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ABSTRACT:

Simultaneous Localization and Mapping are the key requirements for many practical applications of robotics. However, traditional
visual approaches rely on features extracted from textured surfaces, so they barely work well in indoor scenes (e.g. long corridors
containing large proportions of smooth walls). In this work, we propose a novel visual odometry method to overcome these
limitations, which integrates structural regularities of man-made environments in a direct sparse visual odometry system. By fully
exploiting structural lines that align with the dominant direction in the Manhattan world, our approach becomes more accurate and
robust to texture-less indoor environments, specially, long corridors. Given a series of image inputs, we first use the direct sparse
method to obtain the coarse relative pose between camera frames, and then calculate vanishing points on each frame. Secondly,
we use structural lines as rotation constraints, and perform a sliding window optimization to reduce both photometric and rotation
errors, to further improve the trajectory accuracy. Through the benchmark test, it is proved that our method performs better than
that of the existing visual odometry approach in long corridor environments.

1. INTRODUCTION

Accurately estimating the position and orientation of an agent
in an indoor scene is a challenging problem, that is usually ad-
dressed by Simultaneous Localization and Mapping (SLAM)
technologies (Bailey, Durrant-Whyte, 2006). SLAM has be-
come a very active research field due to its wide application
in autonomous driving, 3D reconstruction, AR and VR. Of all
SLAM technologies, visual SLAM has become the most pop-
ular in recent years. In contrast to a complete SLAM pipeline,
visual odometry (VO), which tracks the camera’s pose from
a series of images (without global optimization such as loop
closure and relocalization), often drifts over time (Fraundorfer,
Scaramuzza, 2012). By introducing extra constraints such as
IMU measurements, VO has also shown competitive perform-
ance against SLAM systems (Qin et al., 2018), and can be
performed at a high frame rate. However, visual tracking in
unknown environments still presents some challenges. These
challenges are when operating in texture-less environments, it
is often necessary to add extra constraints due to little visual in-
formation, in order to reduce the drift of trajectory estimation.

VO algorithm can be divided into two categories. (i)Feature-
based method, in which features are extracted and descriptors
are calculated and stored for matching between frames, while
most of the image information is discarded (Mur-Artal, Tardós,
2017). (ii)Direct method, in which camera poses are optim-
ized based on photometric and/or geometric errors rather than
feature correspondences (Engel et al., 2018). Although feature-
based methods perform well in textured environments, they are
unstable in those environments with fewer or repeated textures,
such as long corridors, due to their over dependence on visual
features. Feature extraction and matching steps also introduce
more error sources. In contrast, direct methods skip the feature
selection step, and the constraint comes from an overall camera
∗ Corresponding author

pose. Therefore, even if a single point cannot offer enough in-
formation, it can also rely on other points to correct the geomet-
ric relationship, so as to find the correct projection point, thus
obtain enough image information even in a texture-less long
corridor environment. There is some VO methods that lever-
aging line information as extra constraints (Yijia et al., 2018).
Although these Point-Line systems showed promising results,
the trajectory estimation is still unstable due to the influence of
occlusions on line matching.

Figure 1. Typical structural scene – the long corridor. The
ceiling and the floor are usually texture-less, and the floor is

rarely stacked with objects due to its function. Repeated textures
of the doors and posters are confusing to visual tracking.
Feature-based method cannot find enough and reliable

correspondences. Corridors are usually narrow so the structural
information can be easily observed in a single image.

Architectural scenes, having planes, texture-less walls, sharp
angles and axially aligned geometries, often exhibit strong
structural regularity, including parallelism and orthogonality,
as shown in Figure 1 (Zhou et al., 2019). The existence of
these structures provides an opportunity to constrain and sim-
plify pose estimation. Such scenes can be abstracted as Manhat-
tan world (Coughlan, Yuille, 1999). It states that all the planes
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of the world are aligned in three dominant directions, that is,
the world is a piecewise-axis-aligned planar. The advantage of
using this structural regularity in a VO system is obvious: par-
allel lines aligned with the Manhattan world create direction
constraints that prevent local direction errors from growing. It
has been applied to indoor modeling (Furukawa et al., 2009)
and scene understanding (Mulam et al., 2010). With the help of
Manhattan world assumptions, the robustness and accuracy of
visual SLAM have been improved (Li et al., 2018) (Zhou et al.,
2015).

