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ABSTRACT: 
 
High-Speed Biplanar Videoradiography (HSBV) is an X-ray based non-invasive imaging system that can be used to derive dynamic 
bony translations and rotations. The 2D-3D registration process matches a 3D bone model acquired from magnetic resonance imaging 
(MRI) or computed tomography (CT) scans with the 2D X-ray image pairs. This study focuses on the registration of MRI data as it 
can acquire detailed soft tissue contrast that cannot be easily discerned in CT scans. A novel 2D-3D registration method is reported in 
this paper that is suitable for the MRI-based bone models with high precision and high efficiency. In addition, an automatic initialization 
procedure with 64 starting poses is established to avoid user intervention in the registration. The method has been tested using the 
HSBV image sequence of a knee joint during walking. Thirty-five consecutive poses from the sequence were tested for the registration, 
and 50 non-consecutive poses randomly selected from the sequence were tested for the automatic initialization. The registration 
precision for each axis was 0.49 to 0.54 mm. For the initialization validation test, 48 over 50 frames were successfully initialized and 
two failed due to portions of the joint falling outside of the field-of-view of the system. The average time for each initialization is only 
about 6 min. The improved 2D-3D registration will allow determination of precise 3D kinematic parameters with high efficiency. 
These kinematic parameters can be used to calculate joint cartilage contact mechanics that provide insight into the mechanical processes 
and mechanisms of joint degeneration or pathology.   
 
 

1. INTRODUCTION 

High-speed biplanar videoradiography (HSBV) or dual 
fluoroscopy (DF) combines two X-ray sources with high-speed 
video cameras to generate a dynamic view of the object of 
interest. The term biplanar or dual refers to two plane views of 
the X-ray images, which is in contrast with single fluoroscopy 
that can only acquire a single image per frame. By using low dose 
X-rays, both high spatial and temporal resolution 2D radiograph 
pairs can be acquired with a HSBV system, which yields accurate 
3D measurements of the joint kinematics (Li et al., 2008; Anderst 
et al., 2009; Miranda et al., 2011). Nowadays, the HSBV 
technique is widely used in medical studies and practices 
including, but not limited to, kinematics analysis (Li et al., 2008; 
Sharma et al., 2012; Thorhauer, Tashman, 2015), orthopedic 
surgeries (Yamazaki et al., 2004; Bingham, Li, 2006), and image-
guided surgeries (Otake et al., 2012). For example, with the 
registration of 3D bone models for both the tibia (shank bone) 
and the femur (thigh bone), tibiofemoral soft tissue model 
overlap can be quantified to estimate cartilage deformation or 
contact (Sharma et al., 2015; Thorhauer, Tashman, 2015; Yin et 
al., 2017). An increased cartilage deformation rate under loading 
has been proposed to potentially be an early sign of osteoarthritis 
(Frobell et al., 2010; Sharma et al., 2015). After loading, cartilage 
thickness ranges from 0.3 mm to 1.2 mm for early osteoarthritic 
or healthy knees (Sharma et al., 2015). Therefore, the cartilage 
contact estimation accuracy should be sub-millimetre or higher 
for early osteoarthritis diagnosis, which requires at this level of 
accuracy for kinematic parameter estimation. Anderst et al. 
(2009) reported the root mean square errors of the kinematics 
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measurements as 0.69 mm to 1.54 mm for translations and 0.54º 
to 1.75º for rotations in a dynamic trial. 
 
The HSBV system in the current study, shown in Figure 1, is 
composed of two X-ray sources (time-synchronized, G-1086, 
Varian, USA), two X-ray image intensifiers (406 mm diameter, 
E5876SD-P2A, Toshiba, Japan), and two high frame rates video 
cameras (DIMAX, PCO, Germany). An instrumented treadmill 
(Bertec, USA) is positioned with the imaging system to allow for 
dynamic movement such as walking or running. The setup of the 
imaging system allows any part of the body to be observed. It is 
most frequently applied to the knee, foot, and cervical spine.  
 
