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ABSTRACT: 

 

Anthropocene is featured with increasing human population and global changes that strongly affect landscapes at an unprecedented 

pace. As a flagship, the coastal fringe is subject to an accelerated conversion of natural areas into agricultural ones, in turn, into 

urban ones, generating hazardous soil artificialization. Very high resolution (VHR) technologies such as airborne LiDAR or UAV 

imageries are good assets to model the topography and classify the land use/land cover (LULC), helping local management. Even if 

their spatial resolution suits with the management scale, their extent covers a few km2, making large-scale monitoring complex and 

time-consuming. VHR spaceborne imagery has a great potential to address this spatial challenge given its regional acquisition. This 

research proposes to evaluate the capabilities of a Pleiades-1 stereo-satellite multispectral imagery (blue, green, red, BGR, and near-

infrared, NIR) to both model the surface topography and classify LULC. Horizontal and vertical accuracies of the photogrammetry-

driven digital surface model (DSM) attain 0.53 m and 0.65 m, respectively. Nine LULC generic classes are studied using the 

maximum likelihood (ML) and support vector machine (SVM) algorithms. The classification accuracy of the basic BGR (reaching 

84.64% and 76.13% with ML and SVM, respectively) is improved by the DSM contribution (5.49 % and 2.91 % for ML and SVM, 

respectively), and the NIR contribution (6.78 % and 3.89 % for ML and SVM, respectively). The gain of the DSM-NIR combination 

totals 8.91 % and 8.40 % for ML and SVM, respectively, making the ML-based full combination the best performance (93.55 %). 
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1. INTRODUCTION 

1.1 Global and Local Change Monitoring 

Facing worldwide changes at an unprecedented pace, the Earth 

system is today driven by human forces, that shift landscapes 

dominated by vegetation to agricultural then urban areas (Meyer 

et al., 1992). In addition, the effects of global warming are 

represented by the sea-level rise (IPCC, 2014), as well as the 

intensification of the cyclone/storm-induced wave and rain 

(Moussavi et al., 2011). These hazards are becoming ever more 

threatening as the population grows all over the world. Coastal 

areas constitute the flagships of the challenges tied to the 

Anthropocene era, because they host all the components of the 

erosion and flooding risks, exacerbated by an increasing 

exposure due to the population densification (Neumann et al., 

2015). 

 

1.2 Optical Data at Very High Resolution Over Regional 

Extent 

The remote sensing and monitoring of the biosphere spatial 

patterns and processes require some specific technology, able to 

capture large-scale information but provided with high 

resolution. Satellite imagery has been efficient to track changes 

in air, terrestrial and ocean temperature, in sea level, or in land 

use / land cover (LULC) at a global scale (Lu et al., 2004). 

However, these data were constrained by a coarse-grained filter, 

as a logical trade-off between the spatial extent and resolution. 

Despite the meaningful products of the global normalized 

difference vegetation index, normalized difference water index, 

or rate of urbanization, the LULC planning mostly necessitates 

finer-scale information as claimed by the local managers and 

stakeholders, tasked with the spatial adaptation to 

anthropogenic changes. Solving global issues needs local 

management provided with very high resolution (VHR), that is 

to say equal to or less than 1 m pixel size. 

 

Airborne imagery, such as the passive multispectral camera 

borne by manned or unmanned aerial vehicle (UAV), as well as 

the active light detection and ranging (LiDAR) system, suits 

well with the local expectations of the pixel grain (Yan et al., 

2015; Collin et al., 2012). However, the spatial extent covered 

by airborne platforms remains either too small (less than a few 

km2 for drones) or too costly (per km2 for manned aerial 

campaign, given the aircraft charges and the time-consuming 

flight planning, Mury et al., 2019). The advent of the VHR 

satellite imagery has enabled to address the local demand by 

bridging the large-scale extent with the fine-scale resolution 

(Collin et al., 2013). IKONOS and QuickBird-2, launched in 

1999 and 2001, respectively, were the first spaceborne sensors 

able to deliver 1 m pixel size (for the panchromatic band) 

within regional scenes. In addition to the spatial capabilities of 

these sensors, multispectral optical information has been 

collected: blue, green, red, (BGR) and near-infrared (NIR). 

