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ABSTRACT:

Estimating vehicle poses is crucial for generating precise movement trajectories from (surveillance) camera data. Additionally for
real time applications this task has to be solved in an efficient way. In this paper we introduce a deep convolutional neural network
for pose estimation of vehicles from image patches. For a given 2D image patch our approach estimates the 2D coordinates of the
image representing the exact center ground point (cx, cy) and the orientation of the vehicle - represented by the elevation angle (e)
of the camera with respect to the vehicle’s center ground point and the azimuth rotation (a) of the vehicle with respect to the camera.
To train a accurate model a large and diverse training dataset is needed. Collecting and labeling such large amount of data is very
time consuming and expensive. Due to the lack of a sufficient amount of training data we show furthermore, that also rendered 3D
vehicle models with artificial generated textures are nearly adequate for training.

1. INTRODUCTION

Maps contain important information to navigate and route ve-
hicles. For autonomous vehicles, this information about their
environment must be very accurate and up-to-date in order to
directly interpret and evaluate the environment measured by
sensors. The richer the information is, the better a vehicle can
judge the situation, predict next steps and react. The surround-
ing of the vehicle can significantly influence the driving situ-
ation. Which environmental conditions lead to unsafe driving
behaviour is not always clear. Therefore, it is important to in-
vestigate how such situations can be reliably detected, and then
search for their triggers. It is conceivable that such insecure
situations (e.g. near-accidents, sudden u-turns, avoiding obsta-
cles) are reflected, for example, as anomalies in the movement
trajectories of road users (Huang et al., 2014). Collecting real
world traffic data in driving studies (e.g. (Barnard et al., 2016)))
is very time consuming and expensive. On the other hand, a lot
of roads or public areas are already monitored with video cam-
eras. In addition, nowadays more and more of such video data
is made publicly available over the internet so that the amount
of free video data is increasing.

Figure 1. Detection bounding boxes of pedestrians (left)
and vehicles (right)

Previous research (e.g (Koetsier et al., 2019)) exploited the use
of such kind of opportunistic VGI by creating a real time surveil-
lance camera pipeline to extract road user trajectories from mono-
camera videos. The framework is based on a single shot neural
network YOLO (Redmon et al., 2016) where road users are lo-
cated within bounding boxes in single image frames. To track
the road users and extract their trajectories a specific point of
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this bounding box has to be chosen as real center ground point.
While it works well for pedestrians to choose the center point
at the bottom of the bounding box to estimate the real center
ground point - because of the pedestrians small stand space, it
is inaccurate to use the same point for vehicles as shown in Fig-
urem Due to the the view angle of a surveillance camera onto a
scene, depending on where a vehicle is located and how it is ori-
entated in the scene, the real center ground point changes within
the detected vehicles bounding box. This fact causes inaccurate
trajectories choosing a fixed point of the vehicles bounding box
in (Koetsier et al., 2019).

The exact position of the center ground point for a vehicle in an
image can be determined, if the 3D geometry of the situation is
known. However, this is often not the case. Thus, the aim of this
research is to improve the accuracy of the trajectory extracted
from surveillance camera data by learning the center position
and heading of a vehicle just from its 2D projection in mono-
camera images.

Other research in the field of vehicle pose estimation for mono-
camera images aims at finding so called landmarks (e.g. (Zhang
et al., 2020) or key points (e.g. (Coenen & Rottensteiner, 2019)
in a given camera image and matching those to a given 3D ve-
hicle model to reconstruct 3D coordinates respectively a 3D
scene. While the results of these works show, that it is possi-
ble to precisely estimate vehicle poses in mono-camera images,
they are computational expensive and thus do not fulfill the re-
quirement of real time capability.Further research, like (Xiang
et al., 2017) and (Tekin et al., 2018) present convolutional neu-
ral networks to efficiently estimate an objects location respec-
tively pose in mono-camera images similar to our approach for
different domains - but not for vehicles. To apply those works or
similar neural networks to localize vehicles in surveillance cam-
era data a sufficient amount of labeled training data is needed.

Although there are datasets like KITTI (Geiger et al., 2013)) and
Waymo (Sun et al., 2019) containing the necessary informa-
tion needed to create labeled vehicle image patches with pose
information for training a pose estimation network, they are
recorded from the perspective of (self-) driving cars. Thus they
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do not include all possible viewing angels to recorded vehicle,
which are required in the domain of surveillance camera data.
To our knowledge there is no such dataset of real image patches
with labeled pose information of vehicles covering all or at least
nearly all possible viewing angles.

