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ABSTRACT:  
 
Deep learning methods based on Fully convolution networks (FCNs) have shown an impressive progress in building outline delineation 
from very high resolution (VHR) remote sensing (RS) imagery. Common issues still exist in extracting precise building shapes and 
outlines, often resulting in irregular edges and over smoothed corners. In this paper, we use PolyMapper, a recently introduced deep-
learning framework that is able to predict object outlines in a vector representation directly. We have introduced two main modifications 
to this baseline method. First, we introduce EffcientNet as backbone feature encoder to our network, which uses compound coefficient 
to scale up all dimensions of depth/width/resolution uniformly, to improve the processing speed with fewer parameters. Second, we 
integrate a boundary refinement block (BRB) to strengthen the boundary feature learning and to further improve the accuracy of corner 
prediction. The results demonstrate that the end-to-end learnable model is capable of delineating polygons of building outlines that 
closely approximate the structure of reference labels. Experiments on the crowdAI building instance segmentation datasets show that 
our model outperforms PolyMapper in all COCO metrics, for instance showing a 0.13 higher mean Average Precision (AP) value and 
a 0.60 higher mean Average Recall value. Also qualitative results show that our method segments building instances of various shapes 
more accurately. 
 
 

1. INTRODUCTION 

Automatic building extraction from remote sensing images has 
been a core research topic in the remote sensing area for decades. 
It has many applications, including cadastral and topographic 
mapping, cartography, urban planning, and humanitarian aid. 
Conventional methods, including both pixel-based and object-
based methods, conduct building outline delineation by 
extracting texture, geometric, shadow and more sophisticated, 
empirically designed spatial features (Turker et al., 2015).  
 
The recent development of deep learning methods, specifically 
fully convolutional networks (FCNs), together with the 
emergence of large amounts of earth observation data, has 
promoted a new round of research studies toward automated 
mapping of urban areas (Persello et al., 2017; Ji et al., 2019). 
Most pixel-based classification methods, however, result in 
irregular building shapes and require further processing such as 
shape refinement and vectorization. In addition, several 
challenges, e.g. overhanging vegetation, shadows, and densely 
constructed buildings, make the task more difficult in separating 
building objects. The polygons resulting from the vectorization 
of FCN-based classification usually need substantial manual 
editing before being included in GIS layers of official 
topographic or cadastral maps. 
 
Recent research has started integrating deep convolutional neural 
networks (CNNs) with regularized and structured building 
outline delineations. Marcos et al. (2018) proposed Deep 
Structured Active Contours (DSAC) to predict the energy 
function parameters for an Active Contour Model (ACM) to  
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make its output close to a ground truth set of polygonal outlines. 
Girard et al. (2018) propose a deep learning method that predicts 
the vertices of the polygons outlining objects of interest. Zhao et 
al., (2018) applied the Mask R-CNN for building segmentation 
and a regularization algorithm to polygonize segmentation 
results. However, those methods are either not end-to-end 
trainable or only capable of handling building objects with simple 
shapes. 
 
Motivated by the success of recent works on automatic object 
annotation in the computer vision field (Castrejon et al., 2017), 
Li et al. (2019) developed an end-to-end deep learning 
architecture, named PolyMapper, which is able to learn and 
delineate the regularized geometrical shapes of buildings and 
roads directly in a vector format from a given overhead image. In 
our study, we follow this research line by introducing two 
modifications to improve its performance. Specifically, there are 
two main contributions in this study: 
 
1) Introduction of a state-of-the-art architecture for the backbone 
network, EfficientNet (Tan et al., 2019), which uses a compound 
coefficient to scale up CNNs in a more structured manner. This 
reduces the number of trainable parameters while maintaining 
high accuracy. 
 
2) The exploitation of Boundary Refinement Block (BRB) to 
make the bilateral features of building boundary distinguishable 
with deep semantic boundary supervision. Integrated into skip 
feature extraction, it strengthens the boundary feature learning 
and further improves the accuracy of corner prediction. 
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Figure 1. Architecture of the network for building outline polygon delineation. Adapted from Li et al., (2019). In particular, we made 

modifications in the CNN backbone and skip feature extraction module. See Section 2 for more details.
 
