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ABSTRACT:

Remote sensing earth observation images have a wide range of applications in areas like urban planning, agriculture, environment
monitoring, etc. While the industrial world benefits from availability of high resolution earth observation images since recent years,
interpreting such images has become more challenging than ever. Among many machine learning based methods that have worked
out successfully in remote sensing scene classification, spatial pyramid matching using sparse coding (ScSPM) is a classical model
that has achieved promising classification accuracy on many benchmark data sets. ScSPM is a three-stage algorithm, composed of
dictionary learning, sparse representation and classification. It is generally believed that in the dictionary learning stage, although
unsupervised, one should use the same data set as classification stage to get good results. However, recent studies in transfer learning
suggest that it might be a better strategy to train the dictionary on a larger data set different from the one to classify.
In our work, we propose an algorithm that combines ScSPM with self-taught learning, a transfer learning framework that trains
a dictionary on an unlabeled data set and uses it for multiple classification tasks. In the experiments, we learn the dictionary on
Caltech-101 data set, and classify two remote sensing scene image data sets: UC Merced LandUse data set and Changping data
set. Experimental results show that the classification accuracy of proposed method is compatible to that of ScSPM. Our work thus
provides a new way to reduce resource cost in learning a remote sensing scene image classifier.

1. INTRODUCTION

Remote sensing plays an important role in earth observation,
and in this area remote sensing image scene classification is
one fundamental problem (Cheng et al., 2017). With the in-
creasing development of remote sensing imaging techniques,
huge amounts of high spatial resolution images have been ac-
quired. Detailed contents in these images, however, make auto-
matic classification a challenging task.

In the past decade machine learning based methods have made
notable success in computer vision, several of which, for ex-
ample support vector machine (SVM) (Mountrakis et al., 2011)
and stacked auto-encoder (Yao et al., 2016), have been applied
to high resolution remote sensing image processing. Recent
studies show that the bag-of-visual-words (BOVW) model is an
effective and robust feature encoding approach (Yang, Newsam,
2010) (Zhu et al., 2016), generated by which the higher level
image representations can improve performance of machine
learning classifiers like SVM. Spatial pyramid matching using
sparse coding (ScSPM) (Yang et al., 2009) is a BOVW based
model that has achieved state-of-the-art performance on several
open remote sensing image data sets (Yang et al., 2015) (Wu
et al., 2016). Basically, ScSPM uses dictionary learning with
sparse coding to train a dictionary that captures salient features,
then low-level features are encoded by the dictionary and rep-
resented in a spatial pyramid way to form higher level features,
which are used as input to the classifier. One bottleneck of Sc-
SPM is the dictionary learning process. The learning objective
function is generally difficult to optimize, and what’s more, if
ScSPM is applied to classify some data set B, then the diction-
ary should be trained on B. This way of dictionary learning is
sometimes called ”task- specific”. Hence if we want to use Sc-
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SPM on multiple tasks, say to classify data set B, C, and D,
then it can be very time and computation consuming to train
three dictionaries on their corresponding data sets.

In the computer vision community, dictionary learning (DL) is
also a topic that attracts lots of attention, on which many of the
works focus on non-task-specific dictionary learning (Maurer et
al., 2013) (Zhu, Shao, 2014). In self-taught learning (Raina et
al., 2007), it is for the first time proposed that the dictionary can
be efficiently trained in an unsupervised way. One important
conclusion of self-taught learning is that a dictionary learned
on a large, unlabeled data set A can be used for feature encod-
ing of another labeled data set B, and the classifier using these
encodings on B can get promising results.

Inspired by this, we propose a self-taught learning framework
using spatial pyramid matching (S-ScSPM) on remote sensing
scene classification from high resolution imagery. We show in
our experiments that using S-ScSPM, to classify labeled data set
B and C, a dictionary trained on data only from unlabeled data
set A is sufficient. While the overall classification accuracy us-
ing S-ScSPM is compatible to and sometimes outperform that
of original ScSPM on labeled data sets, in S-ScSPM the dic-
tionary is learned only on one unlabeled data set, and thus the
resource cost of learning is significantly reduced.

