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ABSTRACT:

Structured light scanners are intensively exploited in various applications such as non-destructive quality control at an assembly line,
optical metrology, and cultural heritage documentation. While more than 20 companies develop commercially available structured
light scanners, structured light technology accuracy has limitations for fast systems. Model surface discrepancies often present if the
texture of the object has severe changes in brightness or reflective properties of its texture. The primary source of such discrepancies
is errors in the stereo matching caused by complex surface texture. These errors result in ridge-like structures on the surface of the
reconstructed 3D model. This paper is focused on the development of a deep neural network LineMatchGAN for error reduction in
3D models produced by a structured light scanner. We use the pix2pix model as a starting point for our research. The aim of our
LineMatchGAN is a refinement of the rough optical flowA and generation of an error-free optical flow B̂. We collected a dataset (which
we term ZebraScan) consisting of 500 samples to train our LineMatchGAN model. Each sample includes image sequences (Sl, Sr),
ground-truth optical flow B and a ground-truth 3D model. We evaluate our LineMatchGAN on a test split of our ZebraScan dataset that
includes 50 samples. The evaluation proves that our LineMatchGAN improves the stereo matching accuracy (optical flow end point
error, EPE) from 0.05 pixels to 0.01 pixels.

1. INTRODUCTION

Close-range photogrammetric techniques proved to be accurate
and reliable 3D non-contact measurement in many applications
beginning with industrial ones and spanning to anthropology and
cultural heritage (Bosemann, 2011, Remondino, 2011, Knyaz and
Maksimov, 2014). Active photogrammetric systems based on
structured light demonstrate high accuracy and high performance
for obtaining multiple 3D coordinates of an object’s surface. Struc-
tured light scanners are intensively exploited in various applica-
tions such as non-destructive quality control at an assembly line,
optical metrology, and cultural heritage documentation. While
more than 20 companies develop commercially available struc-
tured light scanners, structured light technology accuracy has lim-
itations for fast systems. Model surface discrepancies often present
if the texture of the object has severe changes in brightness or
reflective properties of its texture. The primary source of such
discrepancies is errors in the stereo matching caused by com-
plex surface texture. These errors result in ridge-like structures
on the surface of the reconstructed 3D model. Many methods
were proposed to compensate error in stereo matching for struc-
tured light systems (Curless and Levoy, 1995, Wang et al., 2016,
Taylor, 2012, O’Toole et al., 2014, Wang and Feng, 2014, Chen
and Shen, 2018, Bian and Liu, 2016, Knyaz, 2010). While these
methods reduce surface distance error between reconstructed and
the ground truth models, they could not eliminate the discrepan-
cies caused by uneven texture brightness. The problems of stereo
matching can be considered as a special case of optical flow es-
timation. For the structured light systems, the matches between
the correspondent points result in dense optical flow from the left
to the right camera.
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Deep neural networks (Krizhevsky et al., 2012) have proved to
be the most effective algorithms for robust optical flow estima-
tion. Moreover, recently a new generation of neural networks has
been proposed that is commonly named Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014). These networks
could be trained for complex image-to-image translation tasks
such as object transfiguration (Zhu et al., 2017), image super-
resolution (Zhu et al., 2017) and noise reduction (Chen et al.,
2020). A GAN model consists of two networks: a generator G
and a discriminator D. Two networks are trained simultaneously
for concurrent tasks. The aim of the discriminator D is to dis-
tinguish ’real’ samples B from the training dataset from ’fake’
samples B̂ produced by the generator G. The objective of the
generatorG is the synthesis of ’fake’ samples B̂ that are indistin-
guishable from the random samples B from the training datasets.

This paper is focused on the development of a deep neural net-
work LineMatchGAN for error reduction in 3D models produced
by a structured light scanner. We use the pix2pix model as a
starting point for our research. The aim of our LineMatchGAN
is a refinement of the rough optical flow A and generation of an
error-free optical flow B̂. We hypothesize that our model can si-
multaneously process the object images S from the left and the
right cameras and the rough optical flow A to fix errors in the
preliminary stereo matching. Our proposed pipeline is given in
Figure 1.

