machine 

vision cameras, four SWIR cameras Goldeye G-032 SWIR 

TEC1, four Velodyne VLP-16 LiDARs. This system allows us to 
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collect video and three-dimensional data and try out algorithms 

for three-dimensional reconstruction, semantic segmentation and 

obstacle classification. This vision system is mounted on a metal 

frame support that allows one to change the distance between the 

cameras and quickly install or remove other sensors if necessary. 

In addition, two AXIS M5525 PTZ cameras for object detection 

are places on the platform. This computer vision subsystem is 

designed to collect data and try out algorithms for object 

detection and recognition, semantic segmentation, three-

dimensional scene reconstruction. 

 

The sensors location on the platform is shown in Figure 1. 

 

Figure 1. Ten short focus cameras (purple), two long focus 

cameras (green), four LiDARs (grey circles), two PTZ cameras 

(orange), four SWIR cameras (light red) 

 

Hardware processing part consist of seven computing units – 

Vecow RCS-9430FHR-RTX2080-256 industrial computer based 

on Intel Core i7-7700 processor, Nvidia GeForce RTX 2080 

graphics card and a special four-channel gigabit network card 

with power over the network (PoE) function – PE-1004. All 

machine vision cameras are connected to the PE-1004 board 

since each camera generates a data stream of approximately 1 

Gbit per second. Other devices are connected to a gigabit switch 

and are in the same local area network. Also, a Delphi ESR-2.5 

radar, GPS-receiver and xsens inertial system can be mounted on 

the vehicle. 
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We use UPS APC Smart-UPS SRT 1000VA / 900W 

uninterruptible power supply with five 1500VA batteries, which 

allows the computing unit and the set of sensors of the vision 

system to run continuously up to 8 hours. 

 

2.2 Software 

We developed special software using ROS2 platform on 

Ubuntu 18 basis, which allows us to synchronously record data 

from all sensors in the system, including cameras, LiDARs, 

radar, GPS-receiver and inertial system, to a specialized storage 

called rosbag. Data streams from cameras and LiDARs are 

synchronized at a hardware level with synchronization cables and 

over PTP/PPS protocols. 

 

An optional remote Wi-Fi connection of the operator to the 

computing unit is also optionally provided for the purpose of 

monitoring data collection processes or testing computer vision 

algorithms. 

3. VIRTUAL SIMULATION 

A lot of scientific labs and groups of engineers use virtual 

simulation as a most affordable way to generate extra data for 

training of neural networks. We also use virtual simulation to get 

image and LiDAR data in different conditions. 

 

We chose Unreal Engine, a game engine developed and 

supported by Epic Games, as a basic simulation tool. A game 

engine (not a professional one, for example, Vega Prime) was 

chosen due to the fact that the game engines currently provide the 

most realistic scene visualization. Since 1998 (when the first 

version of the Unreal engine was released), various versions of 

the engine have been used in more than a hundred games and a 

thousand of other projects, including scientific projects and 

virtual simulation tools. 

 

3.1 Modeling process 

Our modeling process consists of three parts. The first part is 

object placement and setting the routes for dynamic objects such 

as people, cars, etc. The second part is the virtual travel along the 

desired route. The third part is setting the weather conditions and 

recording of images and LiDAR data. When recording video 

from the camera, the calculation and recording of the boundaries 

of objects on the screen are also performed. Borders are 

calculated using Ray tracing. 

 

The virtual world was created using the landscape from the tech 

demo “A Boy and His Kite” with a total area of about 10 km2 

with maximum detail on an area of about 2.5 km2, as well as our 

own off-road scene (about 4 km2). Also, we created some extra 

3D models, such as people, cars, stones, trees, grass and particle 

filters to simulate weather conditions and increase the overall 

quality of the simulation (Figures 2 and 3).  

 

 

Figure 2. First virtual scene sample 

 

Figure 3. Second virtual scene sample 

 

3.2 LiDAR modelling 

When modeling VLP-16 LiDAR, single measurement 16 rays are 

emitted at different polar angles from the point where the LiDAR 

is mounted, and for each ray the distance to the nearest object that 

this ray intersects and information about this object, is written to 

a file.  

 

The saved data can be visualized using standard VeloView 

application by Velodyne. You can see the example of LiDAR 

data for simulated travels in Figure 4, where the objects of 

interest (for example, a person, a tree, a stone are highlighted in 

yellow). 