2. METHOD

2.1 Backgrounds

Formally, we use Dl to denote a labeled data set, and Du to de-
note an unlabeled data set. Self-taught learning mainly consists
of three stages: dictionary learning, sparse representation and
classification. ScSPM consists of the same three stages, how-
ever these two methods have the following differences. First,
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in self-taught learning, one trains a dictionary using Du, while
computes sparse representations for images in Dl and classifies
Dl. In ScSPM, one uses Dl for dictionary learning stage and
the same Dl for the latter two stages. Second, in self-taught
learning, one generally uses raw pixels as image descriptors to
learn a dictionary and calculate sparse codes for images, while
in ScSPM, the dictionary is learned on dense SIFT features of
images, and sparse codes computed using the dictionary are
further processed through spatial pyramid matching (SPM) and
max pooling, before fed to the classifier.

Our proposed S-ScSPM is therefore a combination of the self-
taught learning framework and ScSPM. S-ScSPM consists of
the same three stages as discussed above, with the details shown
in Figure 1.

Figure 1. Flowchart of S-ScSPM

2.2 Dictionary learning

We use dense SIFT features extracted on unlabeled images to
train a dictionary via dictionary learning using sparse coding.
For simplicity we let Du denote the set of extracted dense SIFT
features. The problem of dictionary learning is defined as the
following optimization problem:

minimize
B,au

Nu∑
i=1

||x(i)u –Ba(i)u ||22 + λ|a(i)u |1

s.t. ||Bk||22 ≤ 1, ∀k = 1, 2, ...,K

(1)

where xu ∈ Rd, au ∈ RK , B ∈ Rd×K

x
(i)
u = ith dense SIFT feature from Du

B = dictionary, with k denoting its kth column
a
(i)
u = x(i)u ’s sparse codes under B

λ = regularization parameter that controls sparsity of a(i)u

K = total number of elements (columns) in B
Nu = total number of training features from Du

We follow the convention that B is an overcomplete basis set,
i.e., K > d, and that an l2-norm constraint is applied on code-
word Bk to avoid trivial solutions (Yang et al., 2009). The ob-
jective function of (1) balances two terms: (i) the first quadratic
term encourages x(i)u to be well reconstructed by a linear com-
bination of all the codewords in B, with a(i)u being the combin-
ation weights; and (ii) the l1-norm penalty on au forces au to
be sparse, so that the codewords capture salient patterns in xu.
This problem is optimized by alternately updating au and B. B
is obtained once the optimization of (1) converges. We follow
the details described as (Yang et al., 2009) in our implementa-
tion.

2.3 Sparse representation

We extract dense SIFT features from labeled scene images to
form Dl, and the features are fed into the dictionary and further
encoded using standard ScSPM algorithm. Specifically, with
the dictionaryB trained and fixed, we compute the sparse codes
a
(i)
l for feature x(i)l from labeled data by optimizing

minimize
a
(i)
l

,i=1,2,...,Nl

||x(i)l –Ba
(i)
l ||

2
2 + λ|a(i)l |1 (2)

Then by ScSPM, a spatial pyramid is built over the image and
participates the image into {2l}Ll=0 regions, where L is the pyr-
amid level. A max-pooling function is applied to all M sparse
codes in one region, and a higher level representation z of this
region is formed by zj = max{|al(1j)|, |al(2j)|, . . . , |al(Mj)|},
where zj denotes jth component of representation vector z. Fi-
nally we concatenate z obtained from all the regions in image
n as z(n).

2.4 Classification

Once the representations z(n) are obtained, we combine them
with image labels to form a training data set {(z(n), y(n))}Nn=1

which we use to train a multiclass linear SVM classifier. Here
the label y ∈ Y = {1, 2, ..., C} and C denotes number of
classes.