The HSBV procedure requires 3D reconstruction of the bone 
models, HSBV system self-calibration, radiograph image pair 
sequence acquisition, and 2D-3D registration. The 3D 
reconstruction from the computed tomography (CT) or magnetic 
resonance (MR) scans provides the 3D bone model for the 
analysis. This study focuses on the registration of MR data for 
two reasons: 1) MRI scans are free of ionizing radiation. With the 
radiation from X-ray imaging, CT scans would add another 
source of radiation to patients; 2) MRI scans can acquire detailed 
soft tissue contrast that is difficult to acquire from CT scans. 
Although this information is not necessary for the registration 
procedure, it is important to generate subject-specific cartilage 
models for accurate cartilage contact estimation (Thorhauer,  
Tashman, 2015).  
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Figure 1. HSBV motion capture system. 
 
The purpose of the photogrammetric HSBV system self-
calibration is to accurately determine the system geometry, which 
includes the relative orientation parameters (ROPs), the interior 
orientation parameters (IOPs), and the image distortion 
additional parameters (APs). The direct linear transformation 
(DLT) method is commonly used in the HSBV system (Tashman, 
Anderst, 2003; Bingham, Li, 2006) thanks to its uncomplicated 
procedure. However, under the DLT method, each image is 
calibrated and oriented independently, thus the IOPs can vary 
among images and the common ROPs cannot be easily enforced. 
Therefore, the DLT method cannot provide the highest possible 
calibration and reconstruction accuracy. Bundle adjustment is a 
single-step, self-calibrating method which models the image 
distortions and the system geometry simultaneously (Lichti et al., 
2015; Al-Durgham et al, 2016). A common set of IOPs and ROPs 
can be acquired in a multiple image calibration process using 
image pairs taken at different epochs. Because of data 
redundancy and parameters consistency, the calibration accuracy 
will be improved. An automatic calibration system was proposed 
to reduce user intervention during the procedure (Al-Durgham et 
al., 2016). Preliminary data suggests that the improved bundle 
adjustment approach may reduce noise in the kinematic outcomes 
(Küpper et al., 2019). 
 
Once calibrated, image pair sequences of a patient walking or 
running are captured by the HSBV system. The frame rate of the 
system ranges from 6 to 250 Hz depending on the motion to be 
captured. For example, running requires higher frequency while 
lower frequency is suitable for squats. The six degrees-of-
freedom (6DoF) of the femur and tibia, also called the 
transformation parameters with three rotation and three 
translation parameters, are determined by estimating the pose of 
the 3D bone model from the image pair at each frame (Figure 2). 
By estimating the 6DoF of the tibia and the femur for each frame, 
the dynamic 3D motion of the bones can be obtained. 
 
The 3D motion reconstruction can be acquired by marker-based 
or model-based registration. The marker-based Roentgen 
stereophotogrammetry analysis (RSA) system is well established 
and can accurately estimate the accurate 3D position of the 
markers implanted in bones and the kinematics of the skeletal 
segments (Kärrholm, 1989). However, RSA is an invasive 
procedure that requires the implantation of radiopaque markers. 
The risks associated with the implantation procedure and the 
adverse effects after the surgery need to be considered. The 
model-based 2D-3D registration is a modern technique that 
enables the non-invasive 3D motion capture for the HSBV 

system. Thus, the current research focuses on the model-based 
2D-3D registration. 
 

 
 

Figure 2. Illustration of the transformation parameter 
estimation. 

 
In this paper, the 2D-3D registration is the process that matches 
a 3D bone model, acquired by MRI, with the 2D radiographs 
thereby providing estimates of the 6DoF of the 3D bone model. 
There are two commonly used methods for model-based 2D-3D 
registration. The first is intensity-based, which matches the 
intensities of the pixels and voxels and requires digital 
reconstructed radiographs (DRRs) generated from the 3D CT 
data. This method is not suitable for the MR data as there is 
generally no physical correspondence between MR-based DRRs 
and radiographs (Markelj et al., 2012; Oliveira, Tavares, 2014). 
The second is the feature-based method that matches the feature 
locations in 2D and 3D and minimizes the distances between the 
corresponding points. The iterative closest point (ICP; Besl,  
McKay, 1992) algorithm is widely used for the 2D-2D and 3D-
3D registration of surfaces and objects. But for 2D-3D 
registration, the ICP cannot be simply applied because of the 
complex central projection relationship between the 3D bone 
model and the 2D radiographs. Xin et al. (2006) and Li et al. 
(2008) applied the ICP method to the 2D-3D registration of the 
orthogonal radiographs acquired from a C-arm. The orthogonal 
setup of the C-arm has simpler geometry to work with. However, 
the fixed configuration limits the movement space for the patient 
and thus is not suitable for the free-form of the HSBV setup in 
this study. Additionally, the optimization method used should be 
considered, as the least squares minimization in Xin et al. (2006) 
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton algorithm in Li et al. (2008) both lead to heavy 
computational cost. 
 