Based on the above ideas, we tried to exploit the structural regu-
larity of man-made scene to the direct VO system. In this work,
We described the combination in detail, including Manhattan
world representation, structural lines parameterizationand error
terms designing. We conducted experiments on the open bench-
mark dataset. Results show that our method achieves better per-
formance by combining structure regularities of the structured
environment. The main contributions of this work are described
below:

1. We seamlessly integrates the Manhattan world hypo-
thesis with the most advanced framework of sparse direct
method.

2. We designed new error terms to merge the structural in-
formation in local sliding window optimizations which are
performed on several keyframes to refine the camera pose
and the point depth.

2. RELATED WORK

The known limitation of feature-based approach is that the
matching step is error-prone, and subsequent filters are often
required to remove outliers and features with uneven spatial
distribution. In contrast, the direct method does not require fea-
ture matching, but directly uses sensor inputs, such as image
intensity, to optimize the cost function in order to determine the
relative camera motion. The direct method can also be categor-
ized into dense and sparse method. The advantage of the dense
method is that it can utilize all available information in the im-
age and generate a dense map useful for robot navigation.The
direct dense method has been evolved in (Steinbrücker et al.,
2011), RGB-D SLAM (Kerl et al., 2013), LSD-slam (Engel et
al., 2014), etc. Since the information contained in the image is
highly redundant, the direct sparse method tries to minimize the
photometric error only at sparse random points on the image, so
as to improve the efficiency and speed (Engel et al., 2018). The
advantage of the sparse method is that there are fewer points,
so the calculation cost is usually small, which can save a lot of
time during multiple iterations.

The structural regularity of artificial environments is character-
ized by the dominance of line features in such environmens.
The line also has the advantage of robustness to the illumination
change. Some feature-based systems attempt to optimize the
camera pose by using straight lines as a complement to the point
feature. For example, PL-SLAM (Pumarola et al., 2017) which
integrates line features in visual SLAM and PL-VIO (Yijia et
al., 2018) combined with visual-inertial odometry(VIO). How-
ever, in the long corridor environment with almost no texture,
the corners are scarce and there are a lot of repeated features,
so the method based on point and lines often introduces more
ambiguities. Studies have shown that adopting line features in
SLAM systems can sometimes lead to worse performance than
using points only (Zhou et al., 2015).

Another manifestation of the structural regularity in man-made
environment is that structure lines are aligned with three dom-
inant directions. Therefore, if the structure line aligned with
the dominant direction is found, the direction information can
be used to constrain the camera direction, and such direction in-
formation is shown as the vanishing point of parallel lines in the
image. It has been shown that the use of vanishing point can im-
prove trajectory accuracy. Li et al. (Li et al., 2018) used vanish-
ing points to reduce error accumulation in Monocular SLAM.
(Zhou et al., 2015) used both directional information and struc-
tural lines as feature constraints. All of the above methods are
enhanced on the basis of the feature-based method. According
to the characteristics of long corridors, it is a logical direction
to use structural constraints to expand the direct method, but as
far as we know, there is no direct VO system using structural
constraints, and we are the first to establish such a pipeline.

3. SYSTEM OVERVIEW

We use structural regularities in the VO system. The proposed
system first use DSO (Engel et al., 2018) to obtain a rough
inter-frame camera pose with cumulative errors over time. In
order to improve the accuracy of the system, we use the regu-
larity of Manhattan world, and add the direction constraint to
the sliding window optimization , and then optimize the res-
ult. Figure 2 shows the main components of our System: (i)
Visual Odometry, and (ii) Sliding Window Optimization. We
receive image data and pass it to the system, extract the line in
the visual odometry step and calculate the direction of the van-
ishing point, then operate initialization procedure and coarse
tracking which roughly estimating the relative camera motion
between the current frame and last key frame, then update the
preset depth value and save the Hessian matrix. After that, we
pass the state variable and rotation constraints to the back-end,
then judge whether the current frame is a key frame or not ac-
cording to the key frame selection strategy. If it is a key frame,
it will be added into the sliding window optimization module,
then old map points from previous N-1 keyframes will be pro-
jected to the current keyframe, creating photometric residuals.
At the same time, according to the rotation constraint implied
by the vanishing point, the relative rotation matrix between pre-
vious N-1 keyframes and the current keyframe are concerned
for optimizing absolute rotation, and thus refine the camera
pose.