 

2. METHODOLOGY 

2.1 Overview 
 
The adopted framework integrates multiple network branches 
trained end-to-end, combining object detection, instance 
segmentation, and vectorization (Li et al., 2019).  In particular, 
the workflow is able to delineate the building objects and to find 
vertices and connect them sequentially by using an RNN. As 
shown in Fig. 1,  a CNN backbone takes an image as input to 
extract multiple levels of spatial features. Then, the Feature 
Pyramid Network (FPN) generates building bounding boxes, 
which partitions the image into individual object instances. FPN 
makes use of the in-network feature hierarchy that produces 
feature maps with different resolutions to build a feature pyramid. 
To this end, building objects in different scale can be effectively 
detected. After acquiring image tiles of individual buildings, 
RoIAlign is applied to preserve the exact spatial locations for 
feature extraction. Then additional convolutional layers with skip 
connections that fuse information from the previous backbone 
layers extract building boundaries and vertex features. Those are 
fed sequentially to the multi-layer convolutional long-short term 
memory (ConvLSTM) module to predict and connect vertices 
sequentially to obtain the final building polygon.  
 
We observed that the current framework still has room for 
improvement in terms of backbone encoder and skip feature 
extraction. We discuss these in details in the following sections. 
 
2.2 Backbone Encoder 
 
A CNN encoder network, also called backbone network, is used 
to extract features at multiple levels for the tasks of detection and 
segmentation. From the seminal work of AlexNet (Krizhevsky et 
al., 2012) and VGG (Simonyan et al., 2014) used in PolyMapper, 
scaling up CNN in terms of depth, width and image size has been 
widely developed towards better accuracy. However, arbitrary 
scaling requires tedious manual tuning and still often yields sub-
optimal accuracy and efficiency. To tackle this issue, Tan et al. 
(2019) proposed a simple yet effective compound scaling method 
which can uniformly scale network width, depth, and resolution 
with a set of fixed scaling coefficients: 
 

 depth: 𝑑𝑑 = 𝛼𝛼𝜙𝜙 
width: 𝜔𝜔 = 𝛽𝛽𝜙𝜙 

resolution: 𝑟𝑟 = 𝛾𝛾𝜙𝜙 
s. t.𝛼𝛼 ⋅ 𝛽𝛽2 ⋅ 𝜎𝜎2 ≈ 2 
𝛼𝛼 ≥ 1,𝛽𝛽 ≥ 1,𝛾𝛾 ≥ 1 

(1) 

 
Based on this approach, they used Neural Architecture Search 
(NAS) strategy to develop a new baseline network, and scale it 
up to obtain a family of models, called EfficientNets.  
 

 
 
Specifically, the authors first fix ϕ and obtain an optimal α, β, γ 
values using grid search. Then the baseline network is scaled up 
by fixing the α, β, γ with different compound coefficient ϕ 
according to Equation 1 with less parameters and lower 
computational cost. More importantly, the compound scaling 
method allows the scaled model to focus on more relevant 
regions with more object details.  
 

Stage Operator Resolution #Channels #Layers 
Input Conv3×3 224×224 32 1 

1 

MBConv1, 
k3×3 112×112 16 1 

MBConv6, 
k3×3 112×112 24 2 

2 MBConv6, 
k3×3 56×56 40 2 

3 MBConv6, 
k3×3 28×28 80 3 

4 

MBConv6, 
k3×3 14×14 112 3 

MBConv6, 
k3×3 14×14 192 4 

5 MBConv6, 
k3×3 7×7 320 1 

Table 1. EfficientNet-B0 baseline network 
 
Table 1 shows the basic network structure of EfficientNet-B0. 
The main building block for EfficientNet is MBConv, an inverted 
bottleneck convolution, originally known as MobileNetV2 
(Sandler et al., 2018). Using shortcuts between bottlenecks by 
connecting a much smaller number of channels (compared to 
expansion layers), it was combined with an in-depth separable 
convolution, which reduced the calculation by almost k² 
compared to traditional layers, where k denotes the kernel size, 
which specifies the height and width of the 2-dimensional 
convolution window. Table 2 indicates the bottleneck residual 
block structure transforming from k to 𝑘𝑘′channels, with stride s, 
and expansion factor t. 
 