The requirement of user intervention, especially for initial pose 
estimation (Li et al., 2008; Anderst et al., 2009) is another 
unsolved problem. Most registration methods require the 
initialization of the transformation parameters to a close 
approximation. Otherwise, the registration method cannot 
converge to the correct result. Varnavas et al. (2013) presented a 
virtual fiducial marker (VFM) method in which reference points 
are selected by the user virtually to identify the vertebra, then a 
bounding box is drawn by the user to obtain the initial pose. 
Varnavas et al. (2015) proposed a Generalised Hough Transform 
(GHT) based method to match the radiographs onto pre-
calculated 2D templates to obtain the initial pose of the vertebra. 
Other than the efforts made in the automation of the initial pose 
estimation, manual registration is still in use. Anderst et al. 
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(2009) presented the user intervention is required to initialize the 
registration for the intensity-based registration.  
 
In this paper, the first objective is to develop a 2D-3D registration 
method that is suitable for the MRI-based bone model with high 
precision and high efficiency. An ICP-based 2D-3D registration 
method is developed with 2D matching and 3D updating using 
the Horn’s closed form transformation (Horn, 1987) to achieve 
fast registration with high precision. The second objective in this 
research, addressing the need for user intervention, is to 
automatically determine the initial pose for the registration. The 
automatic initialization procedure with multi-starting poses is 
presented and validated in this paper. 
 

2. METHODS 

2.1 Models 

2.1.1 Rigid Body Transformation: The rigid body 
transformation can be described by the 6DoF represented by 
three translation parameters and three rotation parameters. In the 
situation that the point cloud of the 3D bone model acquired from 
MRI is used in the registration, for each model point i, with 
coordinates , the transformed coordinates are given 
by 
 

              (1) 

 
where       translation parameters 

 rotation parameters 
 transformed model points 

 the rotation matrix that is parameterized 
by the following Euler angle sequence  
 

                 (2) 
 
where       are the rotation matrices about the  

axes respectively 
 
With the above equations, the 3D bone model point cloud can be 
transformed to the actual pose to match with the radiographs. The 
three translation and three rotation parameters of the 6DoF are 
the unknowns to be determined by the 2D-3D registration. 
 
2.1.2 Projection with Collinearity Equations: The 
collinearity model describes the condition that the perspective 
centre of the camera, the image point, and its corresponding 
object point are on the same straight line. Figure 3 shows the 
geometry of the collinearity condition for an image pair in the 
HSBV system. The collinearity equations can be used to establish 
the relationship between the model points in the object space and 
the image points. The coordinates of the image points and are 
given by 
 

                                 (3) 

                                 (4) 
 
where       image coordinates of the ith point 

 principal distance 
 coordinates of the principal point 

image distortion correction terms 

 image space coordinates transformed from 
the object space, and this rigid body transformation is 
given by 
 

                  (5) 

 
where        perspective centre coordinates in the  

object space  
 transformed model points in the object 

space acquired from equation (1)  
  object space to image space rotation matrix  

 

 
 

Figure 3. Collinearity condition illustration for an image pair. 
 

The calibrated system geometry provides the exterior orientation 
parameters (EOPs;  and the IOPs  
of each video camera. The EOPs come from the system ROPs 
acquired from all the calibration images at one system setup. The 
calibration procedure also provides the additional distortion 
parameters to correct the image distortion. In the registration 
procedure, the projected model points and the distortion-
corrected radiographs can be matched to provide the 
correspondences for the registration. 
 