LULC mapping at VHR has been improved thanks to the NIR, 

given the high absorbance by water and the high reflectance by 

vegetation (Collin et al., 2019). 
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1.3 Spaceborne 3D Land Cover and Land Use Mapping 

More recently, the VHR satellite remote sensing dedicated to 

Earth thematic mapping was significantly enhanced by the 

stereo-acquisition of the following sensors WorldView-1, 

GeoEye-1, WorldView-2, Pleiades-1, Worldview-3, Superview-

1, and WorldView-4, respectively launched in 2007, 2008, 

2009, 2011, 2014, 2018 and 2019 (e.g. Collin et al., 2018). 

Beyond the spatial and spectral specificities of these state-of-

the-art sensors, their agility has allowed to sample regional 

extents from two (even three) incidence angles, thus offering the 

possibility to generate 3D point clouds and digital surface 

models (DSM) using the photogrammetry procedure (Collin et 

al., 2018). Leveraging submeter panchromatic bands, the 

accuracy of the vertical products has been quantified around 1 

m, provided that calibration ground-truth measurements were 

implemented (Bagnardi et al., 2016). 

 

The added value of the relief information to the spectral dataset 

for mapping VHR pixels or objects composing the LULC has 

been proven in data fusion, involving satellite optical imagery 

and airborne LiDAR information (Demarchi et al., 2016), or 

more recently, in photogrammetry-based unmanned aerial 

vehicle mounted with a multispectral sensor (Collin et al., 

2019). However, such kind of data fusion has not been derived 

from a unique spaceborne sensor. Here, we propose to 

thematically map large-scale LULC at VHR using a satellite 

stereo-imagery, from which both the topographical and 

multispectral information will be extracted. The scene was 

captured by a stereo-imagery of the Pleiades-1 sensor over a 

coastal area along the French side of the Channel Sea (Figure 

1). The selected scene is a temperate complex area, displaying 

nine representative worldwide classes, such as tree, grass, soil, 

sand, mud, roof, road, freshwater, and seawater. Two supervised 

classifiers have been used: the maximum likelihood (ML) and 

the support vector machine (SVM). Four questions have been 

addressed: what is the contribution of the topography (i.e. 

DSM) into the standard BGR classification accuracy? What is 

the contribution of the NIR into the standard BGR classification 

accuracy? Is there a specific effect of the NIR and DSM 

contribution into the standard BGR classification accuracy? 

What is the influence of the supervised classifier into the 

previous contributions? 

 

 

 

Figure 1. Natural-coloured Pleiades-1A imageries of the entire 

scene, taken on October 22, 2019, over the Rance river and a 

part of the Côte d’Emeraude (Brittany, France); (A) Image #1 

taken with 18.04° incidence angle; (B) Image #2 taken with 

18.95° incidence angle. Red rectangle represents the study site 

 

2. MATERIALS AND METHODS 

2.1 Study Site 

The study site is located along the French coast of the Channel 

Sea, called the Côte d’Emeraude (48.60°N, 2.00°W), between 

the bays of Mont-Saint-Michel and Saint-Brieuc, in Brittany 

(France; red polygon in Figure 1A and 1B). Stretching over a 

64 km long coastline, this part of the Norman-Breton Gulf is 

hydrodynamically featured with a megatidal regime, reaching a 

tidal range of 14 m during the spring tide (Mahmoud, 2015). 

Composed of muddy-sandy estuarine, sandy shores and 

gneisses’ cliffs, the studied part of the Côte d’Emeraude hosts 

the Frémur river and the bay of Beaussais (Figure 2). This 

land/sea interface has attracted farmers, fishermen, shipowners 

and merchants for several centuries as attested by the presence 

of Saint-Jacut, Saint-Briac, and Saint-Lunaire medieval villages 

as well as the XIX-XXth seaside city of Dinard. Following the 

end of the World War II, the area has become increasingly 

attractive, which has mutated the territory from rural villages 

surrounded by crop fields bordered by hedgerows (still visible 

in hinterland) to seaside urban cities subject to high 

anthropogenic pressure on the coastline. Noteworthy is the 

increase in the population density, thus vulnerability, on 

exposed coastal areas, which exacerbates the effects of the 

ocean-climate hazards driven by the sea-level and temperature 

rise.  

A 

B 
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Figure 2. Natural-coloured Pleiades-1A imageries of the study 

site centered on the bay of Beaussais and Frémur river; (A) 

Ground-truth LiDAR data; (B) Ground-truth classification data 

 

2.2 Spaceborne Pleiades-1 Dataset 

Launched on December 16, 2011 and December 2, 2012 for 

Pleiades-1A and 1B, respectively, this constellation is the 

flagship of the French VHR multispectral civilian satellite. 

