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ABSTRACT:

The goal of this paper is to use transfer learning for semi supervised semantic segmentation in 2D images: given a pretrained deep
convolutional network (DCNN), our aim is to adapt it to a new camera-sensor system by enforcing predictions to be consistent for
the same object in space. This is enabled by projecting 3D object points into multi-view 2D images. Since every 3D object point
is usually mapped to a number of 2D images, each of which undergoes a pixelwise classification using the pretrained DCNN, we
obtain a number of predictions (labels) for the same object point. This makes it possible to detect and correct outlier predictions.
Ultimately, we retrain the DCNN on the corrected dataset in order to adapt the network to the new input data. We demonstrate
the effectiveness of our approach on a mobile mapping dataset containing over 10’000 images and more than 1 billion 3D points.
Moreover, we manually annotated a subset of the mobile mapping images and show that we were able to rise the mean intersection
over union (mIoU) by approximately 10% with Deeplabv3+, using our approach.

1. INTRODUCTION

The problem of overfitting in deep neural networks is the norm
rather than the exception when they are trained on small data-
sets. Even with large annotated datasets, such networks of-
ten do not generalize well without loss to unseen data. There-
fore, much effort is put into reusing knowledge or adapting pre-
trained networks to new problems in order to avoid high costs
for labeling data and increase the performance of the models.
In computer vision, this is often accomplished by training a
DCNN on a publicly available dataset and fine-tuning it to the
target dataset to solve a similar task. It is desirable to use only
few or even no annotations in the target dataset. In those semi-
or unsupervised cases one often has to make assumptions about
the nature of the data in order to solve these problems.

The approach of this work is to use a pre-trained DCNN for se-
mantic segmentation in 2D images and apply this network to a
new dataset with different camera sensors and different view-
ing angles in a new environment. The reduced performance of
the DCNN on this new dataset is sometimes referred to as do-
main gap. The question we ask in this paper is: Is it possible
to correct false predictions, from multi-view images, and re-
train the DCNN in order to close the domain gap? To answer
this question, we collected an image and point cloud dataset
with a mobile mapping system (MMS), which is equipped with
two laserscanners, two cameras, and an GNSS/ IMU system,
all fully calibrated. We used the publicly available pre-trained
networks Deeplabv3+ by (Chen et al., 2018b) and HRNetV2 by
(Yuan et al., 2019) in order to semantically segment all images
recorded by the MMS. Both networks were trained on the City-
scapes dataset (Cordts et al., 2016). Finally, we projected the
3D point cloud to all involved 2D images. This leads to dif-
ferent predictions for every single 3D point due to multi-view
observations, which needs to be resolved. In order to measure
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the impact of our process we manually annotated a subset of the
mobile mapping dataset, as shown in figure 1.

Figure 1. Manually annotated images for a subset of the MMS
dataset, according to the official Cityscapes policy.

Figure 2. Predictions before (left) and after correction (right).
We recovered the sidewalk (pink), terrain (light green),

vegetation (green) and improved the overall mIoU by 10%.

Our key contributions in this work are:

• Creation of a MMS data set containing ∼ 10’000 partly
annotated multi-view images and aligned 3D point clouds.

• Introduction of a neural network that resolves outliers of
multi-view object points in any order of input and with
variable observation length.

• Retraining of a DCNN in the new domain with the correc-
ted data set, resulting in a ∼ 10% increase in mIoU.
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2. RELATED WORK

Semantic segmentation attempts to segment and classify parts
of a scene by doing pixel- or pointwise classification. Since the
rise of deep learning, popular approaches are using fully convo-
lutional neural networks for the semantic segmentation of im-
ages (Long et al., 2015). More advanced approaches still rely
on neural networks (Badrinarayanan et al., 2017, Zhao et al.,
2017, Chen et al., 2018a), but improved performance by modi-
fying their architecture and components. The Network perform-
ance is measured using publicly available annotated data sets
such as Cityscapes (Cordts et al., 2016) or the PASCAL VOC
challenge (Everingham et al., 2010).

Semi-supervised learning is a task that lies between a super-
vised (completely annotated dataset) and unsupervised setting
(no annotations). The aim is almost always to reduce expens-
ive labelling costs. In most cases, a learner is trained by using a
large number of unlabelled instances in combination with a lim-
ited number of labelled instances (Van Engelen, Hoos, 2020).
Some popular key assumptions for semi-supervised learning are
the smoothness and manifold assumption, which states that two
closely located samples in the input space or on the same low-
dimensional manifold should have the same label (Van Engelen,
Hoos, 2020).

