
PORTING ARDUPILOT TO ESP32: TOWARDS A UNIVERSAL OPEN-SOURCE
ARCHITECTURE FOR AGILE AND EASILY REPLICABLE MULTI-DOMAINS

MAPPING ROBOTS

L. Beaudoin1, 2, ∗, L. Avanthey1, 2, C. Villard1

1 SEAL Research Team (Sense, Explore, Analyse and Learn), ÉPITA, 94270 Le Kremlin Bicêtre, France,
2 Équipe Acquisition et Traitement, IGN, 94165 Saint-Mandé, France

(laurent.beaudoin, loica.avanthey, charles.villard)@epita.fr

KEY WORDS: Ardupilot, ESP32, Multi-domains exploration robots, UAV, UGV, USV, UUV, Close-range remote sensing

ABSTRACT:

In this article, we are interested in the implementation of an open-source low-level architecture (critical system) adapted to agile and
easily replicable close-range remote sensing robots operating in multiple evolution domains. After reviewing the existing autopilots
responding to these needs, we discuss the available hardware solutions and their limits. Then, we propose an original solution
(software and hardware) that we developed to obtain a universal low-level architecture for all our exploration robots, whatever their
environment of evolution, and the steps needed to make it run on our chosen family of micro-controllers: the ESP32. Finally, we
present the operational results obtained on our different platforms (land, surface, submarine and air), their limits and the envisaged
perspectives.

1. INTRODUCTION

In close-range remote sensing, whatever the domain of evol-
ution, the vector which displaces the payload holds a critical
place. Indeed, a successful data acquisition campaign, and there-
fore the quality of the work which results from it, supposes that
the study area is explored in a systematic and complete way
with control of the redundancy. However, in a natural envir-
onment, reaching all these criteria manually is difficult, if not
impossible. Automated robotic platforms make it possible to
achieve this high level of systematization necessary for the pre-
cision of these studies. In this article, we focus in particular
on agile and easily replicable platforms, favoring open-source
solutions whenever possible, because they are easy to share,
evolve or maintain over time and are fully transparent.

The construction of the platform itself (the mechanical part) is
simplified by the evolution and accessibility of rapid prototyp-
ing tools such as 3D printers or numerically controlled cutting
machines (CNC). Concerning the electronic and on-board com-
puting part of the vector, we distinguish two architectures (Cat-
soulis, 2006, Siciliano, 2008): one low level (close to the hard-
ware) and the other high level. The first one manages the control
/ command part (including control loops for attitude, direction,
position, speed, etc.). Safety and security tasks are also mainly
managed at this level. So, this critical level should never fail.
That is the reason why its hardware architecture is mainly based
on micro-controllers. As for the second, it usually takes care of
everything that involves making decisions or processing more
complex information to realize the objectives of the mission.
To deal with these complex tasks, the hardware architectures of
this hight level is close to classical computer (ARM or X86)
and frameworks like Robot Operating System (ROS) are used
as a software solution at this level. The figure 1 describes this
general organization of an exploring robot, whatever its domain
of evolution. The separation of tasks managed by one or the
other of these architectures is nowadays becoming increasingly
∗ Corresponding author

blurred because micro-controllers become enough powerful to
managed some high-level task and conversely, high-level units
natively incorporate more capacities to communicate with low-
level sensors. But a secure system need both architectures.

Low level unit
(Critical)

Microcontroller
(real-time task
management)

High level unit

Embedded Computer
(resource-intensive

tasks)

Low-level
sensors

A
°C

V

High-level
sensors

Actuators 
and indicators

Ground Station

Energy

Figure 1. General organization of an exploration robot, whatever
its environment of evolution (air, land, sea), with the low-level

critical architecture and the high level resource-intensive
architecture.

There are open-source solutions for these two architectures, but
they are not always easy to implement depending on the evol-
ution environment (air / land / sea) and the specificity of the
mission to achieve. The task is even more complex when there
are strong physical constraints for the robot. Indeed a light and

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
933



agile vector implies a very compact size and limited resources
both in computing power and in energy. Meanwhile an easy
replicability implies strong constraints on the cost of the solu-
tion.