We collected a dataset (which we term ZebraScan) to train our
LineMatchGANmodel. The dataset consists of 500 samples. Each
sample includes image sequences (Ql, Qr), object images (Sl, Sr),
ground-truth optical flow B and a ground-truth 3D model. We
evaluate our LineMatchGAN algorithms on a test split of our Ze-
braScan dataset that includes 50 samples. The evaluation proves
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Figure 1. The pipeline of the developed method.

that our LineMatchGAN improves the stereo matching accuracy
(optical flow end point error, EPE) from 0.05 pixels to 0.01 pixels.
This improvement allows reducing the surface error from 0.05
mm to 0.015 mm for a working volume of 300×300×300 mm3.
Our pipeline can be used to improve the accuracy of existing
hand-held laser scanners. The evaluation of our LineMatchGAN
model using our DeepScan scanner demonstrates that the pro-
posed approach is robust against complex object textures.

The inference time of our LineMatchGAN is 1 second for input
with a resolution of 1024×768 pixels using NVIDIA Jetson TX2
GPU. Such computational efficiency allows using the proposed
pipeline to improve the accuracy of existing hand-held scanners
for on-line data processing. We made our dataset and model pub-
licly available1.

2. RELATED WORK

2.1 Structured Light Scanners

Today the use of structured light scanners is widespread in vari-
ous tasks of photogrammetry and optical metrology. The works
of (Akca et al., 2007) and (Chalmers et al., 2001) demonstrate
the application of 3D scanners for documentation and visualiza-
tion of cultural heritage. The first work presents the results of
3D modelling of two cultural heritage objects, where a close-
range coded structured light system was used for generation of
3D models. In the second work a low-cost 3D scanner based on
structured light projection with versatile coloured stripe pattern
approach was designed. It adopts a set of patterns produced by
recursive subdivision, which mixes thin stripes (from which the
shape is reconstructed) and coloured bands that are used to re-
index the stripes.

Structured light scanners are also used for a shape measurement
and a 3D object surface reconstruction. Lin et al. have proposed

1http://www.zefirus.org/en/linematchgan

an automatic 3D color shape measurement system (Lin, 2020)
based on images recorded by a stereo camera was developed.
Also 3D shape measurement techniques have been widely used
in industrial inspection, intelligent manufacturing, reverse engi-
neering, and many other aspects (Salvi et al., 2010, Pribanic et al.,
2010, Gupta et al., 2011). Pribanic et al. have developed a mul-
tiple phase-shifting method (Pribanic et al., 2010). This method
is not influenced by wrapped phase computation inaccuracies as
the original approach and it is faster than common LUT-based
(search) methods. Xiao et al. have proposed a structured light
measurement technique (Xiao et al., 2020) based on the reverse
photography. The technique includes an auxiliary reverse camera
installed behind the structured light system. The camera allows to
unify the local 3D shape data acquired from multi-view structured
light measurements to a global frame. Such approach allows to
achieve a holistic 3D shape data fusion.

Finally, using a structured light scanner in conjunction with deep
learning methods allows to generate depth maps of real-world
scenes. Li et al. have proposed a novel method (Li et al., 2019)
that combines structured light and deep learning stereo matching
to calculate the depth map. To prevent the holes in the textureless
areas during the stereo matching, a depth map is predicted by a
convolutional neural network. Then, a fine and accurate depth
map is obtained by phase matching. The proposed method can
generate a high precision depth and relieve the occlusion in the
structured light system.