In the remaining sections, we will describe the main compon-
ents in more detail.

4. VISUAL ODOMETRY

4.1 Line Segment Detection and Vanishing Point Estima-
tion

In order to make use of the vanishing point information, for a
single image, we first use LSD line detector (Grompone von
Gioi et al., 2010) to detect the image lines. With the obtained
line set, we use the branch-and-bound framework in conjunc-
tion with the rotational search space (Bazin et al., 2012). In this
way, the consensus set of the line in the dominant direction is
maximized to ensure the best estimation of the vanishing point.

We use vector ui and vi to represent the ith pair of lines in a line
set, and the rotation matrix R as their relationship. ∠(u,v) rep-
resents the angle between vector u and v, in [0, π]. When there
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Figure 2. Overview of the proposed VO pipeline.

is zero noise and no outliers, any ith pair satisfies Rui = vi,
and ∠ (Rui,vi) = 0. When there is noise and outliers, we
define that the pair (ui,vi) is an inlier when the angle differ-
ence is less than the residual tolerance δ, i.e. ∠ (Rui,vi) ≤ δ.

The problem of maximizing the uniform set of the rotation
model is expressed as follows. If the ith pair is an inner point,
yi = 1, otherwise yi = 0. By adjusting R, we maximize the
sum of yi and then the number of interior points:

max
y,R

N∑
i

yi

s.t. yi∠(Rui,vi) ≤ yiδ,∀i = 1 . . . N

yi ∈ {0, 1}, ∀i = 1 . . . N

R ∈ SO(3)

(1)

We use the branch-and-bound (B&B) framework and the rota-
tional space search method to divide the defined interval of the
model to be estimated into smaller subspaces, then discard or
ine them. Thus, the size of the subspace decreases iteratively,
the estimated solution converges to the optimal solution, and
stops when the desired precision is reached.

The Manhattan hypotheses are as follows:(i)Each 3D structure
line is parallel to each other in a certain dominant direction, and
the 2D lines which are projected to the camera plane by 3D par-
allel lines will generate a vanishing point.(ii)The line between
the vanishing point and the camera center is parallel to the 3D
parallel lines.

As shown in Figure 3, we use dk, k = 1 . . . 3 to represent the
three orthogonal dominant directions in the Manhattan world
coordinate system. According to hypothesis(i): a set of 3D par-
allel lines in the scene must be in the same direction with one of
the dominant directions, dk. Since parallel lines intersect at the

Figure 3. Geometric model of structure lines in Manhattan
world.

infinity point, the parallelism between 3D lines can be repres-
ented by a vanishing point, thus the relation between vanishing
point and dominant direction can be obtained as:

vik ∝ KRidk (2)

where vik =
[
vxik, vy

i
k, 1
]T is the vanishing point, three van-

ishing points on image Ii are Vi =
{
vik
}3

k=1
. ∝ represents the

equality regardless the scale factor. K is the camera intrinsic,
Ri is the absolute rotation matrix of frame i.

According to hypothesis(ii): the line between the vanishing
point and the camera center is parallel to the 3D parallel lines.
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We define δik as the vector from the camera center to the van-
ishing point. Its relation with the vanishing point vik is δik =
K−1vik. By combining Eq.(2), the rotation constraint can be
obtained as:

δik ∝ dik ∝ Ridk (3)

4.1.1 Error Function and Jacobian Calculation: Accord-
ing to the constraint of Eq.(2), the cost function can be con-
structed and minimized in the subsequent optimization step:

E (ωi) =

3∑
k=1

Ek (ωi) =

3∑
k=1

arccos
(
δik ·Ridk

)
(4)

where δik and dk are unit vectors and ωi is the 3D rotation vec-
tor corresponding to the rotation matrix Ri. Then the jacobian
matrix can be obtained as (Li et al., 2018):

Jk = ∂Ek (ωi) /∂ωi

= − 1√
1− ψ2

δik
∂dik
∂ωi

=
1√

1− ψ2
δik

([
dik
]
×

) (5)

where ψ = δik · dik.