Capable of covering up to 100 000 km² per day, both sensors 

are composed by four spectral bands (B: 430-550 nm; G: 490-

610 nm; R: 600-720 nm; and NIR: 750-950 nm) with 2 m pixel 

size and one panchromatic band (480-830 nm) of 0.50 m pixel 

size. The Pleiades-1A, here, dataset is a stereo-imagery acquired 

on October 22, 2019 at 11:25:49 UTC (Figure 1A) and 

11:26:28 UTC, respectively (Figure 1B, Table 1). 

 

Parameters Imagery 

 #1 #2 

Acquisition date 2019/10/22 2019/10/22 

Time 11:25:49 11:26:28 

Orientation angle (in degree) 179.97 180.07 

Incidence angle (in degree) 

Across angle 

Along angle 

Viewing angle (in degree) 

Across angle 

Along angle 

Sun azimuth (in degree) 

18.04 

-10.96 

-14.67 

16.33 

12.69 

10.61 

172.09 

18.95 

-17.41 

7.95 

16.93 

13.56 

-10.51 

172.38 

Sun elevation (in degree) 30.25 30.27 

Table 1. Pleiades-1A specifications related to the stereo-

acquisition over the study site 

 

2.3 Class Identification 

Nine LULC classes were investigated given their 

representativeness and occurrence across the world (Table 1). A 

series of 1 000 pixels per class were manually selected in the 

form of spectrally-homogeneous polygons. This ground-truth 

dataset was splitted into 500 calibration and 500 validation 

pixels per class.  

 

 

 

 

Class name Description Capture 

Tree Land woody plant 

 

Grass Annual perennial plant  

 

Soil Agricultural land and bare land 

 

Sand Sediment particles of 0.06-2 mm 

 

Mud Sediment particles less than 0.06 mm 

 

Roof Top of houses and buildings 

 

Road Bitumen cover way 

 

Freshwater 
Continental water: river, pond and 

basin  
 

Seawater  Salted water 

 

Table 2. Description of the nine Land Use / Land Cover classes 

 

2.4 Airborne LiDAR Dataset 

An airborne topographical LiDAR dataset was used as reference 

to calibrate/validate the digital elevation model (DEM) derived 

from the Pleiades-1A stereo-imagery. This dataset provides 

VHR information of the topographical characteristics of the 

study site with a vertical accuracy of 0.25 m and a horizontal 

point density of 10 points per m2. Collected in 2011 by the 

French national geographic institute, the point cloud has been 

interpolated in the form of a raster provided with 1 m pixel size, 

and constrained by the local RGF93 datum, Lambert 93 

projection and IGN69 vertical reference. An array of 20 ground-

truth points was built by focusing on ground features (neither 

trees nor built-up areas). This array was separated into 10 

calibration and 10 validation XYZ points (Figure 3). 

 

 

Figure 3. Location of the calibration/validation LiDAR points 

over the study site (altimetric reference is RAF18 in m) 

 

A B 
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2.5 Satellite Stereo-Photogrammetry  

Prior to the creation of the satellite-based DEM, some process 

steps needed to be realized. Panchromatic stereo-imageries were 

radiometrically corrected from digital number values to top-of-

atmosphere radiance then reflectance values by accounting for 

the optical calibration factors and sun irradiance, respectively. 

The corrected panchromatic imageries were used to extract 

terrain features with a dense point matching algorithm, so as to 

compute a satellite-based DSM at 0.50 m pixel size (Xu et al., 

2008). From the point cloud in LAS format, a projection change 

was carried out, transforming the X and Y coordinates in the 

WGS84 datum, UTM zone 30N to RGF93 datum, Lambert 93. 

The LAS tools utility enabled this transformation. Then, a 

conversion of the altitudinal parameters was also carried out in 

order to switch from the ellipsoidal elevation to an orthometric 

elevation from the new French vertical datum 2018 (RAF18). 

TcLAsConverter, a free tool developed by the Government of 

the Province of Navarra in Spain, has enabled this 

transformation to be implemented. 

 

The root mean square error (RMSE) was calculated to validate 

the photogrammetry-driven Pleiades-1A DSM:  

 

RMSE=   (1) 

 

where  P = Pleiades-1 XYZ model points, 

 O = LiDAR XYZ validation points, 

 n = number of observations. 