 

Figure 4. Modelled LiDAR data 

 

3.3 Automatic image and LiDAR data annotation 

We developed automatic annotation modules for both object 

detection and segmentation tasks. Our dataset consists of more 

than 3,500,000 images and corresponding LiDAR data with 

automatic annotation of all objects (2D bounding boxes of 

objects and obstacles in images) and about 10% of images having 

segmentation masks. 

 

Figure 5. Original image and its segmentation mask 
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4. AUTOMATIC CAMERA AND LIDAR 

CALIBRATION 

There is a number of works devoted to the calibration process of 

video cameras with LiDAR: (Pusztai, Hajder, 2017), (Park et al., 

2014), (Pereira et al., 2016), (Xu, Li, 2014), (Guindel et al., 

2017), (Chai et al., 2018), (Dhall et al, 2017). All of them could 

be classified into two groups, according to the sensor orientation 

method each algorithm is based on. Algorithms from the first 

group use 2D and 3D matching, in other words, coordinates of 

some points that were directly obtained from cameras and 

LiDARs (Pusztai, Hajder, 2017), (Park et al., 2014), (Pereira et 

al., 2016), (Xu, Li, 2014).  

 

Algorithms from the second group are based on the 3D matching 
for orientation calculation (Guindel et al., 2017), (Chai et al., 

2018), (Dhall et al, 2017). Thus, a cameras stereoscopic pair is 

essential for 3D coordinates calculation of angles on a pair of 

images. Alternatively, ARUCO markers (Garrido-Jurado et al., 

2014), (Romero-Ramirez et al, 2018) could be used for 3D 

coordinates calculation.  

 
However, a major part of mentioned papers requires either a 

human operator inference or sophisticated calibration facilities 

usage for particular points detection (Pereira et al., 2016), 

(Guindel et al., 2017), (Chai et al., 2018).  

 

Current work argues automatic calibration process using 

different types of sensors combined with simplest calibration 

equipment. 

 

4.1 Calibrated camera and LiDAR system 

The system we calibrate consists of two, three or four Prosilica 

GT2050C cameras with 5mm and 25mm lenses and a one or two 

Velodyne VLP-16 LiDARs. 

 

Both the camera and LiDAR system that needs to be calibrated 

are shown in Figure 6. The system consists of two Prosilica 

GT2050C cameras with 5mm lenses forming a stereo pair, two 

Prosilica GT2050C cameras with 25mm lenses forming a stereo 

pair, and a Velodyne VLP-16 LiDAR. 

 

 

Figure 6. Camera and LiDAR system with for cameras and one 

LiDAR 

 

4.2 Cameras and calibration board 

We use 1m x 1m calibration board with 25 ArUco markers on it. 

Calibration board is bolted to the revolving plate, that is fixed on 

the base. Revolving plate allows us to change angles positions 

without shifting the whole frame. ARUCO markers provide 

simple and accurate angles detection. We attached light-

reflecting stripes to the right edge of the calibration board, so we 

can easily detect its edges in LiDARs point cloud (Figure 7). 

 

Figure 7. Calibration board. Light-reflection stripes are attached 

to the right edge of the board. 

 

The accuracy of the developed procedures is estimated by 

reprojection error. The projection matrix is calculated using 

intrinsic parameters of the camera K, the rotation matrix R and 

the displacement vector t as follows: 

𝑃 = 𝐾𝑅𝑡. 
 

4.3 LiDAR and camera calibration 

Finding camera and LiDAR mutual position requires two sets of 

points: calibrations plate angle position, calculated in 3D 

coordinates and respective edge positions on both images. Whole 

calibration procedure can be divided into two stages: data 

preparation and transformation parameters calculation. First 

stage requires collecting a certain number of calibration plate 

images from cameras and LiDAR point clouds. Then we find 

angles (edges) in images and in point clouds. At the second stage 

we create a set of respective points. Main part of the second stage 

is calculation of the transformation matrix, that gives us 

correlation between camera and LiDAR frames.   

 
In Figure 8 we show how calibration algorithm works for 

different calibration plate positions. Regardless to plate rotation 

angle and shifts of the frame, algorithm is capable to find angles 

precisely.  

