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ABSTRACT:

In this paper, the procedure of developing and evaluating a UAV-borne mapping system is described. The system is equipped with
both a LiDAR and a camera. The system mounting parameters, as well as the intrinsic parameters of the individual sensors, are
calibrated rigorously. Simultaneous calibration of the LiDAR intrinsic parameters and the LiDAR-camera mounting parameters is
performed in a self-calibrating bundle adjustment with additional relative orientation constraints. A visual-inertial approach is
proposed to georeference the laser scans without using a GNSS receiver. This approach is motivated not only by the interest of users
in low-cost systems but also by the fact that the integrity of GNSS signals might be affected under several environmental conditions,
e.g., indoors, in urban canyons, under tree canopies. It is shown that a low-cost inertial measurement unit not equipped with a dual-
frequency, real-time kinematic GNSS receiver is still useful for georeferencing the laser scanning data with cm-level accuracy. The
scans are also textured using the images captured by the camera, which enriches the LIDAR point clouds with spectral information.

1. INTRODUCTION

Over the past few years, the interest in low-altitude aerial
mapping using camera-equipped Unmanned Aerial Vehicles
(UAVs) has exponentially grown (Coops et al., 2019; Kerle et
al., 2019; Ren et al., 2019; Shahbazi et al., 2014; Yao et al.,
2019; Mogili and Deepak, 2018). This rapid growth is mainly
due to the significant advances in aeronautics technologies,
autonomous navigation methods, digital cameras, as well as
photogrammetry and computer vision disciplines. Along with
this trend, manufacturers of three-dimensional (3D) laser
scanners have also changed their focus to the UAV industry.
Consequently, affordable LiDAR sensors designed for
integration with drone platforms are available nowadays.
Multi-sensor systems equipped with both camera and LiDAR
offer the advantages of both photogrammetry and ranging
techniques (Nouwakpo et al., 2016; Wallace et al., 2012). As a
result, UAVs equipped with both a camera and a LiDAR sensor
are ideal to cover a large variety of applications in different
environmental conditions, e.g., forestry, wildlife research,
structural health monitoring, precision agriculture, and corridor

mapping.

This is the primary motivation behind developing a multi-sensor
solution (Figure 1) in this study. The proposed system includes
an optical digital camera (a6000, Sony), a 3D lidar (VLP16,
Velodyne LiDAR Inc), a low-cost inertial navigation system
(INS) (VN200, VectorNav Technologies), a compact processor,
electronic components, and the casing. The total cost of
building this integrated system is under 15K Canadian dollars,
which makes it an affordable solution for small and medium
enterprises. The proposed solution involves the rigorous
calibration of the system, modeling intrinsic calibration
parameters of the sensors, geo-referencing the laser scanning
data, and fusing data from passive and active sensors.
Considerable effort is put into 1) the geometric calibration of
the system; and 2) developing an error-state Kalman filter for
fusing the visual information obtained through photogrammetry
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with the raw measurements of the inertial measurement unit
(IMU) while simultaneously estimating the mounting
parameters between the IMU and the camera.
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Figure 1. The in-house built multi-sensor system

2. CALIBRATION

In the case of a LiDAR-camera system, three basic types of
geometric calibration are required: intrinsic camera calibration,
intrinsic LiDAR calibration, extrinsic system calibration. In this
paper, several calibration approaches are investigated and
compared: (A) Individual camera calibration in a free-network
bundle adjustment (BA), individual LiDAR intrinsic calibration
in a controlled BA, controlled BA for estimating the exterior
parameters (EOPs) of the images taken together with the
LiDAR, separate calculation of the mounting parameters (the
bore-sight angles and the lever-arm) between the two sensors
directly from their estimated EOPs; (B) Individual camera
calibration and individual LiDAR intrinsic calibration in
separate free-network BAs, calculation of the mounting
parameters in a controlled BA with additional relative-
orientation (RO) constraints; (C) Individual camera calibration
in a free-network BA, integrated controlled self-calibrating BA
with RO-constraints for simultaneously estimating both the
system mounting parameters and the intrinsic calibration
parameters of the LIDAR. All the bundle adjustments are solved
in a sparse fashion, following our previous approach (Shahbazi
et al., 2017), in order to handle a large number of observations.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI1-B2-2020-83-2020 | © Authors 2020. CC BY 4.0 License.