Following ScSPM, we take the one-vs-all strategy to train C
linear SVM classifiers for multiclass classification, each optim-
izing an objective function of the form

minimize
wc

||wc||22 + C

N∑
n=1

l(wc; y
(n)
c , z(n)) (3)

where wc = SVM parameters (for class c)
y
(n)
c = 1 if y(n) = c, otherwise y(n)

c = −1
l(wc; y

(n)
c , z(n)) = the hinge loss term

Instead of the standard hinge loss, we adopt the squared hinge
loss

l(wc; y
(n)
c , z(n)) = [max(0, w>c z(n) · y(n)

c − 1)]2 (4)
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such that the objective function (3) is differentiable and thus can
be trained using gradient based methods.

Finally for some test data z(n), the class label ŷ is given by

ŷ = max
c∈Y

w>c z(n) (5)

3. EXPERIMENTS AND DISCUSSION

3.1 Data sets

Figure 2. Sample images from three data sets

We test our proposed method on the following three data sets:
we choose the Caltech-101 data set (Fei-Fei et al., 2004) for
the unlabeled data set Du, while we evaluate the performance
of S-ScSPM on two labeled data sets: UC Merced LandUse
(UCM) data set (Yang, Newsam, 2010) and Changping data set.
Caltech-101 data set is a data set of natural scene/object images,
while the latter two data sets contain only remote sensing scene
images. Some typical images in these data sets are shown in
Figure 2.

Caltech-101 data set contains 101 classes, including images of
animals, faces, vehicles, etc. The number of images per class
varies from 31 to 800, with most categories having about 50
images. The size of each image is roughly 300 × 200 pixels.
Although for each image in this data set there is a label, the
dictionary learning stage of our algorithm does not require any
information from labels.

UC Merced LandUse data set is one of the most popular re-
mote sensing scene image data sets, which contains 21 scene
categories including agricultural, airplane, buildings, etc., with
each category having 100 images of 256× 256 pixels. The spa-
tial resolution of these images is 1 foot.

Changping data set is acquired by the Gaofen-2 sensor and cov-
ers a certain area in Changping District, Beijing, China. The
original image size is 4736 × 3200 pixels, with spatial resolu-
tion of 0.8m. In total 6 categories of scenes are obtained from
the original image by a non-overlapping grid with a cell size of
128 × 128 pixels. The categories are idle area, freeway, sparse
buildings, dense buildings, industrial area and vegetation area,
each containing 117, 101, 154, 56, 103 and 85 images, respect-
ively. For scenes that cannot be categorized as any of the above
6 classes, scenes being a mixture of several classes for example,
we label them as ”undefined” and do not use these scenes in
either dictionary learning or classification. The image and an-
notations are shown in Figure 3.

Figure 3. Changping data set
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3.2 S-ScSPM v.s. ScSPM

In this section we compare our method with the original ScSPM
algorithm. We evaluate and compare performance of both al-
gorithms on UCM and Changping data set. In the experimental
group, we evaluate S-ScSPM by using dictionary trained only
on the Caltech-101 data set, and the SVM classifier is trained
on either UCM or Changping data set. In the control group,
ScSPM is performed on UCM data set and Changping data set.
The dictionary is trained task-specifically.

In S-ScSPM dictionary learning stage, dense SIFT patch size
is set to 16 × 16 pixels and step size is 8 pixels. The SIFT
descriptors are extracted on gray scale images, and 200,000
descriptors are random selected and used to train the diction-
ary. Dictionary sizeK and regularization term λ are set to 1024
and 0.15, respectively.

In ScSPM dictionary learning stage, we set dense SIFT patch
size to 16×16 pixels and step size is 6 pixels on UCM data set,
and 8 × 8 pixels and 3 pixels on Changping data set. On both
data sets, K = 1024, λ = 0.15 and number of training patches
is 200,000, same as the settings in S-ScSPM.

In the sparse representation stage, for both algorithms we set
the encoding regularization term λ to 0.15 and spatial pyramid
level L to 2.