Figure 8. Detected board edges 

 

Detection of the board edges in the LiDAR point cloud is shown 

in Figure 9. 
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Figure 9. Board edges in LiDAR data 

 

4.4 Calibration results 

The result of the orientation procedure directly depends on the 

quality of the source data, and therefore on the accuracy of 

determining the board angles in the LiDAR cloud is relatively 

low. However, making several calibration “attempts” and using 

RANSAC algorithm (Fischler, Bolles, 1981) to select the best 

result allows us to get quite low reprojection errors (Table 1).  

Test 

# 

Attempt 

count 

Reprojection errors (pixels) 

Max Min Average Median 

1 5 22.27 2.27e-13 9.49 8.70 

2 9 30.06 2.27e-13 7.82 6.51 

3 13 31.42 0 7.20 5.81 

4 17 28.64 0 6.96 5.73 

Table 1. Reprojection errors in orientation calculations for 

different numbers of attempts. 

 

We calibrate every side of the autonomous platform separately. 

We align the resulting point cloud knowing the relative position 

of all sensors. 

5. SEMANTIC SEGMENTATION 

A vision system based on semantic segmentation algorithms is 

one of the key elements of an off-road autonomous robotic 

vehicle. Semantic segmentation is used for recognition of the 

underlying surface type, for calculation of patency map, for 

detection, recognition and tracking of objects and obstacles. The 

imposition of semantic segmentation on a three-dimensional 

model or point cloud gives us the class of each point and adjust 

the patency map of the robotic vehicle. 

 

Currently, the task of semantic segmentation is being generally 

solved by using convolutional neural networks, which can take 

an image of arbitrary size as an input and output an appropriate 

predict. 

 

5.1 Off-road dataset 

Recently, semantic segmentation algorithms have been actively 

developed due to their application in various fields. Autonomous 

transport is one of the ways to apply these algorithms.  

 

However, most databases of images, annotated with 

segmentation masks, were collected in urban street scenes. This 

implies the presence of buildings, paved roads, sidewalks, 

pedestrians and many different vehicles. Therefore, for semantic 

off-road scene understanding we created our original dataset 

consisting of around 100,000 annotated images in addition to the 

simulated dataset of 350,000 annotated images, in which we 

included forests, groups of trees, bushes, embankments, ravines, 

ditches, stones, fields, various types of dirt roads, buildings, 

structures and other types of obstacles. It was captured in the 

countryside at every time of the year, at different times of day, in 

different weather conditions. 

 

Subsequently, we found the terrain and lighting conditions in 

which the models predicted wrong labels, so we added more data 

for them. We defined 14 classes: hard ground, soft ground, 

building, fence, impassable vegetation, passable vegetation, sky, 

people, vehicle, water, traffic sign, pole, other obstacles and void. 

 

5.2 CNN Architecture 

We propose an architecture (Figure 10) that can handle U-Net 

(Ronneberger et al., 2015) and DeepLabV3 (Chen et al., 2017) as 

a decoder inspired by works (Siam et al., 2018), (Gamal et al., 

2018) and (Pavel Yakubovskiy, 2020). At the start we also 

considered Pyramid Attention Network (Li et al., 2018) and 

Receptive Field Block (Liu et al., 2017), but they either did not 

work in the real-time, or provided poor quality for the off-road 

data. 

 
Figure 10. Proposed backbones and decoders 

 

We experimented with Resnet18, Resnet34 (Kaiming He et al., 

2015), MobileNetV2 (Mark Sandler et al., 2018), ShuffleNetV2 

(Ningning Ma et al., 2018) and EfficientNet-B0 (Mingxing Tan 

et al., 2019) backbones that demonstrated similar results on the 

ImageNet dataset. Also, we used various pre-trained weights for 

train models to compare them and achieve boost of accuracy of 

semantic segmentation. 

Method Top-1 error (%) 

ResNet18 30.2 

ResNet34 26.7 

MobileNetV2 28.1 

ShuffleNetV2 30.6 

EfficientNet-B0 23.7 

Table 2. Top-1 error on ImageNet 

 

Moreover, used encoders and decoders were reimplemented and 

adapted for converting to ONNX model and then to NVIDIA 

TensorRT engine. 

 

Finally, we chose the ResNet34+DeepLabV3 combination, as it 

gives us real-time processing with a very good performance in 

terms of quality (see the “Results” paragraph below). 