 

2.6 Pixel-Based Supervised Classification 

The reflectance Pleiades-1 imagery (panchromatic and 

multispectral) provided with the smallest incidence angle (see 

Table 1) was subject to an orthorectification based on the 

rational polynomial coefficients. The radiometrically-/ 

geometrically-corrected dataset was then pansharpened so as to 

use the multispectral dataset at the panchromatic resolution 

(namely 0.53 m, since orthorectified). The accurate Gram-

Schmidt procedure was performed (Collin et al., 2013). Based 

on the resulting BGRNIR at 0.53 m pixel size, 1 000 pixels per 

class were identified: 500 pixels for calibration, and 500 for 

validation. The classification validation was quantified using 

the overall accuracy (OA) and the class-level producer accuracy 

(PA), drawn from the confusion matrix. 

 

2.6.1 Topographical and Spectral Contributions: The 

DSM and NIR contributions to the nine-class LULC 

classification were computed from the BGR performance (OA). 

Following the BGR classification, were implemented the 

BGR+DSM, BGR+NIR, and finally BGR+NIR+DSM. 

 

2.6.2 Algorithms Investigated: Two supervised 

classification algorithms based on statistical learning theory 

were investigated: the common and fast ML, and the complex-

solving but time-consuming SVM.  

 

ML is a probabilistic method, assuming that the statistics for 

each class in each band are normally distributed, calculates the 

probability that a given pixel belongs to a specific class. Each 

pixel is assigned to the class that has the highest probability 

(Table 3).  

 

Function Parameter 

Probability Threshold Single value 

Data scale factor  1.00 

Table 3. Description of the adjusted parameters with the 

probabilistic Maximum Likelihood (ML) classifier 

 

SVM is a non-probabilistic binary multiclassifier, that separates 

the classes with a decision surface (hyperplane), maximizing the 

margin between the classes (Table 4). 

 

Function Parameter 

Kernel type Radial basis function 

Gamma kernel 0.20 

Penalty parameter 100.0 

Pyramid levels 0 

Classification 

probability threshold 

 

0 

Table 4. Description of the selected parameters with the Support 

Vector Machine (SVM) classifier 

 

3. RESULTS AND DISCUSSION 

Firstly, the DSM was reconstructed based on the Pleiades-1 

stereo-imagery. Secondly, the contributions of the topographical 

DSM and spectral NIR to the classification accuracy of the nine 

LULC classes were evaluated.  

 

3.1 Satellite-Based Digital Surface Model 

The DSM, extracted from the stereoscopic information inherent 

to the panchromatic Pleiades-1 imagery, was in very good 

agreement with the LiDAR vertical validation (Figure 4A, 

coefficient of determination of 0.99). Vertical (altimetric) and 

horizontal (planimetric) accuracies reached 0.65 m and 0.53 m, 

respectively. This result highlights the potential of Pleiades-1 

stereo-imagery for the reconstruction of DSM with a high 

spatial resolution across a large scale (Figure 4B). These figures 

corroborate the findings of a sub-meter coastal topography 

study, which obtained a vertical accuracy ranging from 0.35 to 

0.48 m (highlighting some reconstruction problems due to 

shadows, Almeida et al., 2019). A DSM extracted from a tri-

stereo Pleiades-1 could further improve the satellite-based 

topography, particularly for the shadowed tree and urban classes 

(Panagiotakis et al., 2018). The DSM product is thus very likely 

to provide additional information that spectral data cannot for 

mapping LULC (Sofia et al., 2015). 

 

 
 

A 
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Figure 4. (A) Scatterplot of LiDAR vertical validation and 

Pleiades-1 Digital Surface Model (DSM); (B) Pleiades-1-

derived DSM (altimetric reference is RAF18 in m) 

 

3.2 Topographical and Spectral Classification 

Contributions 

3.2.1 Overall Accuracy: The classification performance of 

the BGR reference dataset provided a satisfactory OA of 

84.64% and 76.13% (Figure 5) with the ML (Figure 6A) and 

SVM algorithm (Figure 7A), respectively. On the one hand, the 

addition of the topographical predictor, DSM, increased the OA 

of 5.49% and 2.91% with ML (Figures 5 and 6B) and SVM 

(Figures 5 and 7B), respectively. On the other hand, the spectral 

predictor, NIR, augmented the OA of 6.78% with ML, Figure 

6C and 3.89% with SVM, Figure 7C).  