83



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020
XXIV ISPRS Congress (2020 edition)

Intrinsic camera calibration involves modeling the lens radial
distortions, lens decentering distortions, and interior orientation
parameters (principal point offsets and focal length). Equation
(1) describes the augmented collinearity equations used in the
bundle adjustments to model the calibration parameters of the
camera. In addition to calibrating the system’s camera (Sony
camera) an auxiliary camera (a Canon EOS M5 camera with a
24-mm lens) was also calibrated. This additional camera was
used to extract the approximate mounting parameters between
the camera and the IMU using the approach described in our
previous work (Cortes et al., 2018).
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ki, ky, ks : radial lens distortion coefficients
Py, P, - decentering lens distortion coefficients
i : object point index

j :image index

e : denoting object/ground coordinate system

. . . . .
In Equation (1), R/ (0,0,.K;) 18 the 3D rotation matrix from the
object to the image coordinate system, where ©;,0;.K,

represent the rotation angles around the z, y and x axes,
respectively. rce_ is the 3D position of the perspective centre
J

resolved in the object coordinate system. X¢ is the

homogeneous coordinates of the object point. Coordinates
(0 ¥;,;) are the observations of the point in the image

principal coordinate system. Interior orientation parameters of
the camera include ( Xy Vs f)-

To perform the calibrations, a multi-fagade, multi-resolution
test-field with appropriate types of targets was used (Figure 2).
The test-field includes 19 planar objects, a checkerboard pattern
with 72 corners, and a total of 111 circular targets. The planar
features in the LiDAR scan are detected using region-growing
segmentation with RanSAC. Identifying corresponding planar
features that are observed by the LiDAR from different
viewpoints is completed by back projecting the co-planar points
into the image space followed by segment matching in the
image space.

Intrinsic LiDAR calibration involves modeling the systematic
effects of rangefinders’ offsets, horizontal angle offsets, and
vertical circle zero index errors for each of the laser beams in
the VLP16. In total, 16 rangefinder offsets, 15 horizontal angle
offsets and 15 vertical zero index error terms are considered as

intrinsic calibration parameters since the horizontal angle offset
and the vertical circle zero index error term of one laser need to
be constant to define the scanner space (Chan, 2015). The
observation equations used in the BA for LIDAR measurements

are as follows, where sz ,r:_ represent the EOPs of the LiDAR.
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For calibration approaches B and C, RO stability constraints are

added to the BA. At a station, %, the relative orientations R¢ ,rf

between the camera and the LiDAR can be denoted as follows.

R{ =R¥ (RF)!

E=REGS )

3)

This equation should hold for all the stations. That is, at a
different station, 4, the stability of the RO parameters obliges
Equation (4). Despite being in the form of translation vectors,
these equations involve rotation matrices. Thus, they constrain
both the lever arm offsets and the boresight angles.
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Figure 2. Front view of the calibration test-field

3. GEO-REFERENCING

The ultimate objective of georeferencing is to produce dense,
textured point clouds from LiDAR scans in a mapping reference
coordinate system. In our system, direct georeferencing using
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GNSS/INS is not possible due to the low accuracy of the low-
cost sensors (2-5m in position and 0.1-0.5 degrees in attitude).
As such, GNSS position and velocity observations are ignored.
Instead, the camera is used as a pose estimator. That is, the
camera pose is loosely coupled with the inertial measurements
of the IMU, to not only compensate inertial sensors’ biases but
also to estimate the uncompensated errors in the mounting
parameters between the camera and the IMU. The outcome of
this sensor fusion is then used to georeference the LiDAR scans
and assign RGB color values to the point cloud.