 

5.3 Results 

Datasets were divided into train set (80%) and test set (20%). We 

evaluate our models on simulated dataset, original off-road 

dataset and Cityscapes (Cordts et.al, 2016). Intersection-over-

union (IoU) metric is used as an assessment of accuracy.  
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Firstly, we trained models on our simulated dataset that was 

created on the Unreal Engine 4 and on the Cityscapes train set to 

get pre-trained weights.  

 

Secondary, we used these pre-trained weights to finetune models 

on our original off-road dataset to compare results. Using the pre-

trained weights on our simulated dataset, model with backbone 

of ResNet34 and DeepLabV3 decoding increased  

2.7% mIoU compared to the pre-trained weights on Cityscapes 

(see comparison in Table 4 below). 

 

This increase in accuracy allows us to use ResNet34 as encoder 

instead of more heavyweight backbone such as ResNet50, 

ResNet101 etc. At the same time, we improve inference time and 

get a comparable accuracy that is a distinct advantage of this 

approach. 

 

In Table 3 we present results on Cityscapes validation set. 

Calculations were made using NVIDIA GeForce RTX 2080. 

Method mIoU Time(ms) 

HRNetV2 81.1% - 

DeepLabv3 (ResNet101+ASPP) 78.5% 491 

Our (ResNet34 + DeepLabV3) 75.6% 157 

Table 3. Cityscapes validation set results 

 

In Table 4 we show results on our simulated validation set. 

Decoder  Backbone  mIoU (%)  

U-Net  ResNet18  68.8  

ResNet34  70.3  

MobileNetV2  67.5  

ShuffleNetV2  67.0  

EfficientNet-B0  65.3  

DeeplabV3  ResNet18  95.2  

ResNet34  95.5  

MobileNetV2  94.5  

ShuffleNetV2  93.2  

EfficientNet-B0  90.1  

Table 4. Our simulated validation set results 

 

In Table 5 we present results on our own validation set of the off-

road dataset, consisting only of real images. 

Pretrained Decoder Backbone mIoU (%) 

Cityscapes U-Net ResNet18 62.4 

ResNet34 63.9 

MobileNetV2 60.7 

ShuffleNetV2 57.3 

EfficientNet-B0 54.1 

DeeplabV3 ResNet18  80.8 

ResNet34 82.5 

MobileNetV2 78.1 

ShuffleNetV2 75.3 

EfficientNet-B0 72.8 

Our 

simulated 

dataset 

U-Net ResNet18 64.0 

ResNet34 66.4 

MobileNetV2 63.5 

ShuffleNetV2 59.1 

EfficientNet-B0 57.1 

DeeplabV3 ResNet18  83.3 

ResNet34 85.2 

MobileNetV2 81.0 

ShuffleNetV2 78.7 

EfficientNet-B0 74.9 

Table 5. Our off-road validation set results. 

 

 
(a) 

 
(b) 

Figure 11. Original images (a) from our off-road dataset and 

results of the proposed algorithm (b) 

 

5.4 Optimizations 

The inference of neural networks is expected to have minimal 

latency, maximum throughput, optimal memory consumption 

usage and power efficiency. 

 

Inference of almost any model can be implemented using deep 

learning frameworks (Caffe, MxNet, Keras, Tensorflow, 

PyTorch) and special compiler-optimizers that rebuild the neural 

network architecture for a hardware device (CPU, GPU, NPU). 

PyTorch is an extremely useful tool for training neural networks, 

but it does not provide fastest inference time on GPU. Therefore, 

we used compiler-optimizer NVIDIA TensorRT, which performs 

optimization of a neural network for NVIDIA GPU platforms. 

This tool allows to speeds up the inference time using various 

optimizations such as vertical and horizontal layer fusion etc. 

 

NVIDIA TensorRT as an input parameter takes a model of a 

neural network that has been converted from PyTorch to ONNX 

and serialize engine.  

 

Implementation of this model on NVIDIA GeForce RTX 2080 

using NVIDIA TensorRT requires about thrice less time to 

process in comparison with PyTorch version of this model on a 

stronger NVIDIA GeForce RTX 2080 Ti (Table 6). Pre-

processing and post-processing operations were also performed 

on GPU. 

