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ABSTRACT: 

Pagodas are common historical structures in China and some other Asian countries. Symmetries of the pagodas play an important 

role on cultural and structural aspects. In this paper, we proposed a method estimating the central axis of a typical ancient pagoda in 

China for examination of its symmetry. We developed a novel geometric model to fit to the point cloud of the pagoda obtained from 

photogrammetric reconstruction based on UAV imagery. More specifically, we developed a novel geometric model possessing 16 

parameters to fit to the point cloud of different parts of the pagodas simultaneously to estimate a central axis for the symmetry. The 

results show that the proposed model is superior to the conventional cylindrical models for the central axis estimation. More 

importantly, the estimated parameters are in realistic ranges, as well as the reconstructed central axis and the sextant number are well 

visualized, so the symmetry of the pagodas can be readily analysed. 

1. INTRODUCTION

Oriental ancient architecture has attracted a great deal of 

attention from those who investigate cultural heritages and 

modern architectural design. Many components and even the 

entire bodies of those architectural structures are symmetric. 

The symmetry can be found on many different types of 

structures such as the gateways (toranas), pagodas, and 

pavilions. In China, the earliest symmetrical structure can be 

found from architecture built in Shang dynasty (1046 BC). 

Many other Chinese ancient architectural structures built during 

the last 500 years were also found to possess many symmetries.  

To examine the degree of symmetry, a central axis should be 

accurately known. Xue et al. (2018) proposed a slice-based 

method to estimate the position and orientation of the central 

axis for the symmetry. They adopted the derivative-free 

optimization to accelerate the computation in which each slice 

of the point cloud is analysed to estimate a rough axis position. 

Li et al. (2018) used the ellipse and plane fitting techniques to 

compute the central axis position of point clouds of some 

objects based on a voting algorithm. This method is accurate, 

but it is not very computationally efficient. Cheng et al. (2018) 

developed a set of point cloud registration method based on the 

symmetry of architectural structures. They use sine function 

fitting to extract the symmetrical parameters computed from 

slices of the point clouds. The position and orientation of the 

central axis can be then estimated from each slice.  

Researchers from the field of the computer vision and graphics, 

have put much emphasis on detecting symmetry over the past 

three decades. For examples, Bartalucci et al. (2018) presented a 

thorough review of the symmetry analysis on biomedical 

imaging systems. Jiang et al. (2013) proposed a skeleton-based 

method to detect symmetry from 3D point clouds. This method 

primarily extracted the symmetrical nodes from the mesh and 

then used a voting algorithm to extract the symmetry. 

Musuvathy et al. (2011) used the Eikonal equation to estimate   
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parameters of a 3D volume based on the B-spline surface which  

embraced the entire volume. Berner et al. (2009) proposed a 

method which could detect mild deviation from the symmetry 

of an object by registering different topographical planes. 

Combès et al. (2008) simplified the conventional Iterative 

Closest Points (ICP) algorithm to estimates a plane for the 

reflection symmetry of the point cloud of a 3D object. 

In the paper, we developed a model-based method to estimate  

the central axis of a typical Chinese pagoda for investigation of 

the pagoda’s symmetry. Most of the ancient Chinese pagodas 

are polygonal structures (Figure 1). The hexagonal and the 

octagonal pagodas are the most popular. They usually consist of 

multilayers of polygonal prism or pyramid, including eaves.  

(a) hexagonal  (b) octagonal

Figure 1. Typical ancient Chinese pagodas 

A novel geometric model is proposed for the pagoda to fit to the 

point cloud obtained from photogrammetric reconstruction 

based on unmanned aerial vehicle (UAV) imagery. The 

Wenfeng Pagoda in Southern China is studied as example. The 

Wenfeng Pagoda is a 300 years old architecture, having three 

floors. The model consists of multiple components and are 

incorporated into a single adjustment with the Gauss-Helmert 

model to estimate the parameters of the central axis. The axis 
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parameters basically which share the same centre and the 

inclination angles with the pagoda model. 

 

 

2. METHOD 

2.1 Pagoda Segmentation 

Similar to a method detecting a pillar (Luo and Wang, 2008), 

segmentation of the entire pagoda is performed based on a 

fslice-based method which decomposes the whole point clouds 

(Figure 2) into multiple slice using a small height window (e.g.  