In our field, we are interested in the exploration of various en-
vironments from the air, the ground, the surface of the water or
underwater. The diversity of the required platforms poses sev-
eral problems. Among them: how to make robots more reliable
while limiting the time dedicated to maintenance, or ensuring
that there is no hardware or system incompatibility for commu-
nication and interaction between these heterogeneous robots for
future collaborative missions? Therefore, developing universal
high and low level architectures for all these platforms seems to
be an adequate solution to solve these problems.

Due to its strong dependency with the hardware layer, the low
level architecture is the most impacted by the specificity of the
platform. This low-level architecture was initially called in the
literature a ”flight controller” and is now known as an ”autopi-
lot” with the addition of functionalities allowing different levels
of autonomy. It is on this low level unit that we will focus in
this article.

1.1 Open-source autopilots for diverse environments

The choice of open-source is important, because the autopilots
thus designed can benefit from all the support of the community
to integrate and propose the most efficient algorithms from the
literature. It is therefore the ideal choice for research work.

Within this category, many autopilots are exclusively developed
for the air domain (Chao et al., 2010, Colomina, Molina, 2014),
providing a diversified offer for the different types of flying
vehicles (rotary wings like multicopters or helicopters, fixed
wings like aircrafts, delta wings or gliders, etc.). To give a brief
historical review of these main projects, one of the oldest auto-
pilots is Paparazzi, created in 2003. OpenPilot is a competing
project born in 2009 which gave birth to TauLabs (since 2012,
which is rather intended for professionals and researchers), Lib-
rePilot (since 2015) and dRonin (since 2015). On the other
hand, BaseFlight / MultiWii (2013) gave birth to CleanFlight
(since 2014) and then BetaFlight (since 2016), these latter pro-
jects being more oriented to perform drone races and acrobatics.
Finally, INav, created in 2016 from BetaFlight, is more oriented
towards the autonomous navigation of drones.

However, we are also interested in terrestrial and aquatic en-
vironments. So, most of the previous solutions are too much
specialized in aerial evolution to be used in these other envir-
onments. In this regard, essentially two open-source autopi-
lots offer this diversity and are also the most popular in the
community among all those mentioned above: Ardupilot (since
2009) and PX4 (since 2012). These two autopilots have a simi-
lar architecture and some developers are working on both pro-
jects at the same time, although we can note that Ardupilot is
slightly more advanced than PX4 on certain functionalities. In
2013, they joined the DroneCode initiative, a nonprofit organ-
ization governed by the Linux Foundation which aims to en-
courage open-source development for UAVs (Unmanned Aerial
Vehicles). This allowed these two autopilots to take full advant-
age of other projects that can be found in the fold of DroneCode
such as MAVLink (Micro Air Vehicle Link), a communication
protocol (Koubaa et al., 2019) and QGroundControl, a mis-
sion planning and monitoring software (Ramirez-Atencia, Ca-
macho, 2018). From 2016, Ardupilot remained in the spirit of

free code by keeping the GPL license, while PX4 and the other
projects federated by DroneCode went into BSD license in or-
der to market their solutions (source codes can then become
proprietary codes).

A summary of all these autopilots, classified by number of con-
tributors (which can be seen as a support indicator by the open-
source community) is shown at table 1. In relation to our prob-
lems and our constraints, we choose to focus on the solution
which is the most open-source and our choice therefore fall on
Ardupilot. This autopilot has also proven operational in dif-
ferent environments as we find it in application on, of course,
aerial vehicles (UAV) (Wardihani et al., 2018, Fawcett et al.,
2019, Melo et al., 2017, Carlson, Rysgaard, 2018, Cucho-Padin
et al., 2019, Washburn et al., 2017), but also on ground vehicles
(UGV) (Velaskar et al., 2014) or surface vehicles (USV) (Sinis-
terra et al., 2017, Moulton et al., 2018, Raber, Schill, 2019) and
even on underwater vehicles (UUV) (Schillaci et al., 2017, Luo
et al., 2019, Sani et al., 2019).

Auto-pilot Contri. Date Domain
(Ardupilot, Source Code) 474 2009 air+land+sea

(PX4, Source Code) 375 2012 air+land+sea
(BetaFlight, Source Code) 373 2016 air (races)

(CleanFlight, Source Code) 308 2014 air (races)
(iNav, Source Code) 246 2016 air

(dRonin, Source Code) 108 2015 air (races)
(Paparazzi, Source Code) 101 2003 air
(TauLabs, Source Code) 90 2012 air

(LibrePilot, Source Code) 72 2015 air

Table 1. Popular open-source autopilots ranked by number of
contributors as a support indicator by the opensource

community.