Method Time(ms) 

on 

PyTorch  

(NVIDIA 

2080 Ti) 

Time(ms) 

on 

TensorRT 

(NVIDIA 

2080, fp16) 

ResNet18 + 

DeepLabV3 

56 22 

ResNet34 + 

DeepLabV3 

85 27 

MobileNetV2 + 

DeepLabV3 

65 54 

Table 6. Inference time for a 1,024×1,024 input on PyTorch and 

NVIDIA TensorRT 
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6. OBJECT DETECTION 

Real-time object detection in autonomous driving systems got 

serious boost in last years (Zhong-Qiu Zhao et al., 2019). 

Detecting a pedestrian crossing AV trajectory, as well as 

potential obstacles are the crucial problems. It is useless to say 

that detection algorithms must be reliable and robust to all kind 

of alternations (Zhongmin Liu et al., 2018). These algorithms 

must be fast enough to work in real time.    

 

A major part of recent practical works in this domain 

demonstrated adequate results on cityscapes. However, off-road 

areas make important part of whole environment and remain 

partially covered by practitioners. Even if savage nature poses 

additional difficulties for object detection, solution for such 

circumstances could be used in domains beyond autonomous 

driving. 

 

A number of recent papers propose object detection algorithm 

showing remarkable results. Nevertheless, we obtain modest 

results when apply these algorithms directly to our countryside 

datasets. Most of the popular datasets used as quality standard are 

not difficult enough, especially for occlusions and partially 

visible objects. Considering only minor changes to algorithm and 

hyperparameters adjustment we conclude that data preparation is 

the main issue. We argue that thorough data analysis and dataset 

composition may compensate shortcomings from algorithms 

elaborated and tested on standard datasets.  

 

Our pipeline is based on RFB Network algorithm. Basis of our 

DCNN is RFB-block (Songtao Liu et al., 2018), it provides 

sufficient quality to be used for object detection. On the other 

hand, it is fast enough to be used for real time detection on board 

of mobile platform. 

 

6.1 Special conditions 

Nature features within off-road areas lead to particular problems 

to be solved in object detection domain (Dong-Ki Kim et al., 

2017). Even a term “off-road area” is not defined distinctly. The 

certain thing that it’s not a cityscape or highway, but it’s all the 

rest. Off-road areas are more prone to landscape seasonal 

changes. 

 

In northern regions white color prevails in winter time, while it’s 

not the same in southern. Autumn and Spring have their own 

particular colors and textures (green grass, yellow leaves, black 

earth, etc.). Different regions possess their particular textures and 

gradations. In contrast, cityscapes gammas do not vary a lot. Grey 

color prevails almost everywhere, excluding some regional 

particularities.  

 

6.2 Gradients distribution 

Within city area a majority of objects possess strict geometrical 

forms, even trees and bushes are aligned and trimmed. Gradient 

distribution of background areas on an image taken in city and in 

off-road landscape differs noticeably (Pezzementi et al., 2017).  

 

 

 
(a) 

 
(b) 

Figure 12. Gradient distribution in city landscape (a) and in off-

road landscape (b) 

 

This is one of the reasons why object detection in cityscapes is 

not exactly the same problem as off-road object detection, which 

is shown in Figure 12 (Tabor et al., 2015). 

 

6.3 Savage nature 

 Natural phenomena like wind does not influence objects in 

cityscape as much as it does in off-road landscape. Strong wind 

affects high grass, bushes, trees. It severely changes their shapes 

and slopes. Thus, it can make changes in other objects on scene 

or change occlusion sectors. 

 

6.4 Objects poses 

While we are looking for a cityscape pedestrian detection 

problem, we expect people to appear in certain positions on 

scene, they are walking or standing. Most of datasets contain 

images with people in mentioned positions. You cannot expect 

all imaginable positions people can take in off-road scenes: 

people can be partly occluded by grass or other vegetation. It 

depends on area, situation, circumstances, it can vary largely.  

 

6.5 Dataset 

The dataset was collected in several areas with diverse landscape 

and at vary seasons and weather conditions. Main problem of 

datasets is that data is imbalanced in terms of object classes 

appearance frequency and background homogeneity. To create a 

balanced, heterogeneous and sufficiently large dataset that 

generalize all desired object features in all possible conditions is 

a challenging task that takes time.  From a crude data collected 

from different cameras we obtained about 1,000,000 images. 