Input Operator Output 

ℎ ×  𝑤𝑤 ×  𝑘𝑘 1×1 conv2d, ReLU6 ℎ ×  𝑤𝑤 × (𝑡𝑡𝑘𝑘) 

ℎ ×  𝑤𝑤 × (𝑡𝑡𝑘𝑘) 3×3 dwise s= s, ReLU6 
ℎ
𝑠𝑠  × 

𝑤𝑤
𝑠𝑠  × (𝑡𝑡𝑘𝑘) 

ℎ
𝑠𝑠  × 

𝑤𝑤
𝑠𝑠  × (𝑡𝑡𝑘𝑘) linear 1×1 conv2d ℎ

𝑠𝑠  × 
𝑤𝑤
𝑠𝑠  × 𝑘𝑘′ 

Table 2. MBConv bottleneck residual block 
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Considering the balance of model size and its performance, we 
apply EfficientNet-B5. The scaled width_coefficient, 
depth_coefficient, and resolution (α, β, γ) are set to 1.6, 2.2, 456. 
In order to extract features of different scales, we fuse different 
layers into five stages. Moreover, we remove the last pooling 
stage and fully connected layer from the original structure.  
 
2.3 Discriminative Skip Feature Extraction 
 
As in Polygon RNN (Castrejon et al., 2017), PolyMapper uses 
additional convolutional layers with skip connections that fuse 
information from the previous backbone nets and upscale the 
output by factor of 2. This allows the CNN to extract features that 
contain low-level information about the building boundaries and 
corners. This procedure helps the model to follow the object’s 
boundaries and predict more precise vertices.  
 
However, buildings objects in VHR-RS images with high-
definition details are always under various complex backgrounds 
(e.g., shadow, occlusion, and geometric deformation), and often 
densely distributed. Therefore, we need to amplify the distinction 
of features. With this motivation, we adopt a semantic boundary 
to guide the feature learning. To further improve the accuracy of 
corner prediction of Polymapper, we exploit the BRB (Figure 2), 
which is the variant of the Refinement Residual Block (RRB) (Yu 
et al., 2018), trying to differentiate the building objects with 
background and adjacent feature with similar appearances. 
 

 
Figure 2. Boundary Refinement Block (BRB). Adapted from 

Yu et al., (2018) 
 
The first component of the block is a 1 × 1 convolution layer, 
which is used to unify the channel number and combine the 
information across the channel. A basic residual block comes as 
follows to refine the feature map. We remove the 3 × 3 
convolutional layer in original RRB to simplify the module. 
BRBs are then embedded into the network to get discriminative 
features of the building boundaries from the feature maps of each 
scale backbone networks simultaneously. The improved CNN for 
skip feature extraction is illustrated in Figure 3. With the explicit 
semantic boundary supervision, the network can obtain more 
distinct boundary features. As an output, we have an output in 
volume of 28 × 28 × 132 pixels of the encoder features with 
enhanced boundary information. 
 

Figure 3. An overview of the multi-scale encoder network 
integrated with BRB. The red dotted arrows indicate up-

sampling. 
 

The combined feature maps and one candidate key point with the 
highest probability are the input for RNN module to model the 
sequence of 2D vertices of the polygon outlining the building 
object. Taking the current and previous vertex as inputs, the 
ConvLSTM cell generates a conditional probability distribution 
as an output. The progress ends until the polygon reaching its 
starting vertex and becoming a closed shape. In the inference 
phase, beam search procedure is used to select the starting and 
following vertices. Beam search is a heuristic graph search 
algorithm, which is used to keep the higher quality nodes at each 
step of depth expansion in large graph space. 
 