 

 

Figure 5. Barplot of the Pleiades-1 DSM and NIR contributions 

to the BGR classification performance (Overall Accuracy) built 

with the maximum Likelihood (ML) and Support Vector 

Machine (SVM) algorithms 

 

 

 

 

 

 

 

 

BGR BGR+DSM 

  

BGR+NIR BGR+DSM+NIR 

  

 

Figure 6. Maps of the land use/land cover classifications of the 

(A) Maximum Likelihood. Reference blue-green-red (BGR); 

(B) BGR + near-infrared (NIR); (C) BGR + digital surface 

model (DSM); (D) BGR + NIR + DSM 

 

Finally, the contribution of the full dataset (BGR+DSM+NIR) 

yielded in 8.91% and 8.40% of OA gains with ML (Figures 5 

and 6D) and SVM (Figures 5 and 7D), respectively. The best 

classification combination consisted in the full dataset, followed 

by the BGR+NIR, then the BGR+DSM with the ML algorithm. 

Our findings reflect another study on the use of the complete 

Pleaides-1 dataset (panchromatic + multispectral) allowed to the 

best classification to be performed (Beguet et al., 2014). 
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BGR BGR+DSM 

  

BGR+NIR BGR+DSM+NIR 

  

 

Figure 7. Maps of the land use/land cover classifications of the 

(A) Support Vector Machine. Reference blue-green-red (BGR); 

(B) BGR + near-infrared (NIR); (C) BGR + digital surface 

model (DSM); (D) BGR + NIR + DSM 

 

3.2.2 Class-Level Accuracy: The DSM and NIR 

contributions were assessed at the class-level for the nine LULC 

classes. Classification results of the four different combinations 

with both algorithms showed a class-level trend of a better 

performance when DSM and NIR were combined to BGR.  

 

By analyzing the confusion matrix in detail using the PA, the 

DSM topographical predictor increasingly impacted the class 

detection with the ML algorithm: sand -3%, freshwater -1.8%, 

seawater 0%, road +0.8%, soil +5.2%, mud +6%, tree +10.6%, 

grass +15.2% and roof +16.4%. The SVM classification results 

were significantly correlated with those of the ML 

classification. These scores displayed the overall positive 

contribution of the DSM in addition to the basic BGR spectrum: 

road -53%, seawater +1.4%, soil +2.2%, mud +6%, sand +6%, 

tree +8.6%, freshwater +12.4%, grass +15% and roof +30.2%. 

For both algorithms, grass and roof classes obtained the largest 

DSM gains, which can be explained by the topographic 

component of these flat and high classes, respectively. The 

DSM can therefore help elucidate a topographical zoning 

(Collin et al., 2019).  

 

Likewise, the contribution of the NIR was duly parsed. The 

gains with the ML were obvious: sand +0%, seawater +0%, 

road +1.6%, mud +2.4%, freshwater +4.4%, soil +6.8%, grass 

+11.2%, roof +11.6% and tree +23%. As for the SVM 

classification, the road class received a negative NIR impact of 

18.4%. The discrimination of the other eight classes were 

increased by the NIR: seawater +1.4%, grass +2%, soil +2.2%, 

mud +3.4%, sand 4.2%, freshwater +9.4%, roof +14.4% and 

tree +19.4%. For both algorithms, roof and tree classes highly 

benefited from the NIR. The enhancement of the tree and roof 

classed by the NIR is greatly related to the chlorophyll pigments 

and silicate slates, which are strongly reflected in this part of the 

electromagnetic spectrum, beyond the visible (Collin et al., 

2019).   

 

The contribution of the joint NIR and DSM enabled to better 

discriminate classes for all algorithms. Except for the sand class 

(-1.8%), all other classes have gained in classification accuracy 

compared to the basic BGR spectrum with ML: seawater +0%, 

freshwater +3.6%, mud +4%, road +4.2%, soil +8%, grass 

+17.8%, roof +20% and tree +24.4%. The same trend was 

observed with SVM. Except for the road class (-20.8%), all 

other classes were enhanced by the DSM+NIR combination: 

seawater (+1.4%), soil (+2.8%), sand (+4.2%), mud (+7%), 

freshwater (+13.4%), grass (+19.2%), tree (+23.2%) and roof 

(+28.2%) got positive scores. Irrespective of the algorithm, 

chlorophyll-laden grass and tree classes, as well as mineral-

borne roof class leveraged the DSM+NIR combination, as 

underlined by an urban classification using the Pleiades-1 

imagery (Lefebvre et al., 2016).  