Collecting and (manually) labeling a large amount of this data
is very time consuming and expensive. The goal of this paper
therefore is to (a) create a 2D image dataset from 3D vehicle
models with arbitrary, but known center ground point and ori-
entation to (b) adapt a deep convolutional neural network for
pose estimation to the domain of cars by training custom mod-
els using such input images and (c) evaluate the performance
of the trained models to show that those neural networks can
be trained by non real data using rendered 3D vehicle models,
solving the training data issue.

2. METHOD

As introduced, the focus of the paper is on the second block
of Figure 2} for a given 2D image patch, our approach tries
to retrieve 2D coordinates of the image representing the exact
center ground point (cz, cy) and the orientation of the vehicle -
represented by the elevation angle (e) of the camera with respect
to the vehicle’s center ground point and the azimuth rotation (a)
of the vehicle with respect to the camera, by keeping real time
(> 30 frames per second) processing speed of a pipeline like
in (Koetsier et al., 2019). The 2D image coordinates will be
transferred with a given homography into world coordinates -
assuming a planar road surface in the field of view.
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Figure 2. Framework overview

The architecture of our pose estimation network is based on the
deep convolutional neural network (DCNN) ResNet-18 (He et
al., 2016). As shown in Figure |3| we removed the last layer for
classification and added an adaptive average pooling in order
to reduce the different vehicle-image sizes to a fixed output of
size 2 x 2 x 512. This feature-layer is then reshaped to 2048
and fed to two consecutive fully connected layers with an final

output size of 6. In order to estimate the azimuth rotation a and
elevation e angles of the car we did not directly minimize the
angle difference but approximated the sin and cos of the angles
with an tangens hyperbolicus (tanh) instead. This should yield
better results because we circumvent the problem of circular
and signed angles. The angle can then be reconstructed using
arctus tangens (atan?2) of the approximated sin and cos angle.

We trained our network f(x) by minimizing the sum of the nor-
malized mean squared errors as shown in the following equa-
tion:

L= 5 ((sin(a) = f(2)1)” + (cos(a) — f(2)2)"+

((sin(e) — f(x)3)? + (cos(e) — f(x)a)*+ D
(cx — f(:E)5)2 + (cy — f(l")b‘)z

| = N =

Whereby f(z); indicates the value of the output vector at the
position ¢ € {1,---,6}. Furthermore the center ground point
is normalized into a range of [—1, 1] by using the maximum
image dimension. In order to predict the center ground points
we also used an tanh output for every image axis and scaled
the output to the final image size:
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Wherby ¢z and cy are the estimated ground points.

a )
rOQ |:|—> —> tanh

Input ResNet-18 2x2x512  2048x128 128x6
Adaptive Fully Batf:h A
Average Conneoted Normalization
Pooling and ReLU

Figure 3. Deep convolutional neural network scheme. We
removed the last layer of a ResNet-18 network and used it
to encode the variable sized car images. The features are
fixed in size with an adaptive average pooling and then
fed to two consecutive fully connected layers. The car
angles and the center ground points are estimated with the
tanh of the output.

The network takes a vehicle image as input and estimates the
pose parameters of the vehicle as explained above. Since the
vehicle images are usually of different sizes, we have adaptively
padded each batch to its maximum image size. Ultimately it is
used on vehicles extracted from real surveillance camera data
by an single shot detector like YOLO (Redmon et al., 2016) or
M2Det (Zhao et al., 2019).

To train the deep convolutional neural network different data
sources as described in chapter [B| were used: We extracted real
car images with labeled pose information and rendered car im-
ages from 3D vehicle models. Since the car models are pro-
vided with no or unrealistic textures, we decided to create re-
alistic renderings by using CycleGAN (Zhu et al., 2017) and
pix2pixHD (Wang et al., 2018). We trained network models for
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each dataset type separately as well as a model on combined
real and rendered car images.