Transfer learning for semantic segmentation aims to improve
the classifier in the target domain by transferring knowledge
from a source domain. Like semi-supervised learning, it is of-
ten used in order to reduce labeling costs. Many current ap-
proaches in deep learning attempt to achieve this by training
a discriminator that learns to distinguish between the extracted
features of the source and target domains. The classifier, on the
other hand, learns to deceive the discriminator, thus closing the
domain gap (Tzeng et al., 2017, Hoffman et al., 2017, Liu et al.,
2019).

Some approaches to domain adaptation or general improvement
of predictions with multi view consistency have been presented
in the past. For example, (Zhou et al., 2018) improves 3D key-
point predictions in an unsupervised manner by forcing them to
be consistent in space. In the work of (Floros, Leibe, 2012), a
conditional random field (CRF) is used for semantic segmenta-
tion by enforcing temporal consistency between video images.
(Hermans et al., 2014) proposed a method for semantic seg-
mentation in RGB-D images. This involves projecting the in-
dividual images to 3D and smoothing them in the point cloud
using a CRF. (Ma et al., 2017) presented an approach for con-
sistent depth learning with multiple views. They warped feature
maps of RGB-D images from multiple views into a common
reference frame to make the predictions consistent at different
viewing angles.

Lastly, transferring labels between 3D and 2D space has been
done before, e.g., (Xie et al., 2016) transferred human annotated
point clouds into images in order to create arbitrary amounts of
training images and corresponding labels. On the other hand,
(Zhang et al., 2018) and (Peters, Brenner, 2019) used semantic
segmented images and projected them to 3D point clouds in
order to create annotated point clouds.

3. PROBLEM STATEMENT

In order to eliminate wrong predictions of the pre-trained DCNN,
we are introducing The following strategy. As depicted in fig-
ure 3, box 2.), the general problem is that any 3D point X is

possibly mapped to a number of images, and in each of these
images, the DCNN will predict a class distribution. Then, given
all these class distributions, the task is to predict the correct
class label Y for the 3D point X . More precisely, if a point X
is mapped to n images, the pixel coordinates xi, 1 ≤ i ≤ n
in each image are known, so that the corresponding predicted
class distributions hi can simply be looked up. Then, the task is
to predict the correct class label Y from all class distributions
{h1, . . . , hn}. Depending on the number of outliers, this can be
approached in different ways. In cases where only a few false
predictions occur, this can be solved by a simple majority vote
(unsupervised). The major label can then be propagated back
to all images. Other cases, which suffer from strong noise, can
be tackled by using prior information gathered by a small an-
notated subset. We can, for example, take into account image
regions which regularly suffer from false predictions. Based on
the region, we can calculate the weighted sum over all predic-
tions. We show that we are able to correct outliers based on
3D point features and the list of class predicitons by training
a neural network on the annotated subset. All those cases are
semi-supervised, since we are only using a small subset in or-
der to correct our large database of over 10’000 images. Finally,
the corrected predictions are then used as coarse annotations in
order to retrain the DCNN, as shown in figure 3, box 5.).

4. CORRECTION STRATEGY

In contrast to most classification problems that require a fixed
length input or some sort of ordered data, the list of 2D predic-
tions and features assigned to a single 3D point can be of ar-
bitrarily length and order. Therefore there is no straightforward
solution for the problem of predicting the correct class label Y
from all class distributions {h1, . . . , hn}.

In order to introduce our solution we would first specify the
data and input features we calculated, figure 3, box 2.), and
later explain how we solved the classification problem, figure
3, box 3.).

A 3D point Xj will be projected to the pixel coordinates xi,j ,
1 ≤ i ≤ nj , in case of nj multi-view images, in which the point
is visible. That means that the number of multi-view images nj
differs for every 3D point Xj . Therefore, if we group all 2D
pixel coordinates xi,j we receive a list zj of length nj . Addi-
tionally, since the order of the 2D pixel coordinates does not
necessarily have a meaning related to the classification prob-
lem, we assume that the list is in random order.

In addition to the class predictions, we added some features in
order to increase the correction performance. We mixed 2D
and 3D point features by accumulating them along the laser ray
through the 2D images. As there is only one 3D point related
to nj 2D points, we concatenated the following 3D features to
every list entry:

• The normalized reflectance of the laser ray rj .