2.2 Mobile Scanners

Increasingly, the need arises for accurate and reliable reconstruc-
tion of three-dimensional objects in tasks where it is impossible
to use expensive and bulky equipment. Recent progress and avail-
ability of the small and accurate industrial cameras have allowed
the creation of low-cost and mobile systems for reconstruction of
3D objects. Piccirilli et al. developed a mobile sensor based on
the fringe projection techniques (Piccirilli et al., 2016). The goal

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-777-2020 | © Authors 2020. CC BY 4.0 License.

 
778



of the developed sensor is acquisition of the 3D model of a face
and its color texture using a smartphone device. The data acquisi-
tion, pattern generation, and reconstruction of the final 3D point
cloud are all driven only by the smartphone. This system is used
for 3D face acquisition.

Donlic et al. have proposed a 3D reconstruction framework (Don-
lic et al., 2017) implemented on a tablet mobile device. The
method leverages the mobile device’s accelerometer and magne-
tometer for 3D registration. Kniaz et al. recently have developed
a new method (Kniaz, 2019) for robust 3D model reconstruction.
The methods combines a mobile structured light 3D scanner with
a deep learning technique for online 3D reconstruction. The deep
learning-based approach allows to perform stereo matching with
a 3D scanner and achieve a sub-millimeter accuracy in the object
space.

2.3 Generative Adversarial Networks

The development of a new type of neural networks known as gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014)
made it possible to take a significant step forward in the field
of image processing. GANs consist of two deep convolutional
neural networks: a Generator network tries to synthesize an im-
age that visually indistinguishable from a given sample of images
from the target domain. A Discriminator network tries to distin-
guish the ‘fake’ images generated by the Generator network from
the real images in the target domain. Generator and Discrimina-
tor networks are trained simultaneously. This approach can be
considered as an adversarial game of two players.

One of the first goals solved using GANs was image synthesis.
Image-to-image translation problem was solved using conditional
GAN termed pix2pix (Isola et al., 2017). Such network learns
a mapping G : (x, z) → y from observed image x and random
noise vector z, to output y. This method also uses a sum of two
loss functions: a conditional adversarial objective function and
an L1 distance. However, for many tasks it is not possible to
generate paired training datasets for image-to-image translation
tasks.

To overcome this difficulty a CycleGAN (Zhu et al., 2017) was
proposed. The CycleGAN leverage a cycle consistency loss for
learning a translation from a source domain X to a target domain
Y in the absence of paired examples. Therefore, the CycleGAN

model detects special features in one image domain and learns
to translate them to the target domain. A new StyleGAN model
was proposed in (Karras et al., 2018) that provides a superior
performance in the perceptual realism and quality of the recon-
structed image. Unlike the common generator architecture that
feeds the latent code through the input layer, the StyleGAN ap-
pends a mapping of the input to an intermediate latent space,
which controls the generator. Moreover, an adaptive instance nor-
malization (AdaIN) is used at each convolution layer. Gaussian
noise is injected after each convolution facilitating generation of
stochastic features such as hair-dress or freckles. The problems of
the first StyleGAN model were partially eliminated in the second
StyleGANv2 model (Karras et al., 2019). In this model param-
eters are optimized and the neural network training pipeline was
adjusted. The changes made have improved the quality of the
results.

3. METHOD

The aim of our LineMatchGANmodel is improving stereo-matching
accuracy using a deep neural network. Unlike an existing ap-

proaches (Li et al., 2019), where error correction is performed
in the domain of the depth map, we perform processing in the
domain of the optical flow (Wedel and Cremers, 2011). Specifi-
cally, we consider stereomatches as a sparse optical flow that can
be densified and improved by a GAN model.

The rest of this section presents an overview of our 3D recon-
struction pipeline. After that technical properties of our mobile
scanner are discussed. Finally, we present details of our Line
MatchGAN model.

