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ABSTRACT: 

 

The irrigation districts need high-resolution spatial distribution information of irrigated fields to manage irrigation water effectively 

and achieve sustainable water resources management, especially for fragmented croplands such as China. However, most irrigated 

area mapping methods by remote sensing are based on MODIS time series with a relatively low resolution of 250-1000m. To fill this 

gap, this study attempted to use pixel-based random forest to map irrigated areas based on two multi-spectral images from GF-1 

satellite with a resolution of 16 m in an irrigated district of China, during the winter-spring irrigation period of 2018. Accuracy of the 

retrieved 16-m map was assessed by accuracy error matrix using 210 ground-truth samples. The result had an overall accuracy of 

93.33% with a Kappa Coefficient of 0.9164. The 16-m resulting map shows that the area of irrigated wheat, rain-fed wheat, irrigated 

fruit tree, and fallow croplands in the study area were 52066.48 ha, 12932.33 ha, 18104.32 ha, and 4641.25 ha respectively, 

accounting for 52.57%, 13.06%, 18.28% and 4.69% of the total study area, which are basically consistent with those obtained from 

field investigations. Compared with SVM, the random forest results are more accurate with fewer misclassifications. The pixel-based 

random forest for irrigated area mapping at high resolution can obtain more refined spatial distribution of irrigated areas than low-

resolution images, which is suitable for fragmented croplands. Besides, this method can effectively distinguish irrigated crops from 

rain-fed crops, proving the classification ability of random forest in high-resolution irrigation area mapping only by two images. 
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1. INTRODUCTION 

Irrigation plays an important role in crop growth, affecting 

agricultural yields and price stability especially in arid to semi-

arid regions where irrigation is the main source of water needed 

for crop growth. Agricultural irrigation consumes more than 

70% of the world's available fresh water resources, and affects 

atmospheric convection, rainfall distribution and local climate 

by changing the distribution of surface water and groundwater 

(Ambika et al., 2016; Deines et al., 2017; Thenkabail, 2010). 

But over-exploitation of water resources for irrigation has 

depleted groundwater aquifers and reduced annual river flows 

(Postel, 2003). Moreover, the population growth and rapid 

economic development will consume more limited fresh water 

resources, exacerbating the problem of irrigation water shortage. 

Therefore, irrigation districts need better planning for irrigation 

to limit water budgets, avoid waste and relieve the crisis of 

water resource. In this regard, the spatiotemporal distribution 

characteristics of irrigated areas are important for sustainable 

water resources management, improving irrigation water 

efficiency (Abuzar et al., 2015; Deines et al., 2017; Pervez et al., 

2010; Thenkabail et al., 2004). On the other hand, agricultural 

drought has shown a tendency of frequency and recurrence 

under the combined effects of global climate change and high-

intensity human activities, which will directly affect food 

production and then threaten social stability and sustainable 

development (Dai, 2013; Rockström et al., 2012; Sheffield et al., 

2007). Considering that irrigation is the most effective way to 

mitigate the adverse effects of agricultural drought, the spatial 

distribution and spatiotemporal changes of irrigated croplands 

are of great significance for food security, scientific water 

resources management during droughts, and drought monitoring 

in the context of climate warming (Alexandridis et al., 2008; 

Gamo et al., 2013; Meier et al., 2018; Mutlu et al., 2008; Zhang 

et al., 2015). 

Remote sensing has become an important method for mapping 

the spatial distribution of croplands with its advantages of wide 

coverage, short revisit frequency and low cost (Gumma, 2011; 

Ouzemou et al., 2015; Wardlow et al., 2008). It can be used to 

classify crops, identify irrigated areas, and understand crop 

growth, which play an important role in irrigation district 

management (Xiong et al., 2017). In 2006, the World Water 

Management Institute (IWMI) mainly used spectral matching 

techniques (SMTs) based on unsupervised ISOCLASS k-means 

classification and image segmentation by precipitation, 

temperature and elevation using MODIS time series data to 

obtain the first global irrigation area map by remote sensing at 

the resolution of 10 km (Thenkabail et al., 2006). But the 

object-based SMTs can’t take full advantages of high-resolution 

images, which are not applicable to small croplands mapping. 