After thorough analysis and refinement, we picked about 50,000 

labeled images. The whole set was divided into train and test sets 

in proportion 90/10. 
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6.6 Artificial negative mining 

As dataset was formed gradually in a period of 6 month. After 

slowly feeding small collection with mostly clear and distinct 

objects presented in images, we realized that occasional difficult 

cases are not being detected. Thus, we created such occasions 

artificially overlapping human figures by bushes, high grass, 

encouraging cases of occlusions and intersections. We struggled 

to present our objects in dataset in all imaginable perspectives. 

Finally experiments with lighting either natural or artificial and 

camera adjustments permitted us to inflate the dataset with 

unique data. 

 

6.7 Implementation 

We implemented whole algorithm on board of out autonomous 

platform. We were limited in CPU and GPU computing 

resources, as object detection algorithm is just a part of the whole 

system that should work in real-time, providing sufficient 

quality. Since we use computing unit with the Nvidia RTX2080 

graphics card, we chose TensorRT as the inference framework. It 

is a C++ library that facilitates high-performance computations 

on Nvidia GPUs compared to other inference frameworks. 

TensorRT optimizes the network by combining layers and 

optimizing kernel selection for improved latency, throughput, 

power efficiency, and memory consumption. We transform our 

model, trained using PyTorch, into ONNX format that is 

supported by TensorRT. We created our own high-level library 

to perform all image processing operations (resizing, 

transposition, channel swap etc.) on GPU. Finally, the whole 

algorithm shows 38 FPS.     

 

6.8 Training and results 

Our network is implemented with PyTorch. The batch size is 16 

per GPU, optimizer is Adam with default parameters. We trained 

our network for 100 epochs with learning rate 0.001, 

downgrading it 10 times for each 100 epochs. You can see 

pedestrian detection results in the Figures 13-15. 

 

 
Figure 13. Detection results 

 

 
Figure 14. Detection results 

 

 
Figure 15. Detection results 

 

 

7. CONCLUSIONS 

In this paper we described several methods of a complex 

approach to autonomous driving problem in off-road conditions, 

in the countryside is still a challenging problem. Our solutions 

are based on robust algorithms of sensors calibration, semantic 

segmentation, three-dimensional scene reconstruction, object 

detection. 

We created a large database containing field data (more than 

1,000,000 images and LiDAR data), as well as virtual data (more 

than 3,500,000 images and simulated LiDAR data). 

 

ACKNOWLEDGEMENTS 

The reported study was funded by RFBR project № 19-07-01248 

А.  

 

REFERENCES 

Chai, Z., Sun, Y., Xiong, Z. A, 2018. Novel Method for LiDAR 

Camera Calibration by Plane Fitting // In Proceedings of the 2018 

IEEE/ASME International Conference on Advanced Intelligent 

Mechatronics (AIM), Auckland, New Zealand, pp. 286–291. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

 
643



 

 

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. 

Yuille, 2016. DeepLab: Semantic Image Segmentation with 

Deep Convolutional Nets, Atrous Convolution, and Fully 

Connected CRFs. 

 

L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, 2017. 

Rethinking Atrous Convolution for Semantic Image 

Segmentation. arXiv:1706.05587v3 [cs.CV] 

 

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. 

Benenson, U. Franke, S. Roth, and B. Schiele, 2016. The 

Cityscapes Dataset for Semantic Urban Scene Understanding // 

In Proc. of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR). 

 

Dhall A, Chelani K, Radhakrishnan V, et al., 2017. LiDAR-

Camera Calibration using 3D-3D Point correspondences. 

arXiv:1705.09785 [cs.RO] 

 

M. A. Fischler and R. C. Bolles, 1981. Random Sample 

Consensus: A Paradigm for Model Fitting with Applications to 

Image Analysis and Automated Cartography. Comm. Of the 

ACM, vol. 24, 381-395, 1981. 

 

M. Gamal, M. Siam, M. Abdel-Razek, 2018. ShuffleSeg: Real-

time Semantic Segmentation Network. 

 

Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-

Jiménez MJ, 2014. Automatic generation and detection of highly 

reliable fiducial markers under occlusion. Pattern Recognition 

47(6). pp. 2280-2292.  

 

Guindel, C., Beltrán, J., Martín, D. and García, F., 2017. 