The geometric relations between the sensors are represented in
Figure 3. In Figure 3, the symbols “c”, “s”, “b”, and “e” denote
various frames involved in the mapping process:

c: image principal coordinate system (c-frame)
s : sensor coordinate system of LiDAR (s-frame)

b: INS body-frame (b-frame)

e: object coordinate system

e
p

Figure 3. Geometric relations between the sensors and their
measurements

The translation vectors and the rotation matrices of Figure 3 are
defined below.

rf; . coordinates of the perspective center

in the object coord. system at time "#"

b

1. : lever-arm offset between camer and IMU

¢

1. : lever-arm offset between LiDAR and camera

s

e

1, © IMU position in the object coord. system at time ""

1+ LiDAR scan of an object point at time "#"

r,‘, : absolute 3D coordinates of the object point

R{ : rotation from the camera to

the object coord. system at time "#"

R} : rotation from IMU body-frame to

the object coord. system at time "#"

R’ : boresight matrix between the camera and IMU

R{ : boresight matrix between the LIDAR and camera

The georeferenced position of a point measured by the laser
scanner at time # can be derived via Equation (5).
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¢ are the outcomes of the sensor fusion

In Equation (5), oIy
t t

technique that will be explained later. Rf,rﬁ’, are approximately

estimated through an offline calibration and are refined through
the proposed sensor fusion technique. R¢,r¢ are estimated

through the offline calibration. And, r;t contains the

intrinsically calibrated measurements of the LiDAR.

The first step to this methodology is determining the EOPs of
the images in the same coordinate system, in which the LIDAR
point cloud needs to be created. Here, indirect geo-referencing
is performed. An adequate number of ground control points
(GCPs) are established in the scene. Their coordinates are
accurately measured in the mapping coordinate system. The
following photogrammetric processing workflow (Figure 4) is
applied to the images using commercial software, Pix4D
Mapper Pro. The inputs to this procedure include the IOPs and
intrinsic calibration parameters of the camera, as well as the
detected and labelled GCPs in all images. Detection and
labelling of the GCPs is performed using an automatic approach
suggested by Shahbazi et al. (2015). The outputs of interest

from this procedure are the EOPs of the images (R{, 1)

IOPs and intrinsic View clustering and
calibration parameters sparse matching
)

Measured 3D coordinates Sequential estimation of camera motion
of GCPs and 3D coordinates of tie points

1} I}

[Detected and labelled GCPs Refinement of camera EOPs and 3D

in all images coordinates of tie points in BA

Figure 4. Photogrammetric workflow to estimate the EOPs of
images

3.1 Camera-IMU fusion

The approach used in this thesis is based on a Kalman Filter
(KF) for fusing the IMU data with the visual inputs (EOPs of
images) (Lynen et al., 2013). In this approach, the camera is
used as an additional sensor to compensate for the temporal
drifts of the IMU. In other words, the IMU is the
process/propagation sensor, and the camera is the update sensor.
In this approach, while it is assumed that the intrinsic camera
parameters are known and fixed (Section 2), the mounting
parameters describing the lever arm offsets and boresight angles
between the IMU and the camera are only known approximately
and need to be re-estimated. Studies have proven that these
mounting parameters are observable regardless of the linear
motion of the IMU-camera rig (Mirzaei and Roumeliotis, 2008).
There are two different ways to combine inertial and visual
measurements for high-frequency pose estimation. The first one
is the loosely coupled approach, which considers the inertial
sensor and the vision system as two separate modules that only
exchange information when possible (Weiss and Siegwart,
2011). The second approach is the tightly coupled approach,
which combines the inertial and the vision units into a single
filter (Kelly and Sukhatme, 2011). In this study, loosely coupled
integration is applied. Decoupling the vision system from the
inertial system allows us first to apply the full photogrammetric
procedure separately, and then use the refined EOPs for
integration with the inertial measurements. As such, visual scale
or attitude drifts in the vision system can be resolved separately
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and avoided from affecting the inertial system. Besides, in
tightly coupled solutions, the computational complexity varies
by the number of observed image features. In contrast, in the
loosely coupled approach, the computational complexity is
constant since the observations are always of the same
dimension (6 degrees of freedom in EOPs). The state of the