5 cm) to create multiple cross-sections (Figure 3). Then, circle 

fitting is employed to check the similarity between the point 

clouds and a circle with a certain radius. If a point belongs to 

those cross-sections with relatively smaller fitting residuals and 

similar radii (mode of all the radii), it is segmented as one of the 

points of the pagoda point cloud.  

 

 
 

Figure 2. Point clouds reconstructed from UAV 

photogrammetry for the Wenfeng pagoda located in Guangdong 

Province, China 

 

 

 
 

Figure 3. Cross-section of the point cloud (belongs to the 

pagoda) 

 

2.2 Proposed Model for Polygonal Pagodas 

The Wenfeng Pagoda consists of three floors which are 

hexagonal prisms with different radii. The hexagonal prism can 

be modelled with Equation 1 by setting n = 6 (Chan et al., 

2016), the model parameters were shown in Figure 4. They 

include the center of the prism (Xc, Yc), the rotations about the 

X-axis (Ω), Y-axis (Φ) and Z-axis (Ψ ) for the prism, the 

polygonal radius (R0) and the gradient factor (k). When k = 0, 

the model is for a prism, otherwise, it is for a pyramid.  
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and n is the number of sides for the polygon. q is a number 

indicating which sector a point belongs to (Figure 5), in the case 

of the hexagonal model, it is defined as the sextant number. It is 

computed as 
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Figure 4. The parameters of the hexagonal prism/pyramid 

model 

 

 
Figure 5. The sextant number (q) for the model 

 

A typical ancient Chinese pagoda is composed of multiple 

layers of polygonal structures (main body and eaves). The main 

body is usually a polygonal prism, composes a floor of the 

pagoda. Between two main body floors, there is usually an eave 

which can be modelled with a polygonal pyramid. It is worth 

noting that in between the eaves, the prism diameter is not 

consistent (usually the diameter decreases for higher floor) for 

most pagodas. This is illustrated in Figure 6 that the diameter or 

the radius of the floor decreases at higher floor (the space 

between the red line and the prism at the floor increases for 

higher floor).  Therefore, the same geometric models augmented 

with different radii are used for the pagodas.  
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Figure 6. Diameter or the radius of the floor decreases at higher 

floor (the space between the red line and the prism at the floor 

increases for higher floor). 

 

Despite how many layers a pagoda has, a unique central axis (its 

position and orientation) should be computed for the entire 

pagoda in order to study its symmetry. As a result, a geometric 

model which consists of multiple polygonal prism/pyramid is 

proposed for the pagoda. The model parameters for a hexagonal 

pagoda consisting three main bodies, three eaves, and one top 

pyramid are shown in Figure 7. This is an example of a 3-floor 

pagoda (as for Wenfeng Pagoda). The model can be readily 

modified to suit pagoda with different floors. They include the 

center of the pagoda (Xc, Yc), the rotations about the X-axis (Ω), 

Y-axis (Φ) and Z-axis (Ψ ), and a set of radius (Ri) and the 

gradient factor (ki) for each layer.  

 

 
Figure 7. The parameters of the proposed polygonal pagoda 

model 

To estimate the central axis, the Gauss-Helmert adjustment 

model (Förstner and Wrobel, 2004) is employed. The linearized 

adjustment model can be expressed as 

 

                                                         (4) 

where    is the correction vector for the parameters ; A is the 

design matrix of partial derivatives of a set of functional models 

with respect to the model parameters; B is the design matrix of 

partial derivatives of the functional model with respect to the 

pagoda observations;  is the vector of residuals; and w is the 

correction vector.  can be further broken down into two 

correction vectors storing the aforementioned model 

parameters: 
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where P is the weight matrix for all observations. The subscripts 

p and t stand for the central axis parameters and the size 

parameters, respectively. 

 

3. EXPERIMENT 

With the involvement of the Guangzhou SenseWing Robot 

Technologies Co., Ltd., a typical ancient Chinese pagoda, the 

Wenfeng Pagoda located in Zhongshan city of Guangdong 

Province, China, was captured using the camera embedded on a 

DJI Phantom 4 UAV in July, 2017. Approximately 100 images 

were obtained and used to reconstruct the 3D point clouds of the 

Wenfeng Pagoda using the Smart3D software with the camera 

calibration parameters estimated.  