1.2 Hardware solutions for Ardupilot

The most common off-the-shelf hardware solution for running
Ardupilot is the Pixhawk. It comes in the form of a box with
dedicated connectors for peripherals (sensors, motors, etc.). Its
main advantage is that it is open-hardware. However, when we
consider the case of agile and easily replicable robots for multi-
domain mapping, it has some disadvantages. Indeed, with re-
gard to these criteria, its size and cost are not negligible (for the
Pixhawk 4: 44×84×12mm and an average price of 180-220$)
and its modularity is not complete (impossible to change the
integrated IMU or barometer in the event of failure or if more
efficient sensors are available).

To overcome these drawbacks, making a new complete custom
board like the Pixhawk one is not satisfactory, since the cost
remains high despite everything and the maintenance would
be huge. A more appropriate solution is to start with ready-
made development modules. Those boards, available at a very
low cost (around 10$), provide some utilities around a micro-
controller (USB to UART interface, CPU pin, reset buttons,
etc.) beside providing some voltage peaks protection. Then
it only remains to design an electronic support board that dis-
tributes the inputs / outputs to take full advantage of all the
resources of the micro-controller and obtain functional hard-
ware for the low-level unit. The two main families of micro-
controllers powerful enough to run Ardupilot are the STM32
and the ESP32.

The STM32 family of micro-controllers is the one used on the
Pixhawk and on other hardwares for Ardupilot as it is the one
which is natively supported by the autopilot. They are powerfull

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
934



and efficient micro-controllers. On the other hand, for the same
price, the ESP32 modules are more efficient and, since they are
optimized for IoT, they consume much less energy. They also
have a built-in WiFi which is an interesting feature to easily
communicate directly with the low-level. And, as they have
various built-in additional calculation units, it can be usefull to
introduce some security encryption over MAVLink protocol to
secure the communication link with the ground station (a func-
tionality under development) without adding an additional elec-
tronic module.

Our choice therefore fall on the ESP32. All the sensors can be
changed and upgraded easily, the module itself can be quickly
changed in the event of failure at minimal cost, including dur-
ing a field mission, and the simplicity of the support board will
limit possible failures. However, the ESP32 family of micro-
controllers, unlike the STM32 family, is not supported by Ar-
dupilot, and this will require porting the code of the autopilot.

2. PORTING ARDUPILOT TO ESP32

2.1 Ardupilot: overview

The Ardupilot embedded software suite offers a set of solu-
tions to be able to use the chosen vector with a variable degree
of autonomy, from assisted steering to automatic navigation,
provided if sensors capable of acquiring the necessary inform-
ation for the different algorithms to operate (attitude, altitude
/ depth, absolute position, speed, distance, etc.) are available
(Audronis, 2017). To allow its portability on several types of
boards (hardware) and to adapt to a great diversity of robotic
architectures (vectors), Ardupilot is based on different layers of
abstraction. As shown in figure 2, there are three particularly
important layers of abstraction: one for the hardware, one for
the sensors and the last one for the kind of vehicle (and there-
fore the robot dynamics).

The hardware abstraction allows independence from specifics
of the board on which Ardupilot runs. The link between phys-
ical material and abstractions is described in a module: the HAL
(Hardware Abstraction Layer). Each type of board therefore
has its own HAL. But what makes Ardupilot so convenient is
that this layer of abstraction makes all the other layers com-
pletely independent of physical material. In fact, they exclus-
ively use the abstractions defined by the HAL to interact with
the peripherals and memories. In other words, this mode of op-
eration is similar to a request system. For example, to recover
the data measured by a sensor, the driver implements the sensor
logic and the way of using it. Then it sends the commands to
the HAL which implement the underlying protocols like I2C,
SPI or UART using hardware module specific to the board. So,
only the HAL knows how to communicate with the hardware
and the other higher modules of Ardupilot can continue to work
the same way whatever the board used.