• The estimated point normals ~nj of the 3D point.

• A value between 1 and 14, which is the campaign count,
denoted as dj . It gives a measure of how ‘dynamic’ a 3D
point is by counting how often we measured a specific
voxel in distinct mapping campaigns (14 in total). If the
point belongs to a voxel that was measured only once, we
can assume it relates to a very dynamic or occluded object.
Vice versa, a point belonging to a voxel which we captured
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Figure 3. Methodology for retraining the DCNN on a new dataset. Colors are indicating different class predictions. The cylinder
shows the same object observed in multiple views.

in every mapping campaign belongs to a static object with
a high probability.

Moreover, we added a number of 2D point features to every list
entry:

• The predicted class distribution h by the DCNN.

• The RGB value RGB at the image coordinate, as well as
the RGB values of the adjacent pixels, 27 values in total.

• The distance δ between the camera center and the 3D point.

• Finally, we calculated the distance β between the image
center and the 2D pixel coordinate, which allows to cap-
ture cases where a specific field of view in the image is
responsible for misclassifications.

Overall, every list entry in zi,j is a vector that contains the fol-
lowing values: (rj , ~nj , dj , hi,j , RGBi,j , δi,j , βi,j). In total the
feature vector has a length of 53.

To assign a ground truth label Yj for the respective input list zj ,
we sum up all manually labeled classes along the associated 2D
pixel coordinates and take the class with the highest occurrence
count as ground truth label.

Please note that we are not able to use all manually annotated
labels, since not every 2D pixel belongs to a 3D point. This is
due to the sparsity of the 3D point cloud, which does not cover
the entire image. Therefore, we used the ground truth labels
that are not associated with a 3D point as a validation and test
set for the DCNN retraining, see figure 3, box 4).

4.1 Network architecture

This section shows our solution for step 3.) in figure 3. We
need to solve the classification problem by training a classifier
that approximates F (zj)→ Yj .

A naive solution to the problem would be to reduce the list zj
along the first axis to a vector of fixed size 1 × 53 using an
operation that does not take into account the order of the lists,
like max or mean. In the case of a list of associated class
probabilities in multi view images predicted by the DCNN, the
mean operation on the first axis would result in a ‘majority

decision’ and the max operation would favour the predictions
in the list with the highest probability. A multi-layer perceptron
(MLP) could then perform a prediction on the reduced list to
classify the actual point classes on all 2D images. However, we
believe that this solution discards much valuable information,
especially since operations like mean are not robust to outlier
predictions.

Our solution is inspired by PointNet (Qi et al., 2017), which is
actually used for the classification of 3D point clouds. Simil-
arly, it solves this problem by first increasing the point feature
size by using an element-wise MLP and then using a reduction
function that produces a fixed size feature vector that can be fed
into a final classification layer. We have adapted the PointNet
architecture to our needs, as shown in figure 4. We first feed
each element of the input to four consecutive MLPs, increas-
ing the point feature size to 1 × 1024. These features are then
reduced to a global feature vector and fed to an MLP whose
output is concatenated to each list element. After a final reduc-
tion, the fixed-size feature vector is then fed to four successive
MLPs, which finally output the class distribution probabilities.

4.2 Training

For training, we noticed that selecting the training, validation,
and test set by randomly sub-sampling is not suitable, as the
classifier overfits to the test data. We therefore selected them
by dividing the data sets into different ‘scenes’ based on their
location.

Due to heavy class imbalances, the network was trained using a
multi-class focal loss FL(pt).

FL(pt) = −α(1− pt)γ log(pt) (1)

Whereby pt in equation 1 is the predicted target label probabil-
ity. We used dropout after every layer, with a dropout probabil-
ity of 50%. Additionally, we augmented the data by randomly
dropping up to nj − 2 input list elements.

Since the scenes can differ between image and laser scan, it is
only possible to correct static objects. We have therefore dis-
carded all dynamic object classes, including ‘sky’, in the train-
ing process.
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Figure 4. Proposed network architecture for learning to classify the correct label class for a list of multi-view predictions.