4.2 Initialization and Coarse Tracking

For the first camera frame, the system generates the intrinsic K
of the image pyramid and extracts a certain number of points
layer by layer satisfying a certain uniform distribution law. The
inverse depth of the point is initialized to 1, and the neighbor-
hood relation of adjacent points of each point on the image
plane is constructed by KD tree. Then initialization step is per-
formed when the later frames have arrived.

When a map point is observed by the camera frame at the be-
ginning, we only know its 2D image coordinates and the depth
is unknown. Such points are called immature points. As the
camera moves, the tracking process tracks these immature map
points on each image frame to determine the inverse depth of
each point and its range of variation. If the inverse depth of the
point converges during this process, we consider it as a mature
point and store the inverse depth parameter of the point and the
Hessian information representing the local gradient. Each ma-
ture map point also needs to indicate its host frame, indicating
that the point is obtained by back projection of this frame.

Each 3D point, starting from a host frame, is projected to a tar-
get frame by multiplying the depth value, thus establishing a
projection residual. As long as the residuals are within a reas-
onable range, we can assume that these points are projected by
the same point. All mature map points can be projected on any
target frame except the host frame to form a residual term. The
stack addition of all the residuals constitutes an optimization
problem to be solved at the optimization step. Due to motion
and occlusion, not every mature point can be successfully pro-
jected to any other frame, so we also need to set the state of
each point: valid/marginalized/invalid.

Coarse Tracking: According to (Engel et al., 2018), a number
of candidate pose are set as the initial values of relative camera

motion from the previous keyframe to the current frame. These
initial values are set based on assumptions such as static and
constant speed referring to the pose of the previous two frames
and the last key frame. Then the system starts tracking using
these initial values from the top of the image pyramid, and if
it finds a suitable initial prediction, it jumps out of the loop.
Then tracking step calculates the best pose from the coarse to
the fine. In the coarse tracking step, the photometric error is cal-
culated without changing the pose, and returned the cumulative
error. Then the variables needed for subsequent calculation of
jacobian matrix are saved.

4.2.1 Error Function and Jacobian Calculation: We
define the host frame as I1, and target frame as I2. The relative
motion from the host coordinate system to the target coordinate
system is ξ21 ∈ se(3). Suppose that a pixel point p1 in the host
frame has an inverse depth of ρ1 (initialized to 1) and camera
intrinsic K, the 3D point coordinate P1 in the host coordinate
system is:

P1 = π−1 (p1) = K−1p1/ρ1 (6)

where π−1 (x) is an inverse projection transformation. The co-
ordinate of pixel point p2 corresponding to p1 in the target
frame can be obtained as follows: p2 = π

(
exp

(
ξΛ
21

)
P1

)
=

π
(
exp

(
ξΛ
21

)
π−1 (p1)

)
.

Therefore, according to the assumption of photometric invari-
ance, the residual of the corresponding pixel points in the host
frame and the target frame is:

r (p1) = I2 (p2)− exp(a)I1 (p1)− b (7)

where a, b are the brightness transfer function parameters to
increase the robustness of the system to light, exp(a) is equi-

valent to
tj exp(aj)
ti exp(ai)

, ti, tj is the exposure time of two frames
respectively. When t1 and t2 are given, the initial value of a is
a = log (t2/t1).

In order to increase the degree of point differentiation and facil-
itate calculation, 8 points around the central point are selected
as a patch and these 8 points share the same inverse depth of the
central point (Engel et al., 2018). After the weighted sum of the
errors of each point, the residual error function of the one patch
is obtained (Huber norm form):

Ep =
∑

p1∈N (p)

wp ‖I2 (p2)− exp(a)I1 (p1)− b‖γ

=
∑

p1∈N (p)

wpH (r (p1))
(8)

where wp = c2

c2+‖∇I(p)‖22
is used to reduce the weight of points

with high gradients.

For all points in the current frame that can be projected to the
target frame, their errors are added up to obtain the total photo-
metric error function:

E =
∑

Ep (9)
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After constructing the objective function of the least square
problem, in order to use the Gauss-Newton method to solve this
problem, we carry out the first-order Taylor expansion of the er-
ror function to find the optimal state increment, so that the entire
error function gradually declines until convergence. Since the
Huber kernel function is used, to satisfy the least square prob-
lem squared terms, we use the error function:

f(x) =
√
whr =

√
wh (I2 (p2)− exp(a)I1 (p1)− b) (10)

where wh =

{
1 , |r| < σ
σ/|r| , |r| >= σ

, and σ is a constant.