filter is composed of the position rlf of the IMU; its velocity

VZ; its attitude quaternion qz describing a rotation from b-

frame to n-frame, where n-frame is the local navigation frame;
gyro and acceleration biases o and a; acceleration due to

gravity g” that can capture the misalignments of the nominal n-

frame horizontal plane with the true n-frame; this is especially
useful when complete information of the mapping reference
frame is unavailable (Lupton and Sukkarieh, 2009); boresight

quaternion ql; describing a rotation from the c-frame to the b-

frame; and the position rcb of the camera perspective center in

the b-frame. The entire state results in a 26-element state vector
as follows.

b b
X:{rgl5VZan5mb’abagnaqc5rc} (6)

The nominal state of the system is, for the most part (position,
velocity, attitude), integrable in a non-linear fashion. Therefore,
their linearization can result in significant errors if a
conventional extended Kalman filter is used. However, the error
state includes small-signal quantities in terms of noises and
perturbations. Therefore, it evolves through a linear dynamic
system and is suitable for Kalman filtering. The applied error-
state filter is summarized in Figure 5.

Non-linear kinematics integration

[ High-frequency IMU data }—*

inal state

Predicting a Gaussian estimate of the
error-state

]
[ Error state covariance J

)
[ Visual info ion }_’ Updating the Gaussian estimate of the

Correction

error-state
/ \
Posterior error Posterior error
state covariance state mean

Figure 5. Error-state Kalman filtering for fusing IMU data with
visual information obtained from photogrammetry

3.2 Point cloud texturing

Once the INS pose is estimated through the method of Section
3.1, Equation (5) can be used to georeference the LIDAR scans.
To assign a color to each point, then the following algorithm is
used. The inputs to this algorithm include the LiDAR point
cloud, the images that are rectified for all non-linear distortions,
the camera IOPs, and the EOPs of the images.

If P is in front of I and in the field of view of 1
Back project P to [-Dp
Use the nearest-neighbor method to
interpolate a color value for p
Calculate the radial distance of p from
the image center>d
Assignd to I

Else
Remove I from A

If A is not empty
Select the image in A with the shortest d to assign a
color to P

Algorithm 1: point cloud texturing

For every point P in the point cloud
Find the five closest images to P = image set A
For every image I in set A

4. EXPERIMENTS AND RESULTS

To calibrate the cameras using the test-field of Figure 2, a total
of 100 control images with Sony A6000 and another 100
control images with Canon EOS MS5 were captured from
various locations and orientations, as shown in Figure 6. A total
of 12994 targets were observed in these 200 images, resulting in
a degree of freedom of 24226. The detected and labelled targets
were all manually verified to reduce the risk of gross errors in
the self-calibration BA. The BA was also equipped with a
Huber loss function to minimize the effect of any undetected
errors in the observations.

X(m) - 4

Figure 6. Imaging network configuration for intrinsic calibration
of the camera; blue frames correspond to Sony images and
black frames to Canon images

The resulted mean and standard deviation (StD) of the residuals
on image observations after the self-calibration were -0.2e-4
and 0.10 pixels along the x-direction; 0.1e-4 and 0.10 pixels
along the y-direction; and, 0.12 and 0.08 pixels in magnitude.
An independent set of 15 Canon images and 23 Sony images
were collected for check purposes, as shown in Figure 7. A total
of 3148 targets were observed in these 38 images. In the check
calibrations, 4 extreme corners of the checkerboard were used
as control points. The coordinates of all other checkerboard
targets were used as checkpoints. In the check adjustment using
the calibrated intrinsic parameters, the mean and StD of the
residuals were 0.7e-4 and 0.10 pixels along the x-direction; -
0.6e-4 and 0.10 pixels along the y-direction; and, 0.12 and 0.08
pixels in magnitude. The mean and root mean square (RMS) of
reprojection errors (calculated by back-projecting checkpoints
to check images) along the x-direction are -0.01 and 0.02 pixels
for Canon; and, 0.07 and 0.02 pixels for Sony images. The same
statistics along the y-direction are -0.02 and 0.03 pixels for
Canon images; and, 0.01 and 0.04 pixels for Sony images.
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Figure 7. Configuration of check images