4.3 Correcting outliers

This section shows the assignment of the corrected predictions
as shown in box 4.), figure 3. The correction network F (zj)
predicts only one class label for all 2D pixels related to a 3D
point. Since we assume that every connected 2D pixel belongs
to the same object except that a dynamic object appears in the
image, we propagate the corrected class F (zj) to every associ-
ated image point as long as the originally predicted class is not
dynamic. By doing this, we preserve the spontaneous appear-
ance of dynamic objects in the scene. The corrected label Ŷi is
created in the following way:

Ŷi =

{
DCNN(Ik)xi,j if DCNN(Ik)xi,j ∈ dynamic
F (zj) otherwise,

(2)

where DCNN(Ik)xi,j is the prediction of the DCNN for image
Ik, taken at pixel index xi,j (k being the index of the image
containing pixel xi,j), and F (zj) is the corresponding corrected
class label. At the end, we reassemble all corrected class labels
in the images to create the data set for retraining the DCNN.
Whereby 2D pixels, which were predicted as static but do not
belong to any 3D point, are removed from the retraining dataset.
This leads in some areas to very sparse training examples as can
be seen in figure 5.

5. DATA PREPARATION

The data sets used were recorded with a Riegl VMX-250 mobile
mapping system. This system captures a maximum of 600’000
3D points per second and has (in our case) two cameras, which
capture images at a rate of 1 Hz each. The image size is 2048×
2560 in contrast to Cityscapes which has a image size of 1024×
2048. The points are acquired with a LiDAR accuracy of 1 cm,
with absolute accuracies typically in the range of 10 to 20 cm.
In order to project the 3D points into the images we used the
calibration matrices and poses obtained by the Riegl system.

To handle occlusion, we have implemented a full ray tracing to
connect multi-view image pixel-coordinates. All 3D points are
sorted into a voxel grid. Then, when determining the image co-
ordinates of a 3D point, the ray is traced to each camera center
in this grid and the point is considered occluded if an occupied
cell is found along the ray. We have used 10 cm grid cells for
this operation. In addition, we computed a voxel pyramid to
speed up the calculation. Although this method is only a rough
approximation of the complex interactions between laser and
image beams, it should generally improve the data set. Because
the computational complexity increases with the distance we
rejected 3D points after a maximum distance of 150 m to the
camera center.

For the ground truth we have manually annotated 23 images,
which can be seen in figure 1. These images belong to four
different locations, selected to cover most classes in Cityscapes.
We would like to point out that our data set was recorded in
Hannover Germany, a city that is also included in the Cityscapes
data set.

Finally, to get the uncorrected predictions for our MMS images,
we used HRNet, which was trained on Cityscapes. The network
and weights were taken from the official repository of the au-
thors1.

Figure 5. Examples for uncorrected (left) and corrected (right)
predictions. (Best viewed digitally.)

6. CORRECTION RESULTS

We divided the data into 85% training, 9% validation and 6%
test set. The data consists of several multi-view feature lists
nj × 53, and for each list a class name Yj . The network was
trained with a batch size of 512, for 100 epochs. Table 2 shows
that we were able to increase the mIoU by ∼ 20%. We cal-
culated the HRNetv2 prediction by extracting the majority de-
cision from the multi-view predictions.

In figure 5 we show examples of images before and after the
multi-view correction step. The image classes are merged ac-
cording to the strategy in equation 2. We have not changed the
images in any way to show the sparsity of the corrected im-
ages. However, it should be evident that our network was able

1 https://github.com/HRNet/HRNet-Semantic-Segmentation/

tree/HRNet-OCR
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Table 1. The table shows the results of the pre-trained DCNN (uncorrected), the retrained DCNN (corrected) and the merged results
(merged). The best results per class are shown in bold.

method road sidewalk building wall fence pole t. light t. sign vegetation terrain sky person rider car truck motorcycle bicycle mIoU
uncorrected 0.784 0.136 0.61 0.12 0.489 0.381 0.175 0.692 0.767 0.02 0.642 0.167 0. 0.786 0.1 0. 0.263 0.36

corrected 0.822 0.576 0.724 0.363 0.546 0.205 0.09 0.524 0.742 0.734 0.877 0.079 0. 0.637 0.089 0. 0.038 0.414
merged 0.824 0.577 0.74 0.383 0.574 0.2 0.155 0.635 0.792 0.73 0.878 0.167 0. 0.787 0.101 0. 0.258 0.46

Figure 6. Examples for successfully corrected predictions after retraining. The figure shows, from left to right, the input image, the
uncorrected prediction, the corrected prediction, and the manually labelled ground thruth.