We set state variable x =
[
ρ

(1)
1 , . . . , ρ

(N)
1 , εT , a, b

]T
(N+8)×1

=

[xa,xβ ]T , where ρ(1)
1 , . . . , ρ

(N)
1 is the inverse depth of N points

in the host frame, ε is the pose increment between two images
(6dof), a and b are the brightness parameters. In order to op-
timize the error, the jacobian matrix of the error function on
the state variable is required to be calculated. The initializ-
ation step needs to solve for N+8 parameters, while the sub-
sequent optimization process only needs 8 parameters. The
points whose inverse depth Jacobian does not meet certain con-
ditions will be filtered out and subsequent inverse depth updates

will not be carried out. We use Jα =

[
∂f(x)

∂ρ
(1)
1

, . . . , ∂f(x)

∂ρ
(N)
1

]
1×N

to represent the jacobian matrix of the error function with re-
spect to the variables xα, and Jβ =

[
∂f(x)
∂ε

, ∂f(x)
∂a

, ∂f(x)
∂b

]
1×8

to variablesxβ . The total Jacobian matrix can be written as
J = [Jα,Jβ ]1×(N+8), more details can be refer to (Engel et
al., 2018).

5. SLIDING WINDOW OPTIMIZATION

In order to improve the optimization efficiency, we use the slid-
ing window optimization method, that the system only optim-
izes keyframes in the window (we set the window size to 7).
Therefore, only the vanishing point of the keyframe can impose
rotation constraint on the direction, which speeds up the system.

5.1 Key Frame Selection and Marginalization

When the weighted sum of the changes of optical flow between
the current camera frame and the previous key frame, the
changes of optical flow without considering the rotation and
the changes of exposure parameters is greater than 1, a new key
frame is created. Then this frame is added to the sliding win-
dow, and the dimensions of Hessian matrix and b are extended.
If the number of key frames is greater than the window size,
one of the previous key frames will be selected and the frame
and the points contained in it will be removed, and the dimen-
sion of Hessian matrix and b will be reduced. This process
also involves transferring the information of the deleted frames
and points to the remaining frames in the window. Such step is
called marginalization. We use Schur complement to margin-
alize the old variables, ensuring the sparse structure of Hessian
matrix.

If the current frame is considered to be a non-keyframe, it will
be used to update inverse depth of immature points in all previ-
ous key frames in the window. If the current frame is considered

to be a key frame, it will be used to update inverse depth either
and then passed into the sliding window. All mature points in
previous key frames and immature points that conforms to cer-
tain conditions are used to establish a new error. After that, the
error will be added to the total energy function.

5.2 Absolute Rotation Optimization using Relative Rota-
tion

If we represent the absolute 3D rotation of frame i relative to
the global coordinate system as Ri, then the relative rotation
Rij between frame i and j can be calculated as:

Rij = RjR
−1
i (11)

We define a set of global rotations as Rglobal =
{R1, · · · ,RN}, according to Eq.(11), The problem becomes
fitting the global rotation to minimize the distance between the
observed relative rotation and the calculated relative rotation
from the global rotation:

arg min
Rglobal

∑
(i,j)∈E

d2
(
Rij ,RjR

−1
i

)
(12)

We use ω ∈ so(3) to represent a 3D rotation vector and define
all the rotations as ωglobal = [ω1, · · · , ωN ]T , then the first-
order approximation of the relative rotation Rij = RjR

−1
i can

be written as:

ωij = ωj − ωi = [· · · − I · · · I · · · ]︸ ︷︷ ︸
Aij

ωglobal (13)

We can conclude all the relations to:

Aωglobal = ωrel (14)

where ωrel is a vector stacked by all the relative rotations ωij ,
and A is stacked by all theAij . Consider the existence of out-
liers in the relative rotation observed in Lie algebra in any given
iteration, we have ∆ωrel = A∆ωglobal + e. Thus we use L1
optimizer instead of L2 to minimize ‖A∆ωglobal −∆ωrel‖`1 .
After that, we use the L1 results as an initial input to the it-
eratively reweighted least squares(IRLS) method (Chatterjee,
Govindu, 2013), in which each Rij estimate is appropriately
weighted. The objective function can be defined as

min
x
E = min

x

∑
i

ρ (‖ei‖) = min
x

∑
i

e2
i

e2
i + σ2

⇒ ∂E

∂x
=
∂E

∂e

∂e

∂x
= 0

⇒ ATΦ(e)Ax = ATΦ(e)b

(15)

where ρ(x) = x2

x2+σ2 is the cost function, σ is a coordinate

parameter, Φ(e) is a diagonal matrix, Φ(i, i) = σ2

(e2i +σ2)2
. In

order to obtain the x that minimize the cost, we take turns to
estimate Φ and x until convergence, which gives a global op-
timization result of absolute rotation.
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5.3 Objective Function Optimization