In order to calibrate the LIDAR intrinsically and also to estimate
its mounting parameters with respect to the camera, LiDAR
scans and camera images were captured from the test-field at 20
different stations (Figure 8). In Figure 8, the red dots are the
scanned points by the LiDAR, and the cyan circles are the
targets observed by the camera. A total of 164707 scanned
planar points, and 922 target observations were made. That is,
approximately 660672 observation equations were generated for
the bundle adjustment. Therefore, sparse bundle adjustment
became crucial. Check data was collected from a total of 10
independent stations to test the accuracy of the calibration
procedure (Figure 9). In the period between the calibration and
check, the system was also used outdoors for data collection.

Figure 8. Data collection network for LIDAR calibrations

To be able to verify the accuracy of each calibration approach,
ground-truth data of the planar features were captured using a
FARO Focus 3D terrestrial laser scanner (Figure 10). As a
phase-based laser scanner, it has superior accuracy to VLP16.
Also, it can be set to acquire data with high density. To avoid
any unnecessary errors in the ground-truth data due to multi-
scan registrations, the FARO scanner was placed in a way that
all the planes could be scanned from a single station.

Y(m)

Figure 9. Data collection network for checking LIDAR
calibrations

-

2m

Figure 10. Ground-truth data collected by FARO laser scanner

The results from the three calibration approaches are
summarized in Table 1. The standard deviation of the RO
parameters between the LiDAR and the camera demonstrate the
uncertainty in the calculated RO parameters, and the distance of
the check point-cloud to the ground-truth point-cloud represents
the accuracy of modeling.

Lever-arm Boresight RMS 3D
Calibration scenario | uncertainty  uncertainty distance
(mm) (deg) (mm)
A 6.50 0.1368 7.68
A- W/O intrinsic
LiDAR calibration 774 0.1836 887
B 442 0.0700 6.28
B- W/O intrinsic
LiDAR calibration 333 0.0925 7.32
C 3.99 0.0587 5.87

Table 1. LiDAR Calibration results

Figure 11 summarizes the distances between the check point-
clouds and the ground-truth point clouds for all the calibration
approaches in the form of histograms.

.
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Figure 11. Histograms of the distance between the check point-
cloud and the ground-truth point-cloud with a) calibration
approach A, b) in approach B, ¢) in approach C, d) in approach
A without intrinsic calibration of the LIDAR, and ¢) approach B
without intrinsic calibration of LIDAR

In general, it can be seen that intrinsic calibration of the LIDAR
sensor helps reducing the modeling errors by 14.2% (approach
B with and without an intrinsic calibration) to 13.4% (approach
A with and without an intrinsic calibration). Using a RO-
constrained bundle adjustment reduces the uncertainty in the
RO parameters by 48.8% (approach B compared to approach
A). Calibrating the LiDAR parameters along with the RO
constraints (approach C compared to approach B) allows
reducing the modeling errors by 6.5% and the RO uncertainties
by 16.1%. As a result, the calibration approach C yields the best
results.

In order to test the georeferencing approach, the system was
installed on a UAV (Figure 12), and the trajectory of Figure 13
was flown over an agricultural field. Images were captured with
a frequency of 1.5 fps. The rotation rate of the LiDAR was set
to 600 rotations per minute. Distance and azimuth thresholds
were applied to avoid scanning points that were too far from the
trajectory. The IMU logging frequency was set to 67 Hz, which
was the maximum value possible considering the baud rate
limitations of the embedded computer. Due to unpredicted
snowfall and dense cloud covers on the day of data collection,
the field was sparsely covered by snow patches, and images

were considerably underexposed. We could neither decrease the
shutter speed (to avoid motion blur) nor increase the aperture
opening (to prevent out-of-focus blur) to fix the exposure issue.
Due to the sudden snowfall that day, thorough control data (e.g.,
terrestrial reference scans or abundant checkpoints) could not be
acquired either.