Table 2. Results on the test set before (HRNetV2) and after
correcting (Corrected) multi view predictions.

Class HRNetV2 Corrected Support
road 0.72 0.84 883947
sidewalk 0.01 0.56 240465
building 0.77 0.88 108556
wall 0.0 0.32 6709
fence 0.21 0.38 1365
pole 0.41 0.34 21624
t. light 0.2 0.32 7490
t. sign 0.58 0.54 850
vegetation 0.82 0.78 48390
terrain 0.0 0.75 21839
mIoU 37.2 57.3

to successfully restore classes such as sidewalk (pink) and ter-
rain (light green).

Interestingly, some results became worse after the correction
step. This could be due to calibration errors between cam-
era and laser scanner. Especially with small objects, this is a
problem, because correct labels can ‘overflow’ into neighbor-
ing image areas. For example, a pole could be assigned to the
surrounding street class if the calibration is not correct. This
type of error leads to label noise in the data set, which can be a
reason for the reduced performance.

A special case is the class ‘vegetation’. The image label policy
of Cityscapes requires that areas visible behind treetops, such
as building facades, must be labeled with the tree label. In the
work of (Peters, Brenner, 2019) it was shown that many of the
laser beams pass through the treetops and thus accumulate tree
and facade labels depending on the viewing angle. This could
make it difficult for the classifier to assign the correct image la-
beling, since it is unclear whether a facade or a treetop is shown
in the multi-view images.

7. RETRAINING THE DCNN AND RESULTS

This section explains the retraining step as shown in box 5.)
in figure 3. To retrain the DCNN, we merged our corrected
static classes with the predicted dynamic classes of the DCNN
as shown in figure 6. In this section we introduce the following
terms for better readability. By the term ‘pre-trained DCNN’,
we mean the DCNN before each correction, see figure 3, box
1.), which outputs ‘uncorrected predictions’. Consequently, ‘re-
trained DCNN’ means the DCNN after step 5.) in figure 3
which outputs ‘corrected predictions’.

For the retraining process we used HRNetv2 and Deeplabv3+
with a Resnet50 encoder. However, HRNetv2 performed slightly
worse than Deeplabv3+, so we did not include the network in
our results and focused on the results of Deeplabv3+.

First, we concatenated the uncorrected predictions and the RGB
values as input to retrain the DCNN. However, we found that in
this case the network converges to a local optimum where it
just outputs the uncorrected prediction. We therefore decided
to retrain the network using RGB input only. The advantage of
this approach is that the DCNN generalizes better on the new
data. The downside is that some classes perform slightly worse
than the uncorrected predictions. However, we think it is a valid
approach to merge both, the uncorrected and corrected predic-
tions to get the best of both worlds. We will therefore present
three results, the performance of the uncorrected predictions,
the corrected predictions and the merged prediction.

The results in figure 6 clearly show that the pre-trained DCNN
could not classify the sidewalks (pink), the sky (blue), wall
(grey blue) and the terrain (light green). After retraining the
DCNN, we successfully restored these classes. Table 1 shows in
detail that we were able to increase the Intersection over Union
(IoU) in most cases. Furthermore, it shows that after retraining,
the mean IoU was increased by 10% on the new dataset.
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The table also shows that the IoU slightly decreases for some
classes after the correction step. Those cases are mostly be-
longing to classes of objects with relatively small physical size.
We think that our correction step fails in these cases because
of calibration errors between camera and LiDAR, as described
above.

8. CONCLUSION

We presented a framework for improving semantic segment-
ation in 2D images on a new data set. Our framework uses
aligned point cloud and image data to accumulate multi-view
predictions for the same 3D object points. These predictions
are then corrected using our neural network and projected back
into the images. The corrected images serve as a supervision
signal for the pre-trained DCNN to adapt it to the new data and
improve its performance in almost all classes.

In the future, we would like to improve the mIoU by creating
more advanced techniques for noise correction. We can ima-
gine that by including some spatial information of surround-
ing 3D points we can improve the correction step. In addition,
it might be helpful to adapt the pre-trained neural network to
our cameras using a domain adaptation technique like Cycada
(Hoffman et al., 2017). The improved classification error would
minimize label noise at an early stage of our framework, which
could then improve the correction step. If the prediction qual-
ity in the images is sufficient, we could image that outliers can
be corrected even in an unsupervised way, using a strategy like
majority voting.
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