2.4 Loss Function 
 
The total loss of the network is a combined loss from the FPN, 
CNN and RNN parts. Specifically, the FPN loss consists of a 
cross-entropy loss for anchor classification and a smooth L1 loss 
for anchor regression which are described below (for a single 
anchor). 
 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖) = −(𝑦𝑦𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙(1− 𝑝𝑝𝑖𝑖)) (2) 

  

𝑓𝑓(𝑥𝑥) = �

1
2𝑥𝑥

2 , |𝑥𝑥| < 1

|𝑥𝑥|  −  
1
2 ,𝑙𝑙𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒

  (3.1) 

𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏
(𝑖𝑖)  =  𝑓𝑓�𝑥𝑥𝑔𝑔∗  −  𝑥𝑥𝑔𝑔�  +   𝑓𝑓�𝑦𝑦𝑔𝑔∗  −  𝑦𝑦𝑔𝑔�

+   𝑓𝑓�𝑤𝑤𝑔𝑔∗  −  𝑤𝑤𝑔𝑔�  +   𝑓𝑓�ℎ𝑔𝑔∗  −  ℎ𝑔𝑔� 
(3.2) 

𝐿𝐿𝐹𝐹𝐹𝐹𝐹𝐹 = �𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐
(𝑖𝑖)

𝑖𝑖

+ 𝜆𝜆�𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏
(𝑖𝑖)

𝑖𝑖

 (4) 

where Lcls is the classification loss, 𝑦𝑦𝑖𝑖  (either 0 or 1) is the 
polarity of the anchor, 𝑝𝑝𝑖𝑖 is the predicted probability of the class. 
𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏  is the regression loss of the bounding box, 
where�𝑥𝑥𝑔𝑔∗ ,𝑦𝑦𝑔𝑔∗,𝑤𝑤𝑔𝑔∗,ℎ𝑔𝑔∗�  denote the predicted coordinates of the 
box. The superscript i denotes the i-th anchor, λ denotes a self-
defined parameter when training. 
 
In addition, weighted logarithmic loss is used to remedy the 
imbalance of the positive and negative samples for the mask of 
boundary and vertices in CNN part separately. The cross-entropy 
loss is adopt in RNN part for the multi-class classification at each 
time step. 
 

3. EXPERIMENTAL RESULTS 

3.1 Datasets and Evaluation Matrics 

3.1.1 Datasets 
We performed experiments on the challenging crowdAI dataset 
to validate our method (Mohanty 2018). The training and testing 
set consisted of 280,741 and 60,317 tiles, respectively, of 
300×300 pixels extracted from the RGB channels of satellite 
imagery. Typical instance annotations were used to supervise box 
and mask branches, and the semantic branch is supervised by the 
Common Objects in Context (COCO) format annotations (Lin et 
al., 2014). In contrast with standard vector labels and 
georegistered image files, each object instance annotation in 
COCO .json contains a series of fields, including the category id, 
segmentation mask, and enclosing bounding box coordinates of 
the object. Example images and corresponding label is shown in 
figure 4. 
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Figure 4. Example tiles of crowdAI dataset. Note that multiple 

colors are used to differentiate building instances. 
 
3.1.2 Evaluation Metrics 
We applied the standard MS COCO measures, including the 
mean Average Precision (AP) and mean Average Recall (AR) 
over multiple Intersection over Union (IoU) values. IoU defined 
as the area of the intersection divided by the area of the union of 
a predicted bounding box (𝐵𝐵𝑝𝑝) and a ground-truth box (𝐵𝐵𝑔𝑔𝑔𝑔).  
 

𝐼𝐼𝑙𝑙𝐼𝐼 =  
𝑎𝑎𝑟𝑟𝑒𝑒𝑎𝑎(𝐵𝐵𝑝𝑝  ∩  𝐵𝐵𝑔𝑔𝑔𝑔)
𝑎𝑎𝑟𝑟𝑒𝑒𝑎𝑎(𝐵𝐵𝑝𝑝  ∪  𝐵𝐵𝑔𝑔𝑔𝑔) (5) 

 
Specifically, AP and AR were averaged over 10 Intersection over 
Union (IoU) values with thresholds of from .50 to 0.95 with steps 
of 0.05. Averaging over IoUs rewards detectors with better 
localization. Thus, an AP was calculated as Equation 6.  
 