2.2 ICP-Based 2D-3D Registration 

The ICP-based 2D-3D registration is an iterative procedure 
including multi-threshold Canny edge detection, matching of 2D 
edges and 2D projected outlines, back-projection of the edge 
points, and transformation estimation. Figure 4 shows the flow 
chart of the registration procedure. 
 
2.2.1 Multi-threshold Canny Edge Detector: The 
radiographs depict the internal view of an object because the 
materials comprising the object attenuate X-ray differently 
depending on the density and the structure. The variation in 
contrast across the image is typically lower than an optical image, 
especially at the knee joint comprising bone and cartilage. Canny 
edge detection (Canny, 1986) is commonly used in medical 
image analysis. However, detecting edges from the radiographs 
is still a challenging task. Three parameters are required to 
perform a good Canny edge detection: the standard deviation of 
the Gaussian operator, σ, the high threshold,  for the strong 
edges, and the low threshold,  for continuity. The Canny 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-805-2020 | © Authors 2020. CC BY 4.0 License.

 
807



 

detector parameters typically vary for different images. The 
standard deviation and the thresholding parameters often need to 
be adjusted carefully. One purpose of this study is to automate 
the registration process to avoid user intervention. Thus, a multi 
thresholding strategy that combines multiple Canny edge 
detectors is adopted. After the empirical testing with a set 
radiographs, a bank of Canny edge detection with 25 filters is 
developed. By overlaying the edges detected by the bank of filter, 
the edges are much stronger than those acquired from any single 
Canny detector. The overlain edges are further thinned based on 
their connectivity because there might be multiple responses to a 
single edge.  In addition, gradient thresholding and intensity 
thresholding strategies are used to remove the outliers. 
Nevertheless, the above strategies cannot remove all the outliers. 
The outliers can be further removed in the automatic initialization 
procedure discussed in Section 2.3. 
 

 
 

Figure 4. ICP-based 2D-3D registration flow chart. 
 

2.2.2 2D-2D Matching: The 3D model points can be 
projected onto the 2D image plane using Equations (3)-(5) so that 
the 2D projected point cloud of the bone model is obtained. Then, 
the outline of the 2D model points can be extracted to match with 
the edges detected from the X-ray image, see Figure 5(a). With 
the 2D edge points and the 2D outline points, one-to-one 
correspondence needs to be established based on point-to-point 
distance. Starting from each edge point, the nearest outline point 
can be found. However, an outline point may be matched to more 
than one edge point, see Figure 5(b). Thus, each matched outline 
point should be checked. If more than one edge point is matched, 

only the one with the shortest distance will be kept (Figure 5(c)). 
By doing this, not only is the one-to-one matching preserved, but 
also the amount of data is reduced. 
 

 
 
Figure 5. Projected outline points and edge points matching. (a) 
Points before matching, (b) matching from each edge points, (c) 

one-to-one correspondence. 
 
2.2.3 Back-projection: Although the matching is performed 
in 2D, the transformation estimation needs to be done in 3D as it 
involves 3D translations and rotations. In this case, the matched 
edge points need to be back-projected into 3D for the 
transformation parameters estimation. One edge point can be 
determined on a 3D ray back to the principal point of the camera 
provided the calibrated system geometry is available. Then the 
assumption can be made that the depth of the edge point is the 
same as that of its matching outline point because the edge point 
is considered as the 2D expression of the outline point. Figure 6 
illustrates the projection of the outline points and the back 
projection of the matching edge points. Figure 7 shows the back-
projected edge points onto the 3D bone model of the tibia from a 
select image pair. The scale factor to determine the depth of the 
outline point is given by 
 

+ 
         (6) 

 
where      3rd row elements in the object space 
                to image space rotation matrix 
 

 
2.2.4 Transformation Estimation: The objective function of 
the transformation estimation is to minimize the root mean square 
distance between the 3D bone model points and the back-
projected edge points. After the edge points are back-projected 
into 3D, Horn’s closed-form transformation (Horn, 1987) is used 
to acquire the estimation of the translation and rotation 
parameters. The bone model points are the slave points, and the 
back-projected edge points are the master points. In Horn’s 
method, unit quaternions with four algebraic parameters are used 
to represent the 3D rotation because of their simple algebraic 
properties and the lack of gimbal lock problem. Thus, in this 
study, the quaternions are used for the transformation estimation, 
but the results will be transformed into an Euler angle sequence 
that has physical meaning and quantifies the rotation about each 
axis. 
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Figure 6. Illustration of the projection of the outline points and 
the back projection of the matching edge points. 