Automatic Extrinsic Calibration for Lidar-Stereo Vehicle Sensor 

Setups // IEEE International Conference on Intelligent 

Transportation Systems (ITSC), pp. 674–679. 

 

K. He, X. Zhang, S. Ren, J. Sun, 2015. Deep Residual Learning 

for Image Recognition // IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-

778. 

 

D-K Kim., D Maturana, M Uenoyama, S Scherer, 2017. Season-

invariant semantic segmentation with a deep multimodal 

network. Field and Service Robotics, pp. 335-350. 

 

H. Li, P. Xiong, J. An, L. Wang, 2018. Pyramid Attention 

Network for Semantic Segmentation. 

 

Liu Z., Chen Z., Li Z., Hu W., 2018: Mathematical Problems in 

Engineering Volume 2018, Article ID 3518959, 10 pages. An 

Efficient Pedestrian Detection Method Based on YOLOv2. 

 

Liu S., Huang D., Wang Y, 2018. Receptive Field Block Net for 

Accurate and Fast Object Detection. In: Computer Vision – 

ECCV 2018. Lecture Notes in Computer Science, vol 11215. 

Springer, Cham. 

 

S. Liu, Di Huang, Y. Wang, 2017. Receptive Field Block Net for 

Accurate and Fast Object Detection. arXiv:1711.07767 [cs.CV] 

 

N. Ma, X. Zhang, H.-T. Zheng, J. Sun, 2018. ShuffleNet: 

ShuffleNet V2: Practical Guidelines for Efficient CNN 

Architecture Design // In ECCV 2018. Lecture Notes in 

Computer Science, vol 11218. Springer, Cham. 

 

Y. Park, S. Yun, C.S. Won, K. Cho, K. Um, S. Sim, 2014. 

Calibration between color camera and 3D LIDAR instruments 

with a polygonal planar board // Journal of Sensors. Vol. 14, Issue 

3, pp. 5333-5353. 

 

Pereira M, Silva D, Santos V, et al., 2016. Self-calibration of 

multiple LIDARs and cameras on autonomous vehicles // 

Robotics & Autonomous Systems, 83(C), pp. 326-337. 

 

Pezzementi Z., Tabor T., Hu P., Chang J.K., 2017: Comparing 

Apples and Oranges: Off-Road Pedestrian Detection on the 

NREC Agricultural Person-Detection 

Dataset.arXiv:1707.07169, 2017 [cs.CV] 

 

Z. Pusztai, L. Hajder, 2017. Accurate calibration of LiDAR-

camera systems using ordinary boxes // 2017 IEEE International 

Conference on Computer Vision Workshops (ICCVW) – pp. 

394-402.  

 

F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, 

2018. Speeded up detection of squared fiducial markers // Image 

and Vision Computing, vol 76, pp. 38-47. 

 

O. Ronneberger, P. Fischer, and T. Brox, 2015. U-Net: 

Convolutional Networks for Biomedical Image Segmentation. 

 

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and  

L.-C. Chen, 2018. MobilenetV2: Inverted residuals and linear 

bottlenecks // 2018 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, Salt Lake City, UT, 2018, pp. 4510-

4520. 

 

M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, M. 

Jagersand, 2018. RTSeg: Real-time Semantic Segmentation 

Comparative Study. 

 

T. Tabor, Z. Pezzementi, C. Vallespi and C. Wellington, 2015. 

People in the weeds: Pedestrian detection goes off-road, IEEE 

International Symposium on Safety, Security, and Rescue 

Robotics (SSRR), West Lafayette, IN, pp. 1-7. 

 

M. Tan, Q. V. Le, 2019. EfficientNet: Rethinking Model Scaling 

for Convolutional Neural Networks. arXiv:1905.11946v3 

[cs.LG] 

 

Xu Z, Li X, 2014. A method of extrinsic calibration between a 

four-layer laser range finder and a camera // IEEE Control 

Conference, pp. 7450-7455.  

 

P. Yakubovskiy, 2020. Segmentation Models PyTorch.  

https://github.com/qubvel/segmentation_models.pytorch 

 

Zhao Z-Q., Zheng P., Xu S-T., Wu X., 2019: Object Detection 

with Deep Learning: A Review, arXiv:1807.05511 [cs.CV] 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-637-2020 | © Authors 2020. CC BY 4.0 License.

 
644