Figure 12. Integration of the LIDAR-camera system onboard a
UAV

Figure 13. Position of captured images (red dots) and location
of the ground control points (green pins) shown in the 3D view
of the study area

Five of the ground points were used as GCPs, and the other six
were used as checkpoints. GCPs coordinate were measured with
real-time kinematic GNSS receiver. The estimated coordinates
of the checkpoints differ from their measured ones by an RMS
of 4.2 cm. We believe the snow, which fell in between the time
of image acquisition and ground-truth collection, had caused
errors in the measurements. This could explain a portion of the
errors on the checkpoints.

Using the proposed method, camera-IMU fusion was performed
to estimate an accurate trajectory. Figure 14 shows the
trajectory determined by camera-aided INS (proposed method
of Section 3.1) and GNSS-aided INS (Manufacturer’s software).
To measure the accuracy of the estimated trajectory, every 10t
image in the capture sequence escaped the Kalman correction
phase. The photogrammetrically measured EOPs of these
images were reserved as check poses. Figure 15 shows the
errors of the camera-aided INS and the GNSS-aided INS at the
check poses. The denoted errors in position and orientation are
the maximum of the errors in all three dimensions (xyz). The
RMS errors of camera-aided INS are 1.59 cm in position and
0.0022° in orientation. The RMS errors of GNSS-aided INS are
190.07 cm and 19.07°.

In Figure 14, it should be noted that in camera-IMU fusions, the
edges of the trajectory during the sharp turns were cut out to
avoid the noisy trajectory from affecting the LiDAR
georeferencing accuracy.
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Figure 14. UAV trajectory: green color represents the camera-
aided INS estimations

The LiDAR scans were georeferenced using this camera-aided,
INS data and textured with the method of Section 3.2. Then,
median filtering was applied to remove the noise in the final
point cloud (Figure 16). Figure 17 shows the reflectivity map
observed by the LiDAR. Since no ground-truth point cloud
could be acquired from the study area, a dense point cloud was
generated using photogrammetric processing of the images. The
photogrammetric point cloud was used as a reference to
measure the quality of the LiDAR point cloud.
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Figure 15. Pose-estimation errors by a) camera-aided INS and
b) GNSS-aided INS

Comparing the LiDAR point cloud to the photogrammetric
point cloud reveals that there is only a difference of few
centimeters between the two point-clouds. The mean and RMS
of these distances are 4.49 cm and 5.72 cm, respectively. Most
distances between the two point-clouds are below 15 cm. We
believe that substantial differences correspond mainly to
features that the photogrammetric point cloud could not have

captured due to the combination of snow coverage and
underexposure. However, these features were present in the
LiDAR scans. The distance of the LiDAR point cloud from the
photogrammetric point cloud is shown in Figure 19, and its
histogram is summarized in Figure 18.

——om— &
40m
Figure 16. 3D view of the point cloud generated by LIDAR

Reflectivity (DN)

45m

Figure 17. LIDAR point cloud with observed reflectivity values
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0.500

i

45m
Figure 18. Absolute distance of the LIDAR point cloud from the
photogrammetric point cloud

5. CONCLUSIONS

In this paper, a UAV-based mapping system equipped with a
camera and a LiDAR sensor was described. It was shown that
geometric calibration of the system mounting parameters and
the intrinsic parameters of the individual sensors could improve
the scanning accuracy considerably. A low-cost IMU was used
for direct georeferencing of the laser scanning data. A visual-
inertial, error-state Kalman filtering approach was proposed to
compensate for both the biases of the inertial sensors and the
mounting misalignments between the camera and the IMU.
This approach eliminated the need for an expensive high-
performance GNSS/INS system. Yet, high direct georeferencing
accuracy could be achieved (better than 15 cm). Furthermore,
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the scans were textured using the captured imagery, enriching
the LiDAR point cloud with the spectral information of the
images.

7 9 11 13 15 17 19 21 23 25 27 29
Distance (cm)
Figure 19. Histogram of the distances between the LiDAR point
cloud and the photogrammetric point cloud
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