 
 

 
 

Figure 7. Back-projected edge points onto the 3D bone model of 
the tibia from a select image pair. 

 
2.2.5 The Iterative Registration: After the transformation 
parameters are estimated at the current iteration, the 3D bone 
model point cloud needs to be updated using the estimated 
parameters for the next iteration until the termination criteria are 
reached. This accomplishes the process of the ICP-based 2D-3D 
registration. The termination criterion is an important factor for 
the registration process because it limits the computation time 
while ensuring the accuracy of the registration. Since the 
accuracy requirement for the registration is at the sub-millimetre 
level, the change in update from one iteration to the next should 
be less than 0.01 mm. Thus, the termination criterion is set as 
0.01 mm for the translation parameters as well as the objective 
function value. For the rotation parameters, although the 
quaternions do not have the physical meaning, they can be 

considered equivalent to the angle-axes rotations. Therefore, 
based on the system geometry, the termination criteria for the 
quaternions are set to 10-6. 
 
2.3 Automatic Initialization 

The ICP is known as a local optimization method whose 
optimality relies on the initialization of translation and rotation 
parameters. To avoid a manual initialization procedure, a global 
optimization strategy can be used. There are many global 
optimization or heuristic search strategies that have been used in 
medical image processing, for example, the Monte Carlo random 
sampling (Dey, Napel, 2006), the multi-start strategy (You et al., 
2001), and simulated annealing (Vermandel et al., 2006).  
 
Here, the goal is to determine the approximate translation and 
rotation parameters that are within the capture range for the 
registration with reasonable computation time. In the 2D-3D 
registration, the rotation parameters are sensitive to the initial 
values because it cannot overcome a rotation more than a certain 
range. Figure 8 illustrates a failed registration due to the initial 
pose being outside of the capture range, thus the registered pose 
was flipped approximately 180º about the vertical axis from the 
true pose. To address this problem, the search space can be 
evenly subdivided. The size of the capture range and level of 
subdivision required for the search space depend on the 
characteristics of the registration method and the shape of the 
object to be registered. Thus, testing needs to be performed to 
determine the division of the search space. The detailed testing 
results are shown in Section 4. Based on the testing results, a 
reliable initialization procedure is constructed. Starting from 64 
poses, the 2D-3D registration for each starting pose is performed. 
The one having the smallest root mean square error (RMSE) from 
registration is considered as the best coarse approximation of the 
registration. Since the initialization does not require high 
accuracy, it can be simplified to save the computational cost. 
Thus, the bone model is down sampled to reduce the data amount 
based on the testing result in Section 4. Also, the number of 
iterations for each starting pose is limited to 50 to reduce the time 
consumption. This limit has been validated in the testing. 
 

 
 
Figure 8. A failed registration for both of the tibia and the femur 
due to the initial pose being outside of the capture range of the 

registration. 
 
Another benefit of the automatic initialization is its ability to 
handle outlier edge points. It rejects matching pairs whose 
distance is larger than three times the standard deviation of the 
matching distance. Most of the outliers can be removed from this 
step, but it cannot guarantee that the edge outliers will be 
removed completely. Visual inspection and manual outlier 
removal are still required to yield high precision registration. But 
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the time consumption is largely reduced and only takes about 1 
min for each image. 
 

3. EXPERIMENTS  

MRI scans of the right knee of ten healthy participants ages 20-
60 were acquired using a high-resolution MR system (3 Tesla 
Discovery 750, GE, USA). The scan parameters were: repetition 
time 7.513ms; echo time 2.32ms; imaging frequency 
127.7671MHz; flip angle 35º; spacing between slice 0.5 mm; 
slice thickness 1 mm; slice numbers 204; pixel spacing 
[0.3516×0.3516 mm];  rows and columns [512×512]. The MR 
images were manually segmented in Amira software (USA) to 
acquire the 3D bone models of the tibia and the femur. The 
cartilage models were segmented as well for soft tissue analysis. 
 