The variability of the sensors that can be connected to specific
hardware is also managed at the HAL layer. We can distin-
guish two types of sensors: those that are integrated into the
board and those that can be added. The former are critical:
without them there is no possible action for the robot. For ex-
ample, to make a drone flying, at least an AHRS (Attitude and
Heading Reference System) and a barometer are needed. These
critical sensors are meant to be natively implemented on the
board. The user can calibrate and configure them but doesn’t
need to care about how they are connected to the board. The

other sensors that the user can choose to connect or not are con-
sidered external: Ardupilot scans the different communication
ports at startup to establish the list of sensors actually available
by recognizing them with their identifiers. A lot of sensors are
natively supported by Ardupilot.

The second level of abstraction concerns the sensors. It allows
within the control algorithms to focus on the information rather
than on the way in which this was acquired. For example, the
EKF (Extended Kalman Filter) uses the concept of absolute
position, whether it comes from a GPS, or from a SLAM al-
gorithm or based on a LIDAR or a camera sensor. This organ-
ization helps to give great flexibility in relation to the different
domains of use, because many different sensors may be used to
obtain the same information whether we are in air or in water
for example.

The third level of abstraction relates to the frame and makes it
possible to define the physical characteristics of the platform
according to its predefined type (fixed wing, rotary wing, holo-
nomic or non-holonomic surface vehicle, underwater vehicle,
etc.), to describe its specificities (number of motors, their pos-
ition relative to the center of gravity, their direction of action,
etc.) and offers a chain of basic modules adapted to this set as
well as the corresponding safety and security procedures (re-
turning to the base or landing when the signal from the ground
station is lost, for example).

HARDWARE

REAL-TIME OS

HAL

Sensors Librairies

Shared Libraries (EKF, ...)

+ Frame definition
+ Initializations
+ Safety procedures

Microcontroller

Firmware

Ardupilot

Hardware
Abstraction Layer

Sensors
Abstraction Layer

Frame
Abstraction Layer

Figure 2. General overview of Ardupilot and its three main
layers of abstraction.

Finally, to complete this overview, Ardupilot operates on top
of the minimalist on-board operating system (OS) which is re-
sponsible for accessing the functionalities of the micro-controller
and managing its operation. The OS of micro-controllers are
real time OS, that is to say that they manage time very strictly:
indeed, the maximum time to perform an action from its launch
(jitter) and the scheduling of these actions are precisely deter-
mined. Ardupilot and the real-time OS are compiled in a single
firmware which forms the program integrated into the micro-
controller. This process and the changes needed for it to work
on ESP32 is described in section 2.3.

2.2 Porting HAL on ESP32

We saw in the introduction that Ardupilot was developed for the
family of STM32 micro-controllers. Those embed the ChibiOS
real-time operating system. Our hardware solution is based on

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
935



the ESP32 family of micro-controllers that embeds the Free-
RTOS real-time operating system. It will therefore be neces-
sary to port the Ardupilot code on this new family of micro-
controllers to benefit from all its functionalities. But as we saw
in the previous section, thanks to the levels of abstraction, the
modifications required for porting Ardupilot are all exclusively
located in the HAL. In this section, besides of all the problems
involving porting a program to a new micro-controller unit, we
will present the two main changes that need to be addressed: the
differences in hardware layout and the differences in scheduling
on simple or multiple cores.

The familly of ESP32 micro-controllers is optimized for IoT
applications, which explains the major architectural differences
with the STM32 familly. Indeed, the needs of IoT focus on
energy saving and ease of communication more than on pro-
cessing speed performance. This is why the ESP32 does not
have DMA (Direct Memory Access) unlike the STM32. When
this device exists, the data passing through a peripheral is man-
aged by a dedicated controller which redirects it to the main
memory without the intervention of the CPU (Central Processing
Unit) apart from the start and end orders of the action. On the
contrary, in its absence, the entire action is taken over by the
CPU, so it is therefore necessary to review all the memory ac-
cesses in the HAL to make these modifications. It increases
the overall load of CPU, but as the processor of the ESP32 is
powerful, that does not pose any problem concerning the speed
of execution in the end.

In addition, performance in communication speed is not a ne-
cessity in IoT either, all the protocols (I2C, UART, SPI, etc.)
provided by the API (Application Programming Interface) of
the ESP32, are minimalist and absolutely not optimized. It is
therefore necessary to re-implement them in the HAL rather
than using those provided by the API. This point is particularly
fundamental for flying UAVs with rotary wing where the fre-
quency of communication with the AHRS must be very high to
allow the control loop on attitude to counter their natively very
unstable frames.