3. DATA

Waymo provides a large and diverse autonomous driving dataset
(Sun et al., 2019)), which is comprised of high resolution sensor
data collected by Waymo self-driving cars in a variety of con-
ditions. The dataset consists of 20s long segments with labeled
3D point clouds and corresponding but independently labeled
2D images, taken by five lidars as well as five cameras with a
resolution of 1920 x 1280 pixel collected at 10Hz.

We sampled 800 segments of the dataset at 0.5Hz and extracted
each car patch: a 2D car image with its minimal bounding box
from the camera labels. Additionally the 2D bounding boxes
from the camera labels were matched with the corresponding
3D bounding boxes of the lidar lables to create the following
label information for each car patch:

o distance (d): the distance in meters from the camera to the
car’s center ground point.

o elevation (e): the elevation angel in degrees of the camera
with respect to the car’s center ground point in the range
of -90°to 90°, where -90°equals a view from the bottom,
0°a view from the side and 90°a view from the top.

e azimuth (a): the azimuth rotation angel in degrees of the
camera with respect to the car’s center ground point in the
range of 0°to 360°, where 0°equals a view at the car’s
front, 90°a view at the car’s right side, 180°a view at the
car’s back and 270°a view at the car’s left side.

e center ground point (cx, cy): the car’s 3D center ground
point projected to the 2D image coordinates of the car
patch.

e vehicle length: the car’s length in meters.
e vehicle width: the car’s width in meters.

e vehicle height: the car’s height in meters.

To filter wrongly labeled car patches and car patches where
cars are highly occluded, we applied semantic image segmen-
tation by using DeepLab (Chen et al., 2017) with the pretrained
xception65,coco,voc,trainva model. In the following this fil-
tered and labeled dataset of approximately 25.000 car patches
will be called Waymo images. Example patches are shown in
Figure @ on the left side.

To our knowledge ShapeNet (Chang et al., 2015) is the largest
collection of labelled 3D models. For our domain ShapeNet-
Core (v2) contains around 3500 car models from which we
manually chose 100. With the help of PyTorch3D (Ravi et al.,
2020) these models were used to render 2D car patches match-
ing the Waymo images. For each car patch of the Waymo im-
ages a random 3D model is chosen and rendered with the exact
same attributes as the given car patches. Example patches are
shown in Figure@on the right side. In the following this labeled
dataset will be called ShapeNet images.

Since the ShapeNetCore car models are provided with no or
unrealistic textures we decided to create realistic renderings by
using CycleGAN and pix2pixHD. For CycleGan we trained an

1 https://github.com/tensorflow/models

Figure 4. Waymo car patches (left) and corresponding
rendered ShapeNet models (right)

own model for 50 epochs from scratch using the paired Waymo
and ShapeNet images. For pix2pixHD we used the pretrained
label2city 1024¢f] model.

With the help of the self-trained CycleGan model each ShapeNet
image was textured. In the following this labeled datasets will
be called CycleGAN images. Additionally CycleGAN and pix2-
pixHD were both applied to the manually chosen 100 ShapeNet-
Core vehicle models to create 5.000 textured car patches. For
each car patch a random 3D vehicle model with known center
ground point and orientation is rendered and a 2D image from
the hemisphere with a precision of one degree around the vehi-
cle is randomly selected from the range of 240°to 360°azimuth
rotation and 0°to 25°elevation. In the following these labeled
datasets will be called CycleGAN images partial and pix2pixHD
images partial respectively. Example patches are shown in Fig-
ure

Figure 5. Rendered ShapeNet models (left) with
CycleGAN texture (middle) pix2pixHD texture (right)

2 https://github.com/NVIDIA/pix2pixHD
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4. EXPERIMENTS

Using our deep convolutional neural network and the datasets
described in chapter [3| we trained and evaluated different mod-
els, namely:

e Waymo-Full: training and evaluation on all real car im-
ages (Waymo images). The aim of this is to provide a base-
line for the subsequent experiments, where only a subset
of possible orientations is used.

e Waymo-Partial: training and evaluation on the real car
images (Waymo images) excluding all car patches with an
azimuth rotation greater than 240°.

e Waymo-CycleGAN: improvement of Waymo-Partial by
an additional training and evaluation on rendered car im-
ages with artificially generated textures from CycleGAN
(CycleGAN images partial). We added the same amount
of synthetic car images with the same angles as excluded
in Waymo-Partial (i.e. azimuth rotation greater than 240°),
so that the synthetic data should replace the excluded data.

e Waymo-Pix2Pix: same as Waymo-CycleGAN but instead
of using artificial generated textures from CycleGAN, the
textures are generated with pix2pixHD (pix2pixHD images
partial).