The 2 x 2D radiographs of the right knee of the ten participants 
were acquired at the Clinical Movement Assessment Laboratory, 
University of Calgary, Canada. The two video cameras were 
synchronized by the master camera using continuous timing 
pulses. BV images were collected at 20 Hz for 5 min for the ten 
participants while walking. Therefore, there are ten series in total, 
named as JB001 to JB010. The radiographs were taken at a high 
resolution [2016×2016 pixels]. The system was calibrated (Al-
Durgham et al., 2016) using the bundle adjustment method,  and 
additional distortion corrections were performed for all the 
radiographs.  
 
The computational time in this paper was recorded on a personal 
computer with Core i5-6400 processor, 24 GB memory and 64-
bit operating system. The programming and data processing are 
implemented in the MATLAB (v2016b, MathWorks, USA). 
 

4. RESULTS 

4.1 2D-3D Registration Testing 

The registration testing was performed over 35 consecutive poses 
from the JB001 series. The full bone models include 188560 
points for the tibia and 231162 points for the femur. The 3D bone 
model point clouds were randomly down sampled to 5%, 10%, 
50%. The registration validation test is performed using the down 
sampled datasets as well as the original datasets. Table 1 and 
Table 2 shows the registration precision, which is the root mean 
square (RMS) distance between the registered 3D bone model 
points and the back-projected edge points.  
 
The 10% and 50% down sampled bone models achieved similar 
precision as the original data set, while the time consumption of 
the 50% and the full model size is greater than the 10% model 
size. Thus, it can be concluded that the bone model down 
sampled to 10% of the full dataset can be used for the 2D-3D 
registration without sacrificing precision. The precision of using 
the 5% down sampled bone model is lower by 0.02~0.04 mm, 
but its time consumption is reduced by 55% for the tibia and 72% 
for the femur compared with the 10% model size. This model size 
can be used for the initialization procedure that requires the faster 
registration and allows lower precision. 
 
The time consumption for the registration of femur is about 2 
times of the registration of tibia because of two reasons. One is 
that the model size of the femur is larger than the tibia which 
means there are more points to be processed. Another reason is 
that the femur requires more iterations to converge to the 
termination criterion. The average iteration time required over 
the 35 poses is 86 for the tibia, and 155 for the femur. The 

differing shapes of the tibia and femur could be the reason why 
the femur requires more iterations. 
 
From the results of the 10% down sampled bone model in Tables 
1 and 2, the average RMSE over 35 consecutive poses is 0.91 mm 
in distance and 0.52~0.54 mm of each axis for the tibia. For the 
femur, the average RMSE is 0.86 mm in distance and 0.49~ 0.51 
mm of each axis.  
 

Model 
Size 

X axis 
(mm) 

Y axis 
(mm) 

Z axis 
(mm) 

Distance 
(mm) 

Time 
(s)  

5% 0.54 0.53 0.57 0.95 4.3 
10% 0.52 0.52 0.54 0.91 9.5 
50% 0.52 0.51 0.55 0.91 87.2 

Original 0.52 0.51 0.55 0.91 320.8 
 

Table 1. 3D reconstruction errors (RMS) averaged over 35 
consecutive poses for the tibia. 

 
 

Model 
Size 

X axis 
(mm)  

Y axis 
(mm) 

Z axis 
(mm) 

Distance 
(mm) 

Time  
(s) 

5% 0.50 0.51 0.52 0.88 7.3 
10% 0.50 0.49 0.51 0.86 20.2 
50% 0.49 0.49 0.51 0.86 179.8 

Original 0.49 0.49 0.51 0.86 653.7 
 

Table 2. 3D reconstruction errors (RMS) averaged over 35 
consecutive poses for the femur. 

 
Figure 9 shows the registration obtained with the newly 
developed approach at a single frame. For this frame, the root 
mean square distance between the 3D bone model and the back-
projected edge points is 0.89 mm for the tibia and 0.85 mm for 
the femur.    

 

 
 

Figure 9. Registration result for at a single frame. 
 