 

Furthermore, our results can be corroborated with recent studies 

tasked with the LULC identification using multispectral UAVs 

(Collin et al., 2019). The UAV can indeed derive the DSM 

using the “structure-from-motion” photogrammetric approach 

(Casella et al., 2017), while leveraging a multispectral dataset 

(through dedicated Parrot, Sentera, MicaSense, etc. dedicated 

sensors), composed of BGR and NIR wavebands (Ahmed et al., 

2017). Our on-going UAV findings have confirmed the 

Pleiades-1 results, namely that the LULC mapping is 

hierarchically increased by the DSM+NIR combination, 

followed by the NIR, and finally by the DSM (James et al., 

2020).  

 

 

B 

D 

A 

A 
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Figure 8. Barplot of the Pleiades-1 DSM and NIR contributions 

to the BGR classification performance (Producer’s Accuracy) 

built with the maximum Likelihood (ML) and Support Vector 

Machine (SVM) algorithms 

 

3.3 Classifier Contribution 

Given their specificities, the ML and SVM algorithms have 

been investigated to decipher their influence on the 

classification performance. The probabilistic ML systematically 

outperformed the non-probabilistic SVM overall findings for 

BGR, BGR+DSM, BGR+NIR, as well as the full combination. 

This examination was also true at the class-level (Figure 8). It 

can be hypothesized that the Pleiades-1 dataset over the coastal 

area is topographically and spectrally-simple enough to benefit 

the ML, rather than the SVM. These results suitably match with 

those derived from UAV studies on UAVs which also 

highlighted a better discrimination of coastal objects (beach, 

slikke, schorre) when the ML algorithm was built on the 

combination of spectral bands + topography (Le Poulain, 2019). 

It is also important to evaluate the algorithms based on their 

computation time requirement (Table 5) for the sake of 

transferability. Once again, the probabilistic ML surpassed the 

non-probabilistic SVM in terms of the computation processing 

for the four classifications. The full combination 

(BGD+DSM+NIR) needed for 6 minutes against 720 min for 

ML and SVM, respectively. The radial basis function used for 

the SVM kernel allowed the algorithm to solve for non-linear, 

complex and noisy data, but demanded more computation 

effort. In addition, the SVM computation processing increased 

with the pairwise classification strategy for multiclass 

classification, based on the combination of several binary SVM 

sub-classifiers.  

 

 BGR BGR+ 

DSM 

BGR+ 

NIR 

BGR+DSM+ 

NIR 

ML  0:05 0:05 0:09 0:05 

SVM 10:03 15:05 09:26 7:43 

Table 5. Processing time (in hour) required for the 

classifications based on the ML vs. SVM algorithms (with Xeon 

3.70 GHz processor and 32 Go RAM) 

 

4. CONCLUSIONS 

This study shows the capabilities of an unique Pleiades-1 

stereo-imagery to produce very satisfactory classifications of the 

coastal area composed of nine LULC classes, by (1) extracting 

an accurate DSM (0.53 and 0.65 m horizontal and vertical 

precision), by (2) combining the resulting DSM and NIR 

information to the BGR reference classification. The best 

classification performance was reached with the 

BGR+DSM+NIR dataset (93.55% of OA, Figure 9), followed 

by the BGR+NIR (91.42% of OA), then BGR+DSM (90.13% 

of OA), and finally the BGR (84.64% of OA). The best 

performances resulted from the use of the ML (compared to the 

SVM), which was, in addition, more efficient in computation 

time (6 min versus 720 min). This trend was also highlighted at 

the class-level: the DSM favored more the grass and roof 

classes; the NIR highly contributed to the roof and tree classes; 

the DMS+NIR significantly improved the roof and tree classes. 

Further research about the single use of the Pleiades-1 could 

evaluate the capabilities of a tri-stereo dataset to improve the 

identification of the LULC classes. Such examination could 

integrate the derived DSM and spectral bands (e.g. rugosity 

index, slope, normalized difference vegetation index), and 

object-oriented classification based on the convolutional neural 

network. 

 

 

Figure 9. Best classification score (BGR+DSM+NIR with the 

ML algorithm) draped on the DSM, both derived from a 

Pleiades-1 stereo-imagery 
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