 

 
Figure 8. Seven parts of the Wenfeng pagodas and their 

nomenclature 
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The pagoda and its seven components (defined as Parts 1-7 as 

shown in Figure 8) were extracted automatically using the 

Principal Component Analysis (PCA) algorithm (Demantké et 

al., 2011) and the pagoda height constraints along with some 

manual editing procedures. The X, Y, and Z coordinates of the 

pagoda were transformed to a local coordinate system and then 

fitted to the proposed adjustment model. The coordinates were 

also fitted to the conventional circular cylindrical/conic model 

(Chan et al., 2015) as control experiments. The initial values of 

the fitting could be obtained by using the circular 

cylindrical/conic models (Chan and Lichti, 2014). 

 

 

4. RESULTS 

4.1 Comparison of the Model Fitting Results  

Different parts of the Wenfeng Pagoda point clouds were fitted 

to conventional cylindrical/conic model (Chan et al., 2015) and 

the hexagonal model individually. The estimated parameters 

and their standard deviations of Part 1 (the top), and Part 2 (the 

eave) and Part 3 (the main body) were tabulated in Tables 1, 2 

and 3, respectively. It can be seen that the estimated parameters 

from the two fittings deviate significantly (translational ~ 35 

cm; angular ~ 3 deg) Also, the standard deviations obtained 

from the hexagonal model fitting are much lower that from the 

circular cylindrical/conic models. This is because the pagoda is 

polygonal so the fitting to the circular cylindrical/conic models 

generated less accurate results.   

 

Table 1. Estimated parameters of Part 1 
 Circular cone  

fitting 

 Hexagonal pyramid 

fitting  
Estimated 

Value 

Standard 

deviation 

 Estimated 

Value 

Standard 

deviation 

Xc(m) -0.108 4.91E-05 Xc(m) -0.108 2.89E-07 

Yc(m) -0.018 4.96E-05 Yc(m) -0.018 2.90E-07 

Ω 

(deg) 

-0.558 1.63E-03 Ω 

(deg) 

-0.448 9.94E-06 

Φ 

(deg) 

-1.803 1.62E-03 Φ 

(deg) 

-1.792 9.90E-06 

k 0.661 2.88E-05 Ψ 

(deg) 

-12.832 1.62E-05 

R(m) 1.672 2.72E-05 k 0.719 2.04E-07 

   R0 

(m) 

1.824 1.93E-07 

 

 

Table 2. Estimated parameters of Part 2 

Part2 Estimated 

Value 

Standard 

deviation 

 Estimated 

Value 

Standard 

deviation 

Xc(m) -0.286 1.72E-03 Xc(m) -0.099 1.99E-06 

Yc(m) 0.351 1.74E-03 Yc(m) -0.006 1.91E-06 

Ω 

(deg) 

-3.328 1.38E-02 Ω 

(deg) 

-0.552 3.57E-05 

Φ 

(deg) 

-3.947 1.38E-02 Φ 

(deg) 

-2.683 3.67E-05 

k 2.483 1.93E-03 Ψ 

(deg) 

-12.839 2.81E-05 

r(m) 2.817 5.50E-04 k 1.237 5.54E-06 

   r(m) 3.159 5.36E-07 

 

 

 

 

Table 3. Estimated parameters of Part 3  
Estimated 

Value 

Standard 

Deviation 

 Estimated 

Value 

Standard 

Deviation 

Xc(m) 0.003 1.02E-04 Xc(m) 0.0002 2.55E-07 

Yc(m) -0.019 1.03E-04 Yc(m) -0.018 2.57E-07 

Ω 

(deg) 

0.222 8.60E-03 Ω 

(deg) 

0.241 2.15E-05 

Φ 

(deg) 

-1.506 8.49E-03 Φ 

(deg) 

-1.424 2.12E-05 

R (m) 2.426 7.25E-05 Ψ 

(deg) 

-12.863 1.32E-05 

   R0 

(m) 

2.653 2.09E-07 

 

4.2 Central Axis Estimation 

Nonetheless, fitting different parts of the pagoda to individual 

model independently will produce different central axes which 

are not collinear. Therefore, we propose different parts of the 

pagoda should be fitted to a set of corresponding geometric 

models simultaneously (Equation 7) to obtain a central axis 

whose estimation was contributed by all different parts of the 

pagoda under a single least-squares adjustment. The estimated 

parameters and their standard deviations are shown in Table 4. 