Since then, a series of annual irrigated area maps based on 

MODIS time series have been released at regional or national 

scale (Biggs et al., 2006; Dheeravath et al., 2010; Teluguntla et 

al., 2015; Thenkabail et al., 2005; Thenkabail et al., 2009; 

Wardlow et al., 2014). At present, most irrigated area mapping 

methods by remote sensing are based on MODIS time series 

data with a relatively low resolution of 250-1000m (Dong et al., 

2010; Lin et al., 2008; Shahriar et al., 2014; Teluguntla et al., 

2017) which is not conclusive to its effective application at field 

scale. However, the croplands in China are relatively small, 
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scattered, and the planting structure is complex. The Chinese 

irrigation districts need high-resolution spatial distribution 

information of irrigated areas to manage irrigation water 

effectively and achieve sustainable water resources management 

for the growing demand of irrigation water caused by 

population growth and economic development in the future 

(Teluguntla et al., 2018; Xiong et al., 2016). But MODIS is 

difficult to meet the needs of small croplands mapping. For 

fragmented croplands in China, high-resolution images such as 

the Landsat data (with a spatial resolution of 30m) and GF-1 

data (with a spatial resolution of 16 m) can better resolve 

smaller or scattered croplands, providing accurate location and 

improving the accuracy of the irrigation area mapping (Velpuri 

et al., 2009). Nevertheless, it is hard to obtain high-resolution 

time series data due to the limitation of the weather and the 

revisit cycle of satellites, which make it difficult to map 

irrigation areas. Consequently, this study was focused on how 

to accurately map irrigated areas at high resolution based on a 

small amount of images. Random forest is a supervised 

classification method with fast training speed and high accuracy 

(Belgiu et al., 2016; Liaw et al., 2002). In terms of crop 

classification, random forest has achieved good results and 

shows the potential to map irrigated areas (Machwitz et al., 

2010; Xu et al., 2019;). Here the pixel-based random forest was 

explored for irrigated area mapping at a spatial resolution of 

16m by only two images and its accuracy was assessed by 

ground-truth samples, demonstrating the ability of mapping 

precise irrigated areas which can effectively distinguish between 

rain-fed and irrigated croplands. 

 

2. MATERIALS 

2.1 Study area 

Donglei Irrigated District (PhaseⅡ ) (109°10’E to 110°10’E and 

34°41’N to 35°N) is located in Weinan City, Shaanxi Province, 

covering three counties of Fuping, Dali and Pucheng (Fig. 1). 

The topography is higher in the northwest than the southeast 

with the elevation of 385～600m. The study area is dominant 

by the semi-arid climate with the annual ET of 1700-2000 mm 

and the precipitation of 519 - 552 mm which is concentrated 

from July to September. Thus, irrigation is the main source of 

the water for crop growth.  

 
Figure 1. Study area 

 

Donglei Irrigated District (Phase Ⅱ ) draws water from the 

Yellow River to irrigate croplands by canal. The time from 

October to April is the main irrigation period called winter-

spring irrigation in which winter wheat is the main crop. 

Typically, winter wheat is mainly irrigated 2-3 times but 3-4 

times occasionally during drought. 
 

2.2 Data 

There are rain-fed areas of winter wheat in the study area, the 

harvest time of which is generally about ten days earlier than 

the irrigated winter wheat. This difference can effectively 

distinguish between irrigated wheat and rain-fed wheat. 

Therefore, in order to increase the accuracy of classification 

results, the images before and after the harvest of rain-fed wheat 

were chosen as the input data of the random forest algorithm. In 

this study, two 16-m images from GF-1 satellite on March 29, 

2018 and May 12, 2018 respectively were selected during the 

winter-spring irrigation period of the study area in 2018, each of 

which composed of four bands (blue: 0.45-0.52 μm, green: 

0.52-0.59 μm, red: 0.63-0.69 μm, NIR: 0.77-0.89 μm) 

downloaded from the China Center for Resources Satellite Data 

and Application (www.cresda.com/CN/). After pre-processing, 

the surface reflectance of four bands for each image was 

calculated and then composited as the input data layer for 

random forest algorithm. In order to map irrigated areas and 

verify the accuracy of the results, field surveys in 2018 were 

conducted to collect 420 ground-truth samples for training and 

validation, recording GPS, crop types, and whether they were 

irrigated. The ground-truth samples were gathered randomly 

from irrigated wheat, rain-fed wheat, irrigated fruit tree, fallow 

croplands and others. Of this 210 samples were used during the 

classification, including 50 samples of irrigated wheat, 40 

samples of irrigated fruit tree, 40 samples of rain-fed wheat, 40 

samples of fallow croplands and 40 samples of others. The 

remaining 210 were reserved for the purpose of accuracy 

assessment, including 50 samples of irrigated wheat, 40 samples 

of irrigated fruit tree, 40 samples of rain-fed wheat, 40 samples 

of fallow croplands and 40 samples of others. The ground-truth 

samples distribution in the study area is shown in Figure 2.  