Following the common benchmarking procedures, we repeat
all the classification experiments 10 times with different ran-
dom initialization and report average classification rate with
its standard deviation. Furthermore, for both experimental and
control group, the SVM is trained on 20%, 50%, and 80% of
the data and tested on the rest.

Method Accuracy/%
20% training 50% training 80% training

S-ScSPM 73.58 ± 1.19 81.86 ± 1.00 86.12 ± 1.93
ScSPM 72.08 ± 1.94 81.27 ± 1.11 85.43 ± 2.10

Table 1. Overall classification accuracy on UC Merced data set

Method Accuracy/%
20% training 50% training 80% training

S-ScSPM 58.52 ± 2.03 67.56 ± 2.30 72.25 ± 4.61
ScSPM 59.82 ± 1.79 68.80 ± 1.94 72.05 ± 3.38

Table 2. Overall classification accuracy on Changping data set

Overall classification accuracy on UCM data set and Changping
data set is shown in Table 1 and Table 2, respectively. On UCM
data set, S-ScSPM averagely outperforms ScSPM by 1%, and
the standard deviations are also smaller. On Changping data
set, S-ScSPM achieves 1% lower classification rate than Sc-
SPM under the setting of 20% and 50% training data, while
slightly outperforms ScSPM when using 80% data for training.
S-ScSPM has generally larger standard deviation.

The above results indicate that S-ScSPM can perform at least
as well as ScSPM, and thus it is possible to learn a dictionary
on a single unlabeled data set Du and adopt it for classifying
multiple labeled data set Dls, even if the distribution of images
are very different between Du and Dl. Such a difference also
suggests that it is possible to train a dictionary using large open
source computer vision data sets like ImageNet, which is much
cheaper than obtaining and labeling a large remote sensing im-
age data set, and use the dictionary for feature encoding for
further scene classification.

3.3 S-ScSPM v.s. DL based methods

In this section we compare the performance of S-ScSPM with
that of several other DL based methods on UCM data set.
These methods include the original BOVW, unsupervised fea-
ture learning (UFL) (Cheriyadat, 2013), multipath unsupervised
feature learning (MP-UFL) (Fan et al., 2017) and bi-layer dic-
tionary learning (BL-DL) (Yang et al., 2016). Average classific-
ation rates of the above algorithms on UCM data set, all using
80% of the data for training and repeated 10 times, are shown
in Table 3.

BOVW UFL S-ScSPM MP-UFL BL-DL
76.81% 81.67% 86.12% 91.95% 93.67%

Table 3. Performance of different DL methods on UC Merced
data set

In Table 3, reading from left to right, the model complex-
ity goes higher while the classification rate gets improved.
UFL basically uses SPM without sparse coding. In MP-UFL,
the dictionary objective function is slightly different from S-
ScSPM, and image descriptors go through a procedure called
multipath consisting of multiple dictionary learning - sparse
coding operations to form a higher level representation. BL-DL
builds several dictionaries to seperate commonality and class-
particularity dictionary atoms for better classification perform-
ance.

All algorithms listed above, except S-ScSPM, are trained task-
specifically. We suspect that the self-taught learning framework
may not work out fine with BOVW and UFL, for they do not
require the encodings be sparse, while sparse coding is a key
feature that makes self-taught learning successful. On the other
hand, it can be difficult to fully combine methods like MP-UFL
and BL-DL with self-taught learning, for they learn multiple
dictionaries and are more complicated than ScSPM. It is pos-
sible, however, to learn some low-level dictionaries in these
complex methods on unlabeled data and apply them to multiple
tasks.

4. CONCLUSION

In this paper we integrate ScSPM with self-taught learning
framework and propose the S-ScSPM framework for remote
sensing scene classification. The experiments show that the pre-
trained dictionary applies surprisingly well to both UC Merced
LandUse data set and Changping data set, with our classific-
ation rate slightly outperforming traditional ScSPM. Using S-
ScSPM, time and resources required for training can be signi-
ficantly reduced.
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