All models were trained for 20 epochs with a batch size of 5.
Therefore the above mentioned datasets, namely Waymo im-
ages, ShapeNet images, CycleGAN images, CycleGAN images
partial and pix2pixHD images partial were each split randomly
into training (85%) and validation (15%) sets. The trained net-
work models were finally tested against a test set parallel to the
Waymo images consisting of approximately 2100 car patches
(~10% of the number of training images). In the following
this labeled datasets will be called Full-Waymo test set. Fur-
thermore we created a second test set by excluding all angles
between 240°and 360°from the Full-Waymo test set. In the fol-
lowing this labeled datasets will be called Partial-Waymo test
set. The expectation is that our network will perform better
with Waymo-Cyclegan than with Waymo-Partial due to the ad-
ditional introduced synthetic data in former. This will be partic-
ularly visible on the second test set (a : 240° — 360°) because
it contains new viewing angles.

5. RESULTS & DISCUSSION

Table (1| shows the results of the performed experiments. For
each network model the average precision of the azimuth rota-
tion and elevation angle (in degree) as well as the center ground
in pixel (using the Euclidean distance) is given. Additionally
we included the row *Naive (mean)’, representing an pose esti-
mator always returning the validation sets mean values. Since
the results of the respective evaluation and test sets are very
similar, in Tableonly the results for the full (0° — 360°) and
partial (240° — 360°) test sets are presented.

The experiment baseline (Waymo-Full) of our deep convolu-
tional neural network has an average accuracy of 11.10°for the
azimuth rotation, 1.52°for the elevation angle, 22.06 pixel for
the center ground x and 14.34 pixel for the center ground y co-
ordinate when evaluating on the Full-Waymo test set and com-
parable results for the Partial-Waymo test set. With respect to
the corresponding naive baselines Waymo-Full has higher accu-
racies for the azimuth rotation, elevation angle, center ground

Full-Waymo test set (a : 0° — 360°)

Method a € cT cy

Waymo-Full 11.10° 1.52° | 22.06px | 14.34px
Waymo-Partial 22.42° | 1.54° | 25.60px | 14.59px
Waymo-CycleGAN | 23.44° | 1.90° | 22.42px | 20.87px
Waymo-Pix2Pix 23.27° | 2.78° | 21.69px | 31.30px
Naive (mean) 78.79° | 2.82° | 84.55px | 80.83px

Partial-Waymo test set (a : 240° — 360°)

Method a € cT cy

Waymo-Full 10.75° | 1.42° | 21.56px | 15.30px
Waymo-Partial 121.22° | 2.10° | 30.10px | 13.09px
Waymo-CycleGAN | 72.09° | 2.51° | 18.00px | 26.56px
Waymo-Pix2Pix 73.95° | 2.50° | 17.78px | 29.57px
Naive (mean) 78.79° | 2.82° | 84.55px | 80.83px

Table 1. Mean pose estimation accuracies of our deep
convolutional neural network for the Full- and
Partial-Waymo test set

x and center ground y coordinate in comparison to the naive
baseline, significantly for both the Full-Waymo test set and the
Partial-Waymo test set. This demonstrates our network is able
to estimate vehicle poses from car patches.

As expected the accuracies for the azimuth rotation and eleva-
tion decrease when using a training set excluding all car patches
with an azimuth rotation greater than 240°(Waymo-Partial) in
comparison to the experiment baseline (Waymo-Full). This is
caused by the fact, that the network cannot generalize to unseen
viewing angles. Consequently it fails to predict them during
testing.

The Waymo-CycleGAN experiment has higher accuracies for
the azimuth rotation and elevation angle in comparison to Waymo-
Fartial, significantly for the Partial-Waymo test set and slightly
worse for the Full-Waymo test set, but still does not reach the
accuracies of Waymo-Full. This proves our assumption that ren-
dered 3D vehicle models with artificially generated textures are
helpful for training the pose estimation network for car patches
not in the initial training dataset. In case of Waymo-CycleGAN
the deep convolutional neural network could only learn to esti-
mate car poses greater than 240°from the rendered 3D vehicle
models. For the type of artificially generated texture we could
not find any difference, Waymo-CycleGAN and Waymo-Pix2Pix
share similar results.