4.2 Initialization Validation Test 

The initialization validation test was performed over 50 non-
consecutive poses randomly selected from the JB001 series. The 
initializations with 27, 64, and 125 starting poses were tested. To 
validate the initialization results, an evaluation criterion needs to 
be determined. Since the precision of the registration is around 
0.90 mm, two times the registration precision is set as the 
evaluation criterion, which means any initialization whose 3D 
reconstruction error is within 1.8 mm is considered successful. 
The initialization testing is also evaluated by visual inspection, 
which yielded the same results as the precision-based criterion. 
Table 3 shows that the initialization with 27 starting poses has 40 
successful counts over 50 cases, while both the initialization with 
64 and 125 starting poses achieved 48 successful count. The two 
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failed cases were due to portions of the joint falling outside of the 
field-of-view of the HSBV system, which means that there is 
insufficient 2D information for the registration. It can be 
concluded that the initialization with 64 starting poses can 
determine the initial pose for the registration while only takes 
approximately six minutes. Based on the subdivision of the 
search space, the capture range for the angle  is 45º and 
for  is 22.5º. The angle  has a smaller capture range because 
it is the rotation about the vertical axis which is more ambiguous. 
 

Starting 
poses 

Successful 
count 

Successful 
rate 

Average time 
consumption 

27 40 80% 165 s 
64 48 96% 361 s 

125 48 96% 698 s 
 

Table 3. Initialization validation results. 
 

5. CONCLUSIONS 

The significance of this work is that a novel automatic ICP-based 
2D-3D registration method with high precision and high 
efficiency has been developed. This method is suitable for the 
registration of the 3D bone model constructed from MR images 
so that the detailed soft tissue contract can be acquired to assist 
the soft tissue analysis. By using the closed-form Horn’s 
transform, the registration time is greatly reduced. The 
registration takes about 9.5 s for tibia, and 20.2 s for the femur 
provided the model size is around 20,000 points. A practical 
improvement in computational speed also makes possible the 
automatic initialization with 64 starting poses that only requires 
6 min. The registration precision ranges from 0.49 to 0.54 mm 
for each axis. With the fast and precise registration, dynamic 3D 
kinematics can be acquired for further kinematics investigation 
and soft tissue analysis. 
 
Despite the success of this approach, there are many future 
avenues of work to be done. 

1. With this dataset, only registration precision can be 
quantified. Accuracy cannot be quantified because the 
ground truth of the transformation parameters was not 
available. Currently, the common method to acquire 
the ground truth for 2D-3D registration is to use the 
marker-based method that requires the beads to be 
imbedded into to the bone. Since this is an invasive 
procedure, the validation testing can be performed 
using a cadaver knee or a 3D printed joint model in the 
future. 

2. The MRI data were segmented manually in third-party 
software to acquire the 3D bone model. This is both a 
black box process and a potential error source. Since 
the errors in the bone model can affect the registration 
accuracy, future investigation may be required to 
explore other segmentation techniques, e.g., the 
automatic segmentation using Convolutional Neural 
Networks (Thaha et al., 2019; Felfeliyan et. al, 2019). 

3. The essential benefit of the HSBV system is that it can 
acquire image series of the object of interest to provide 
valuable sequential data to kinematics studies. The 
image series are not independent of each other, which 
means the correlated information between the images 
can be helpful for the registration procedure and 
improve the optimization accuracy. However, in the 
current study, each frame of the image series was 
registered independently, which means the correlation 
in the sequential data was ignored. In this case, the 
estimated kinematics could have a lack of consistency 

and be less accurate. Therefore, a dynamic estimation 
method, the Kalman Filter, will be investigated in the 
future in an effort to improve the registration accuracy. 

4. In spite of the effort to automate the registration 
procedure including automatic edge detection, outlier 
removal, and initialization, this method is still not fully 
automatic as it requires user intervention to remove the 
outliers that cannot be removed automatically to yield 
high precision. Further investigation is required to 
eliminate the user intervention procedure. The dynamic 
estimation method stated previously could provide 
additional information from the adjacent frames.  In 
this way, the real edges can be tracked from frame to 
frame to fully automize the 2D-3D registration.  
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