On the other hand, going from one to two cores involves man-
aging the distribution of tasks via the scheduler, taking into ac-
count the workload of each cores and the priorities of each task.
This part must also be recoded in the HAL. We choose to as-
signed by default each of the two most critical task categories,
communications and main loop, to a fixed core. The other tasks
are distributed on the fly according to the current load of the
cores.

2.3 Compiling and building the firmware

To finalize the porting of Ardupilot, it must be compiled to-
gether with FreeRTOS to form a single firmware. The first prob-
lem comes from the different management of RAM between the
two families of micro-controllers.

On a micro-controller, the Ardupilot program can not fit en-
tirely into the RAM. Therefore, when a part of code is needed,
it is loaded in a RAM cache and then executed. This cache
is overwrited when it is full and another part of code needs to
be executed. Those cache spaces have different access speeds.
Therefore, this diversity has to be taken into account to be ef-
fective and to perform cache optimization. This operation is
strongly dependant to the family of micro-controller used and
the distribution on the RAM spaces of the important part of the
program is specified in the binary files.

The second problem comes from the fact that the compilation
tools for each of these two entities are different (waf for ardupi-
lot, cmake for FreeRTOS). On STM32, Ardupilot code reimple-
ments the compilation of ChibiOS in an integrated manner. But
that implies maintenance every time there is an update on Chi-
biOS. The alternative we have chosen is to compile the two by
their respective toolchain in static libraries and then link them
together in a single final binary to create the firmware to flash
on the ESP32.

Figure 3. On the left, the internal elements of our low-level unit
(the custom support PCB, the integrated IMU and the ESP32

board). On the right: our low-level unit assembled.

3. RESULTS

The previous section presented how to port the Ardupilot soft-
ware to a new range of micro-controllers and what problems are
posed by this port. It is recalled that the objective is to obtain a
universal solution for the low level critical architecture suitable
for all types of platforms dedicated to close-range remote sens-
ing, whatever the environment of evolution (aerial, terrestrial,
surface or underwater).

To demonstrate the universality of our solution, we therefore
worked on different exploration robots developed by our team
to cover all of the evolution environments. All these robots have
the same low level unit (Ardupilot on ESP32, see figure 3), the
particularities of each robot (the number and orientation of mo-
tors, their orientation, the friction of the frame in the environ-
ment, the available sensors, etc.) being managed at the plat-
form abstraction layer as we saw in section 2.1. First, we will
present the different platforms tested, then the first results ob-
tained in terms of autonomy for each of these robots and finally
the current limits of our solution and the perspectives envisaged
to push them back.

3.1 The different close-range remote sensing platforms used

3.1.1 The Mabouya land vehicle This terrestrial robot was
developed as part of an international robotics competition, the
European Robotics League competition, and more specifically
for the Emergency round which takes place on the NATO base
in La Spezia in Italy. The scenario of this round is based on an
industrial disaster: a boat crashed into port facilities, causing
an explosion. Two fully autonomous robots are then responsi-
ble for collaborating to establish a map of underwater and land
damages. The Mabouya vehicle (figure 4) is dedicated to ex-
ploring the land domain. It is a 6-wheeled vehicle, rather com-
pact (35× 35× 60cm), which gives it the ability to squeeze in
everywhere, but penalizes it for crossing some obstacles (such
as steps for example). This robot can carry 3Kg of payload for
an empty weight of 4Kg and reach a mean speed of 20Km/h.

3.1.2 The Ryujin underwater vehicle Ryujin (figure 5) is a
hybrid underwater micro-robot, that is to say either controllable

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
936



Figure 4. Our land vehicle: Mabouya.

(ROV) or completely autonomous (AUV). It was developed from
mid-2010 as part of a research work to map the shallow seabed
(<100 m) in three dimensions. It measures 20 × 20 × 30cm
for a weight of 10Kg. Very reactive, it is particularly agile. We
changed its internal architecture by the new one described in
this article. It participated with the land robot Mabouya in the
ERL competition for the underwater part in autonomy.

Figure 5. Our underwater vehicle: Ryujin.