𝐴𝐴𝐴𝐴 =  
𝐴𝐴𝐴𝐴0.50  +  𝐴𝐴𝐴𝐴0.55+ . . . + 𝐴𝐴𝐴𝐴0.95

10  (6) 

 
In addition, AP(S, M, L) and AR(S, M, L) were used to further measure 
the performance of the algorithm on detecting objects of different 
sizes. Specifically, small, medium and large represent an area < 
322, an area between 322 and 962 and an area > 962 respectively, 
where the area is measured as the number of pixels in the 
segmentation mask. Both AP and AR were evaluated using mask 
IoU. 
 
3.2 Implementation Details 

We trained our model using the Adam optimizer with a batch size 
b = 4 and an initial learning rate of 0.0001. Weight decay and 
momentum were set to 0.9, respectively. The total iteration 
number was set as 1,600,000. The network was implemented 
using Tensorflow 1.15. We performed all the training and testing 
on a single TITAN X GPU. 
 
3.3 Results and Discussion 

We compared our model to the state-of-the-art instance 
segmentation method Mask R-CNN (He et al., 2017) and the 
original PolyMapper. It is worth noting that we did not reproduce 
the same results as in Li et al. (2019), which is probably due to a 
different training procedure (which is not fully detailed in the 
paper). 
 
3.3.1 Quantitative analysis 
Table 3 shows a quantitative comparison of our method with 
three methods. Our method outperforms PolyMapper in all AP 
and AR metrics, especially for the later ones. It demonstrates that 
there is a higher proportion of buildings detected by our approach 
with respect to the ground truth. In addition, comparing with 
Mask R-CNN, our method only show slightly lower in ARL, 
which refers to large size object. But our method works 
significantly better in delineating small and medium size 
buildings and achieves higher precision in all levels.  
 
At the same time, it can also be seen that instance segmentation 
is relatively weak for small object recognition and is an aspect 

that can be further optimized in the future. Possible reasons are 
that small objects have features that are harder to learn and are 
easily confused with ground objects such as cars. 

 
Method Mask R-CNN PolyMapper Our Method 

AP 0.419 0.432 0.445 
APS 0.124 0.197 0.211 
APM 0.581 0.568 0.582 
APL 0.519 0.550 0.558 
AR 0.476 0.439 0.499 
ARS 0.181 0.220 0.280 
ARM 0.652 0.566 0.653 
ARL 0.633 0.594 0.606 

Table 3. Extraction results on crowdAI dataset 
 
3.3.2 Qualitative analysis 
Figure 5 provides a qualitative comparison of the prediction of 
image annotated and segmented by the three methods. Compared 
to Mask R-CNN, PolyMapper and our method can generate 
output in polygon representations automatically instead of pixel-
wise output masks. 
 

 
(a) (b) (c) 

Figure 5. Qualitative results on crowdAI dataset. From left to 
right: (a) Mask R-CNN, (b) PolyMapper, (c) Our method 

As compared with the Mask R-CNN, the other two methods are 
able to correctly segment building instances with a variety of 
shapes and sizes. The output shapes are more compact and 
regularized. In addition, our model is able to segment building 
instances of various shapes more accurately compared with 
PolyMapper. Moreover, our method yields more accurate results 
for vertices detection. Because BRB enhances the learning ability 
for boundary features and further guides the detection of corner 
points. This also avoids incomplete detection of the geometry. In 
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summary, our model can well outline the buildings in a given 
VHR-RS image and provide accurate geometrical details. 
 

4. CONCLUSIONS 

In this study, we investigated an end-to-end learnable model for 
building outline polygon extraction from VHR-RS image. Our 
method is built on top of PolyMapper, and introduces several 
improvements that allow us to increase its performance in terms 
of accuracy and regularity. The comparisons against other state-
of-the-art methods on a benchmark dataset, demonstrate our 
method’s ability in regularized building outlines are better 
aligned with ground truth building boundaries. To extend, we are 
currently working on further improving from the following 
points of view: 1) testing our method on larger image scene with 
dense building objects; 2) refining the training strategy. 
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