The central axis parameters (Xc, Yc, Ω, Φ) are visualized by 

simulating a straight line (red) plotted along with the pagoda in 

Figures 9 and 10. The blue lines are the central axes of the 

individual parts obtained from independently hexagonal model 

fittings. It can be seen in Figure 10 (top view) that the blue axes 

are not collinear, and the red axis is located closer to the centre 

of the pagoda compared to the blue axes.  

 

Table 4. Estimated parameters of the full pagoda  
Estimated Value Standard Deviation 

Xc (m) 4.903E-02 3.483E-04 

Yc (m) -1.509E-02 3.506E-04 

Ω (deg) 9.717E-02 4.458E-03 

Φ (deg) -1.901E+00 4.435E-03 

Ψ (deg) -1.280E+01 1.724E-02 

k1 7.214E-01 6.569E-04 

R1(m) 5.474E+00 3.324E-03 

k2 1.216E+00 1.489E-02 

R2(m) 7.374E+00 4.989E-02 

R3(m) 2.653E+00 5.324E-04 

k4 1.667E+00 2.059E-02 

R4(m) 2.679E+00 8.519E-03 

R5(m) 2.768E+00 5.366E-04 

k6 1.608E+00 2.645E-02 

R6(m) -3.840E+00 1.195E-01 

R7(m) 2.878E+00 5.291E-04 

 

On the other hand, the precisions of central axis parameters fall 

into reasonable ranges, given that the precision of the 

observations for the X, Y and Z were set to 5 cm. 
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Figure 9. Side-view of the simulated axes obtained from the 

estimated parameters. Red: central axis obtained from the 

proposed model; Blue: central axes obtained from individual 

hexagonal models; Yellow: the pagoda point cloud 

 

 
Figure 10. Top-view of the simulated axes obtained from the 

estimated parameters. Red: central axis obtained from the 

proposed model; Blue: central axes obtained from individual 

hexagonal models; Yellow: the pagoda point cloud 

 

The q number is a by-product of the estimations. Correct 

distribution of the sextant number indicates the fitting and the 

model are appropriate (Chan et al., 2016).  

 

 
Figure 11. Sextant number obtained from the estimation. Red: q 

= 1; Cyan: q = 2; Blue: q = 3; Green: q = 4; Yellow: q = 5; 

Magenta: q = 6 

 

As seen in Figure 11, the sextant number are evenly distributed 

for each corresponding sector. Overall, the estimated parameters 

are in realistic ranges. Furthermore, the visualization of the 

central axis and the sextant number are proper, so the proposed 

estimation can be readily processed to analyse its symmetry. 

This is further confirmed with Figure 10 that all points in other 

sextants rotated to the first sextant (except those points belong 

to the first sextant) using the model parameters overlap each 

other appropriately.  

 

 

 
 

Figure 12. Points from different sextant number rotated to the 

first sextant (except points with q = 1 do not rotate) based on the 

model and the estimated parameter. Red: q = 1; Cyan: q = 2; 

Blue: q = 3; Green: q = 4; Yellow: q = 5; Magenta: q = 6 

 

 

Based on the result analysis, we can see that the proposed 

model consists of multiple prism and pyramid models 

implemented using a single adjust process fits well to the entire 

pagoda point clouds, yielding accurate parameters with high 

precision. This novel model allows all the observed points from 

pagodas with multiple floors with different dimensions and 

shapes can be used to input to the adjustment simultaneously to 

estimate a common central axis. The central axis was accurately 

estimated, and it can be used for successive symmetry analysis. 

 

5. CONCLUSION 

In this paper, we specifically investigate the structure and 

geometric modelling of a typical ancient Chinese pagodas 

which are usually polygonal architecture. We proposed a 

method invoking a novel geometric model which is comprised 

of multiple polygonal prism and pyramid models. The model 

can be incorporated into a single least-squares adjustment to 

estimate a unique central axis whose estimation is contributed 

by different parts of the pagodas simultaneously under the 

criteria that each part response to its own geometric model 

accordingly. A typical 300 years old Chinese pagoda having 

three floors was reconstructed using the UAV photogrammetry. 

The resultant point cloud was used to verify the proposed 

model. The estimated parameters are in realistic ranges. Also, 

the reconstructed central axis and the sextant number are well 

visualized, so the symmetry of the pagodas can be readily 

analysed to support various studies related to structural health 

monitoring or cultural heritage documentation.  
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