3.1 Framework Overview

The first step in our pipeline is acquiring of the structured light se-
quences Sl, Sr using a mobile scanner. After that, we use a hand-
crafted stereo matching algorithm (Knyaz, 2010) S : (Sl, Sr)→
A to generate rough optical flowA. We use the rough optical flow
A and object images Sl, Sr as an input for our LineMatchGAN
G : (A,Sl, Sr) → B̂. Finally, we feed the predicted refined op-
tical flow B̂ to the hand-crafted 3D reconstruction algorithm to
obtain a 3D mesh. We developed a mobile hand-held 3D scanner
DeepScan to train and evaluate our LineMatchGAN model.

3.2 Mobile Scanner

We use a mobile scanner developed in our previous research (Kniaz,
2019, Kniaz et al., 2020). The developed scanner is based on the
assumptions made by Knyaz et al. (Knyaz, 2010, Knyaz, 2015).
The whole system consists of two high-speed industrial cameras
located on an aluminum beam. The cameras a separated by a ba-
sis of 300 mm. The structured light illumination is provided by
a mobile multimedia projector. The projector has an autonomous
power supply capable for 40 minutes of operation.

We use an external synchronization clock to synchronize the cam-
eras and the projector. The total weight of our system is 1.3 kg.
It allows to use it in the filed for online scanning of archeological
objects and cultural heritage. The complete system is presented
in Figure 3. Technical specifications of the system are presented
in Table 1.

Table 1. Technical specifications of our mobile structured light
scanner.

Parameter Specification Unit
Camera Resolution 1328× 1048 pixels
Camera Maximal FPS 120 pixels
Camera Lens Focal Length 8 mm
Camera Exposure 16.6 ms
Camera Baseline 300 mm
Camera Object Distance ∼700 mm
Stereo Field of View (FOV) 400× 300× 200 mm
Camera CMOS Sony IMX035
Camera Lens Aperture 5.6
Projector Resolution 1280× 720 pixels

3.3 LineMatchGAN

Our LineMatchGAN is based on the pix2pix model (Isola et
al., 2017). Specifically, it is a conditional genertive adversar-
ial framework with a generator and a discriminator. Our model
works by translating an input tensor X ∈ RW×H×8 into a cor-
rected optical flow B ∈ RW×H×2, where X is a concatenation
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Figure 2. Examples from the ZebraScan Synthetic dataset.

Figure 3. Mobile structured light 3D scanner.

of a rough optical flow A ∈ RW×H×2 and images for left and
right cameras Sl ∈ RW×H×3. Therefore, our generator G learns
a mapping G : (Sl, Sr, A) → B̂ from the input data to the cor-
rected optical flow.

We made two main contributions to the pix2pix model. Firstly,
we added an inverted residual block (Sandler et al., 2018) after
each convolutional layer to increase the number of training pa-
rameters and improve the optical flow reconstruction accuracy.
Secondly, we add a preprocessing module to convert the input
rough optical flow to the [−1, 1] range suitable for the training
pipeline.

Algorithm 1: Stereo Matching Algorithm

Input: The camera positions XLeft
0 , XRight

0 , image sequences
from left camera SL and from right camera SR

Output: Optical flow A, which show difference between SR and
SL

1 for each Pair of images ILeft
i from SL and IRight

i from SR do
2 Find on ILeft

i Backlight Lines LLeft;
3 Find on IRight

i Backlight Lines LRight;
4 Calculate for IRight

i Epipolar Lines from points PLeft

located on LLeft;
5 Find in IRight

i points PRight that are the intersection
between ERight and LRight;

6 Calculate the difference between PRight and PLeft;
7 end

3.4 Dataset Generation

To train our LineMatchGAN framework, we collected a new dataset
ZebraScan. It includes synthetic and real images of four solid ob-
jects: Gnome, Vase, Nefertiti, and David. Some of models were
generated using a structured light scanner (Gnome, Vase). Some
of models were collected from the open source 3D models avail-
able in the internet. Synthetic images were generated using the
Blender 3D creation suite. The dataset includes three spilits: real,
‘synthetic full’ and ‘synthetic reduced’.