 

Figure 2. The distribution of ground-truth samples 

 

3. RANDOM FOREST MACHINE 

LEARNING ALGORITHM 

Random forest algorithm (RF) is a multi-decision tree 

classification method proposed by Breiman in 2001 (Breiman, 

2001). Compared with regression tree and linear regression, RF 
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is efficient on large data sets, having high prediction accuracy 

and good anti-noise performance for image classification with 

good stability (Belgiu et al., 2016). Random forest uses 

bootstrap to create a regression tree cluster by sampling a part 

of the sample set with replacement and the final classification 

result is obtained by voting. The basic process is: 

 

(1) Use bootstrap sampling method to randomly select K 

training samples from the original samples. 

(2) K decision tree models are constructed for each of the 

K training samples, and the K classification results 

are obtained. The input variable of each decision tree 

is to randomly extract M features from N features. 

(3) Determine the final classification structure by voting 

based on the K classification results. 

 

The trained random forest classifier established of 1000 trees by 

210 training samples was applied to input composites of surface 

reflectance from the two multi-spectral images and labelled each 

pixel as either irrigated wheat, irrigated fruit tree, rain-fed wheat, 

fallow croplands or others, resulting in the spatial distribution 

map of irrigated areas and other LULC.  

 

4. RESULTS AND DISCUSSION 

4.1 Irrigated areas of croplands 

This study used the random forest classifier established by 

ground-truth samples to map the spatial distribution of irrigated 

areas during the winter-spring irrigation period with a spatial 

resolution of 16 m in 2018, as shown in Figure 3 and Figure 4. 

It showed that the total irrigated area consisted of irrigated 

wheat and irrigated fruit tree was 70170.80 ha. Specifically, the 

irrigated area of wheat was 52066.48 ha, accounting for 52.57% 

of the total study area. It means that wheat is the most important 

crop planted during the winter-spring irrigation period, which is 

consistent with the situation learned from field visit. Irrigated 

fruit tree was planted in an area of 18104.32 ha, accounting for 

18.28% of the total study area, which mainly distributed around 

Pucheng town or in the Dali system. In addition, there were 

croplands in fallow covering 4641.25 ha where no crop was 

planted. Moreover, there were some croplands that cannot be 

irrigated by canals due to the high terrain, namely rain-fed areas 

in the northeast of study area, having an area of 12932.33 ha, 

which means that the random forest method can distinguish 

irrigated wheat from rain-fed wheat. Due to the fragmentation 

of croplands in China, this method can obtain the more refined 

spatial distribution of irrigated areas than low-resolution images. 

 
Figure 3. The spatial distribution of croplands during the 

winter-spring irrigation period of 2018 with 16 m resolution 

 

Figure 4. Statistics in the 16-m cropland map during the winter-

spring irrigation period of 2018 

 

4.2 Accuracy assessment 

An accuracy assessment of the 16-m resulting map derived by 

pixel-based random forest was conducted using an accuracy 

error matrix based on 210 randomly distributed validation 

samples from field visit, as shown in Table 1. The accuracy 

error matrix provided an overall accuracy of 93.33%, with a 

Kappa Coefficient of 0.9164, indicating that irrigated areas 

were mapped accurately. The extraction effect of irrigated fruit 

tree is good, with producer’s accuracy of 92.50% (errors of 

omission = 7.50%) and user’s accuracy of 94.87% (errors of 

commission = 5.13%). For irrigated wheat, the producer’s 

accuracy and user’s accuracy were 96.00% and 90.57% 

respectively (errors of omission = 4.00%; errors of commission 

= 9.43%). Moreover, the producer’s accuracy and user’s 

accuracy of croplands in fallow were 95.00% and 95.00% 

respectively (errors of omission = 5.00%; errors of commission 

= 5.00%). For rain-fed wheat, the producer’s accuracy is 

97.50% (errors of omission = 2.50%), and user’s accuracy is 

90.70% (errors of commission = 9.30%). Furthermore, the 

accuracy of others was relatively lower with producer’s 

accuracy of 85.00% (errors of omission = 15.00%) and user’s 

accuracy of 97.14% (errors of commission = 2.86%). In general, 

the random forest classification results are accurate for irrigated 

area mapping. For example, the partial enlarged details show 

that this method can distinguish croplands from roads and 

buildings, and map broken and isolated small fields, which is 

suitable for Chinese small scattered croplands with complex 

planting structure, reducing classification errors caused by 

mixed pixel (Fig. 5). 