Furthermore we investigated not only the networks average pre-
cision but also the azimuth rotation error with respect to the
elevation angle as well as to the azimuth rotation itself. As
exemplified at the top in Figure [6] and Figure [7} with increas-
ing elevation angle the azimuth rotation error decreases. This
means the deep convolutional neural network estimates vehicle
poses more accurate on higher elevation angles (see also Table
[2), which also confirms the intuition that higher elevation angles
allow for a more precise pose and orientation determination.

This fact also applies for the azimuth rotation error with respect
to the azimuth rotation, as presented at the bottom in Figure []
and Figure[/} The deep convolutional neural network estimates
vehicle poses more accurate for azimuth rotations around 0°and
180°. This correlates with the distribution of the azimuth rota-
tion in the training, validation and test sets of the trained net-
work models, which share the same distribution. Due to the
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Figure 6. Median azimuth rotation error with respect to
the elevation angle (top) and with respect to the azimuth
rotation (bottom) of Waymo-Full for the Full-Waymo test

set

Full-Waymo test set (a : 0° — 360°)

Method a(e<d) | a(5>e<10) | a(e>10)
Waymo-Full 13.95° 12.37° 09.22°
Waymo-CycleGAN | 25.95° 24.17° 19.51°

Partial-Waymo test set (a : 240° — 360°)

Method @ (e<5) | @a(5>e<10) | a(e>10)
Waymo-Full 30.89° 15.23° 13.22°
Waymo-CycleGAN | 81.74° 82.79° 69.75°

Table 2. Mean azimuth rotation accuracies of our deep
convolutional neural network for the Full- and
Partial-Waymo test set for different elevation angle classes

fact, that the Waymo-images are recorded from the perspective
of (self-) driving cars, the Waymo-images have an unbalanced
distribution of azimuth rotation and elevation angle (see Fig-
ure [8). The datasets contain more front- and backfacing cars
than sidefacing ones for small elevation angles and thus a higher
pose estimation precision due to the higher availability of train-
ing data for this viewing angles can be reached.

6. CONCLUSION & OUTLOOK

We showed that even with a simple custom deep convolutional
neural network it is possible to estimate vehicle poses for car-
patch-images by reaching accuracies of ~10°for the azimuth
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Figure 7. Median azimuth rotation error with respect to
the elevation angle (top) and with respect to the azimuth
rotation (bottom) of Waymo-CycleGAN for the
Full-Waymo test set

rotation, ~1.5°for the elevation angle and ~20px for the center
ground point. Additionally we demonstrated that those neural
networks can be trained by non real data using rendered 3D
vehicle models with artificial generated textures by CycleGAN
and pix2pixHD.

Even though first experiments show promising results there is
room for improvement. First, using real datasets with higher el-
evation angles (e.g. from road junction surveillance cameras),
should be used in order to complement more perspectives with
real data. Since in this work we only used a slightly modified
version of ResNet-18 as deep convolutional neural network and
focused on usage and generation of training data, next steps
will deal with adapting more advanced networks, which are
proven to estimate object poses more precisely, like (Xiang et
al., 2017), to our domain of vehicles.

Furthermore, vehicle poses, which are estimated by the intro-
duced deep convolutional neural network could be used in order
to adapt and retrain object detection networks, like YOLO or
M2Det, to directly predict the vehicle pose without estimating
an object bounding box beforehand, like (Tekin et al., 2018).

Additionally, we want to use domain adaptation to close the do-
main gap between the synthetic and the real vehicle images. A
possible solution would be to extend the training of CycleGAN
on an large unpaired dataset of the synthetic vehicles and the
images extracted by an object detection network of surveillance
camera data. This approach would probably lead to more real-
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Figure 8. Distribution of the elevation angle (top, bin size
of 1°) and azimuth rotation (bottom, bin size of 5°) in the
Waymo, ShapeNet and CycleGAN images

istic looking vehicle images of ShapeNet. It is imaginable that
instead of regressing the car-pose we could reduce the pose esti-
mation to a classification problem that predicts discrete angles.
We could then use adversarial discriminative domain adaptation

(Tzeng et al., 2017) to directly decrease the domain gap in the

feature space.
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