The real split of the dataset (Figure 4) was collected using a struc-
tured light scanner. To generate the ground truth optical flow, we
imported the ground truth 3D models into the scene and simu-
lated the optical flow from the left to the right camera using the
estimated external orientation of the cameras.

The ‘synthetic full’ split of the dataset consists of images that
simulate a structured light scanner (Figure 2). We created the
images from the left and the right cameras and simulate a mov-
ing light line. The first split includes 300 pairs of images. The
program code was developed that processes the synthetic images
and generates rough optical flow. The algorithm for the code is
presented in the Algorithm 1.

The ‘synthetic reduced’ split of the dataset was created to ex-
pand the training dataset (Figure 2). We used special technique
that creates not only images from cameras, but also simulates the
processing of sequences by a scanner. We simultaneously gener-
ated ground-truth optical flow and rough optical flow. The second
split contains 90 quadruples of images. The resolution of render-
ing images is 1280 × 960 pixels. We used a PNG format for the
color images and OpenEXR format for the optical flow.

4. EXPERIMENTS

4.1 Network Training

The LineMatchGAN framework was trained on the training split
of the ZebraScan dataset using the PyTorch library (Paszke et
al., 2017). The training split includes 450 local image patches.
The training was performed using the NVIDIA 2080 RTX GPU
and took 12 hours. For network optimization, we use minibatch
SGD with an Adam solver. We set learning rate to 0.0002 with
momentum parameters β1 = 0.5, β2 = 0.999 similar to (Isola et
al., 2017).
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Figure 4. Examples from the ZebraScan Real dataset.

4.2 Qualitative Evaluation

We evaluate our LineMatchGAN framework qualitatively in terms
of the smoothness of the reconstructed optical flow B̂. For the
evaluation, we use an independent test split of our ZebraScan
dataset consisting of 20 images for the real split and 20 images for
the synthetic split. We present results in Figure 5. The evaluation
results prove the our LineMatchGAN model learns both optical
flow completion and elimination of the discrepancies caused by
uneven brightness of the surface texture.

4.3 Quantitative Evaluation

We evaluate our LineMatchGAN framework quantitatively in terms
of L1 distance between the ground truth optical flow and the
optical flow B̂ processed by our model. The evaluation results
are presented in Table 2. The average endpoint optical flow er-
ror for the optical flow produced by the scanner (EPE base) in-
cludes discrepancies caused by the illumination and ranges from
0.5 to 0.1 pixel. Processing of the rough optical flow using our
LineMatchGAN model reduces the error more then ten times.

We reconstructed 3D models of the objects using the rough op-
tical flow and the optical flow filtered by our LineMatchGAN

model to compare surface distance accuracy. The surface dis-
tance to the ground truth 3D model for the models reconstructed
using a rough optical flow (SD base) was about 0.05 mm for all
objects. 3D models reconstructed using the filtered optical flow
have average surface distance of 0.01 mm.

Object EPE base EPE corr. SD base SD corr.
pix pix mm mm

Test field 0.162 0.002 0.025 0.005
Gnome 0.321 0.051 0.051 0.012
David 0.531 0.092 0.056 0.014

Table 2. Optical flow EPE and surface distance.

5. CONCLUSION

We showed that a conditional adversarial loss function can be
used to improve a 3D model reconstruction accuracy for mo-
bile structured light scanner. Specifically, our model corrects the

stereomatching errors causes by the uneven surface brightness of
the object’s texture.

We developed a LineMatchGAN conditional generative adversar-
ial model for optical flow filtering. Our model receives a joint in-
put consisting of a stereopair and the rough optical flow generated
by a mobile scanner. The model attempts to reconstruct the error-
free optical flow using the learnt experience. We collected a Ze-
braScan dataset to train and evaluate our LineMatchGAN model.
Both qualitative and quantitative evaluation demonstrates that the
framework successfully removes errors in the optical flow. More-
over 3D models reconstructed using the filtered optical flow have
five times lower surface distance error compared to the models
reconstructed using the rough optical flow.
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