To optimize the frame and point information in the sliding win-
dow, we iterated over all the variables in the sliding window
using the Gauss-Newton method. We expand the error function
to the first order at current state:

f(x + ∆x) ≈ f(x) + J∆x (16)

then replace it in the energy function, and calculate the differ-
entiation of variables:

∂ 1
2
f2(x + ∆x)

∂∆x
= f(x+∆x)

∂f(x + ∆x)

∂∆x
≈ (f(x)+J∆x)J

(17)

Incremental equation can be obtained by setting Eq.(17) to 0:

JTJ∆x = −JT f(x) (18)

where ∆x is the overall update quantity. We have

H∆x = g (19)

where H =
∑

JTJ, g = −
∑

JT f(x). The optimal incre-
ment is obtained by solving the incremental equation, and the
obtained increment is used to update the state x ← x + ∆x.
Then we recalculate the error with the new state variable, then
compare the new error with the old one, and consider whether
to accept the optimization.The previous optimization provides a
priori for the next step, and the iterative solution is carried out.

6. EXPERIMENTS

In order to evaluate the effectiveness of our proposed method,
we conducted comparative experiments using the TUM Visual-
Inertial Dataset (Schubert et al., 2018). The dataset provides
camera images captured through long corridor environments
with 10241024 resolution at 20 Hz, and IMU measurements at
200Hz. We chose two typical indoor sequences from the data-
set, corridor 01 and corridor 04, both of which contain a long
corridor. We use OpenCV to realize fast line segment extrac-
tion. All the experiments were run on a computer, Intel NUC
6i7KYK, which was set up with Ubuntu 16.04, with a Intel i7-
6700HQ CPU and 32-GB RAM.

As the dataset only provides groundtruth at the start and the
end of one sequence, we evaluated the performance using mean
relative position error (RPE) with Sim(3) alignment. The ac-
curacy of our proposed method was compared with the state-
of-the-art direct VO methods: DSO (Engel et al., 2018), to val-
idate the advantages of the proposed method. DSO is a typical
visual odometry of direct sparse method, which uses photomet-
ric residuals to estimate the depth of points and camera motion
between frames. These results are shown in Table 1, which in-
dicate that our method outperforms DSO.

Figure 4 are trajectory graphs drawn on the proposed
method based on sequence corridor 04 using evo evaluation

Dataset DSO(m) Ours(m)
Corridor 01 0.494038 0.307068
Corridor 04 0.107506 0.072928

Table 1. Comparison of Performance(mean RPE)

Figure 4. Trajectory of corridor 04.

tool (Grupp, 2017). We also aligned and visualized the tra-
jectories of the two methods with the ground truth reference.
Figure 5 shows the aligned trajectory of sequence corridor 04.
Note that in this diagram, the intermediate straight line segment
is caused by the lack of ground truth data in the sequence. It
can be seen that, even in the room at the start and end of the
track, our method can improve the trajectory using structural
constraints .

Figure 5. The aligned trajectory of DSO and ours on x, y, z axis
separately.

7. CONCLUSION

In this paper, we propose a novel direct sparse visual odometry
system based on structural constraints in man-made buildings,
aiming at improving the trajectory accuracy of the existing VO
system in long corridors. This system uses structural lines to
optimize VO rotation. Experimental results on public datasets
demonstrate the effectiveness and competitiveness of our ap-
proach. Note that our method will perform better when com-
bined with global optimization methods such as loop closure,
because our proposed VO system provides a better VO out-
puts than other algorithms. This increase in accuracy allows
SLAM systems to reduce their reliance on computationally ex-
pensive global optimizations. In the future work, we will fur-
ther improve the optimization model and consider the semantic
information such as the planar constraints of the building.
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