 

Class 
Commission 

Error 

User’s 

Accuracy 

Omission 

Error 

Producer’s 

Accuracy 

Irrigated 

Wheat 
9.43% 90.57% 4.00% 96.00% 

Irrigated 

Fruit Tree 
5.13% 94.87% 7.50% 92.50% 

Rain-fed 

Wheat 
9.30% 90.70% 2.50% 97.50% 

Fallow 

Croplands 
5.00% 95.00% 5.00% 95.00% 

Others 2.86% 97.14% 15.00% 85.00% 

Table 1. Accuracy assessment by ground-truth samples 
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Figure 5. Comparison of the partial enlarged details in the (a) 

cropland map during winter-spring irrigation period of 2018 

and (b) the satellite image on March 29, 2018 

 

5. DISCUSSIONS 

The field investigation found that some fallow croplands were 

left unused and a large number of weeds were grown, making it 

difficult to identify and easily confused with rain-fed wheat. 

There were some confusion between irrigated wheat and fruit 

tree because of interplanting, which caused the major 

classification errors for irrigated area mapping. The validation 

results suggested that the area of fallow croplands and rain-fed 

wheat were slightly larger than the true area due to the 

misclassification of others, which affected the final 

classification accuracy. On the other hand, when selecting input 

data, the image during the time when rain-fed wheat is 

harvested while irrigated wheat is not harvested is crucial, 

which can effectively improve the classification accuracy. 

Support vector machine (SVM) is a commonly used supervised 

classification method, which is widely used in agricultural 

monitoring and has achieved good classification results. Based 

on SVM classifier, the same training samples were used for 

classification and the same verification samples were used to 

assess the accuracy of the classification results, which were 

shown in Table 2. The accuracy error matrix provided an 

overall accuracy of 90.00%, with a Kappa Coefficient of 0.8748, 

which is lower than that of random forest. Comparing the 

classification results by random forest, the omission errors of 

irrigated wheat and fallow croplands by the support vector 

machine results are significantly larger, which means the 

extraction effect of irrigated wheat and fallow croplands is not 

as accurate as that by random forest. For SVM results, more 

irrigated wheat were misclassified as irrigated fruit trees, and 

the confusion between fallow croplands and others were more 

serious. In conclusion, the classification results by random 

forest are better. 

 

 

 

 

Class 
Commission 

Error 

User’s 

Accuracy 

Omission 

Error 

Producer’s 

Accuracy 

Irrigated 

Wheat 
6.38% 93.62% 12.00% 88.00% 

Irrigated 

Fruit Tree 
13.64% 86.36% 5.00% 95.00% 

Rain-fed 

Wheat 
5.00% 95.00% 5.00% 95.00% 

Fallow 

Croplands 
3.13% 96.88% 22.50% 77.50% 

Others 19.15% 80.85% 5.00% 95.00% 

Table 2. Accuracy assessment by ground-truth samples 

 

6. CONCLUSIONS 

Based on the multi-spectral reflectance from two GF-1 images 

on March 29 and May 12, 2018, this study established a random 

forest classifier using ground-truth samples to map irrigated 

areas at a resolution of 16 m during the winter-spring irrigation 

period of 2018 in Donglei Irrigation District. 

The 16-m resulting map derived by pixel-based random forest 

was assessed by the accuracy error matrix, having an overall 

accuracy of 93.33%, with a Kappa Coefficient of 0.9164 which 

indicated that irrigated areas were mapped accurately. The area 

of irrigated wheat, rain-fed wheat, irrigated fruit tree, and fallow 

croplands in the study area were 52066.48 ha, 12932.33 ha, 

18104.32 ha, and 4641.25 ha respectively, accounting for 

52.57%, 13.06%, 18.28% and 4.69% of the total study area. 

The results are basically consistent with those obtained from 

field investigations. Compared with SVM, the classification 

results by random forest are more accurate with fewer 

misclassifications. The classification method of irrigated area 

based on pixel-based random forest is suitable for mapping 

high-resolution irrigated areas especially for fragmented 

croplands, reducing errors caused by mixed pixels. Besides, this 

method can effectively distinguish irrigated crops from rain-fed 

crops, proving the classification ability of random forest method 

in high-resolution irrigation area mapping only by two images. 
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