3.1.3 The Kraken surface vehicle This surface vehicle is
used to map the very shallow seabed (<5m) and to serve as a
surface relay for the underwater robot. This latter ability sig-
nificantly increases the operational reach of Ryujin. Kraken
(figure 7) is a catamaran type and measures 100 × 80 × 40cm
for a weight of 8Kg. This relative compact size and low weight
makes it very easy to transport and deploy in the field.

3.1.4 The Kiwi aerial vehicle The goal of this project un-
der development is to specialize a quadricopter with current
technologies to perform mapping tasks (mosaics or 3D mod-
els) of emerged land as part of various studies (biodiversity, ar-
cheology, etc.). The objective is to move towards a solution as
autonomous as possible using light means, both on the vector
and on the sensor. Its size is 50cm in diameter for a weight of
around 2Kg with its payload included (figure 7).

Figure 6. Our surface vehicle: Kraken.

Figure 7. Our aerial vehicle: Kiwi.

3.2 Autonomy achieved by the solution for each platform

The qualification of the results obtained is done by measur-
ing the maximum level of operational autonomy achieved on
the heterogeneous platforms presented in the previous section.
Whatever the environment of evolution, (Avanthey, 2016) clas-
sifies the operational capacities of autonomy of an exploration
robot in five levels (see figure 8): assisted piloting for level
I, instructions holding (the pilot gives high level orders) for
level II, trajectories planning with mission plans defined a priori
for level III, possibility of automatically avoiding unforeseen
obstacles during the completion of the course (tactical decision-
making) for level IV and re-planning the mission plan on the fly
(strategic decision-making: choice of exploration paths, change
of priority of objectives, management of data completeness,
management of failures, etc.) for level V.

Here is a summary of the first operational results achieved. The
land robot and the surface catamaran were tested up to level III
(navigator) without difficulty. There is no particular reason why
these platforms should not quickly reach level IV (responsive),
once equipped with the appropriate sensors. However, the situ-
ation is more complicated for aerial and underwater robots.

For the aerial drone, we have so far not been able to exceed
level I (assisted control). Indeed, to reach the following levels,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
937



it is essential to have fast, reliable and fluid communication with
critical sensors such as the AHRS. However, as we saw in sec-
tion 2.2, it is necessary to recode the communication protocols
for the ESP32 but the current version of our implementation
is not yet sufficiently optimized for the frequencies of use re-
quired by a flying drone (of the order of several hundred Hz).
Once this problem is over, as with terrestrial and surface robots,
there is no reason not to easily gain access to level IV autonomy
on this type of platform.

For the underwater drone, and we can expect this to be the case
for all indoor drones, level II (holding of instructions) is easily
reached. But to reach level III (trajectory planning), it would be
necessary to be able to obtain an absolute position so that the
algorithms can follow the trajectory defined a priori. However,
underwater or indoor, there is no GPS information available.
Another solution must therefore be found to obtain equivalent
information. This could be obtained, for example, from higher-
level solutions such as those from SLAM. However, these al-
gorithms can only run on more sophisticated hardware (com-
puter) and software (like ROS) architectures offering more re-
sources. We reach here the limits of the low level. The problem
that can then arise is that of the interface between the high and
low level layer. To facilitate this interface, the community en-
courages the use of the MAVLink protocol between these two
layers.

For the same reasons, level IV (obstacle avoidance) will be dif-
ficult to reach for underwater robots because it is complicated to
measure distances to objects underwater without going through
high-level algorithms. On the other hand, indoor robots will
not have these kind of problems because there are many easily
interfaceable aerial low-level sensors specialized for this use.

Finally, for all platforms, level V (decision making and res-
cheduling) cannot be provided by Ardupilot. These are again
resource-intensive algorithms and therefore must be implemen-
ted on the high level part. And as for level III underwater and
indoor robots, a solution using ROS and MAVLink to facilitate
the exchange of information between the two decision-making
layers is recommended.

4. CONCLUSION

We have proposed in this article an original solution for a uni-
versal open-source low-level architecture for agile and easily
replicable close-range remote sensing robots that perform in
various environnements based on the strengths of existing re-
sources. We explained why Ardupilot was a wise autopilot
choice for this type of problem and we proposed a new hard-
ware solution, the ESP32, which seems to us more suitable for
modularity, price and energy consumption. We have seen what
were the key points to port Ardupilot to this new hardware and
what were the main difficulties posed.

Finally, we presented the results obtained on different robotic
platforms covering most of the environments. We were able to
show that the levels of autonomy until the maintenance of high-
level instructions is easily achievable for all platforms, except
for flying devices for which the optimization of the implement-
ation of communication protocols must be further improved.

Tracking is easily obtained as soon as there is a GPS informa-
tion (land and air domains) but becomes complex in other ways,

Slave
Assisted control, compensation

for disturbances, ...

Automated
Holding instructions, execution

of high level orders, ...

Navigator
Path or trajectory planning,

a priori mission plan, ...

Responsive

Response from contextual data
without human intervention: 

obstacles avoidance, ...

(Tactical)

Decision-maker

 Decision from contextual data
without human intervention: 

trajectory replanning, exploration
of unknown environments,

management of data completeness,
vehicle breakdowns or objectives

priorities, ...

(Strategic)

I

II

III

IV

V

Figure 8. Levels of automation of an exploration robot.

especially for underwater robots and generally all indoor ro-
bots. However, native communication with high-level archi-
tecture would allow the problem to be circumvented by using
SLAM-type algorithms.

Similarly, obstacle avoidance can be easily implemented for air
and land environments, but not in the underwater environment
where distance measurement is complex.

Finally, decision-making for trajectory re-planning is not in-
cluded in Ardupilot and must also be managed independently
on a high-level architecture.

REFERENCES

Ardupilot, Source Code. https://github.com/ArduPilot/
ardupilot.

Audronis, T., 2017. Designing Purpose-Built Drones for Ardu-
pilot Pixhawk 2:1: Build drones with Ardupilot. Packt.

Avanthey, L., 2016. Acquisition and reconstruction of dense un-
derwater 3D data by exploration robots in shallow water. PhD
thesis, Télécom ParisTech.

BetaFlight, Source Code. https://github.com/

betaflight/betaflight.

Carlson, D. F., Rysgaard, S., 2018. Adapting Open-Source
Drone Autopilots for Real-Time Iceberg Observations. Meth-
odsX, 5, 1059–1072.

Catsoulis, J., 2006. Designing Embedded Hardware. O’Reilly.

Chao, H., Cao, Y., Chen, Y., 2010. Autopilots for Small Un-
manned Aerial Vehicles: A Survey. International Journal of
Control, Automation and Systems, 8, 36–44.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
938



CleanFlight, Source Code. https://github.com/

cleanflight/cleanflight.

Colomina, I., Molina, P., 2014. Unmanned aerial systems for
photogrammetry and remote sensing: A review. ISPRS Journal
of Photogrammetry and Remote Sensing, 92, 79–97.

Cucho-Padin, G., Loayza, H., Palacios, S., Balcazar, M., Car-
bajal, M., Quiroz, R., 2019. Development of Low-Cost Remote
Sensing Tools and Methods for Supporting Smallholder Agri-
culture. Applied Geomatics.

dRonin, Source Code. https://github.com/d-ronin/

dRonin.

Fawcett, D., Azlan, B., Hill, T. C. abd Khoon Kho, L., Bennie,
J., Anderson, K., 2019. Unmanned Aerial Vehicle (UAV) de-
rived Structure-from-Motion Photogrammetry Point Clouds for
Oil Palm (Elaeis guineensis) Canopy Segmentation and Height
Estimation. International Journal of Remote Sensing, 40(19),
7538-7560.

iNav, Source Code. https://github.com/iNavFlight/

inav.

Koubaa, A., Allouch, A., Alajlan, M., Javed, Y., A., B., Khal-
gui, M., 2019. Micro Air Vehicle Link (MAVlink) in aNutshell:
A Survey. IEEE Access, 7, 87658–87680.

LibrePilot, Source Code. https://github.com/

librepilot/LibrePilot.

Luo, Z., Xiang, X., Zhang, Q., 2019. Autopilot System of re-
motely operated vehicle based on Ardupilot. Intelligent Robot-
ics and Applications, 3, 206–217.

Melo, J. C., Constantino, R. G., Santos, S. G., Nascimento,
T. P., Brito, A. V., 2017. A System Embedded in Small
Unmanned Aerial Vehicle for Vigo Analysis of Vegetation.
GeoInfo, XVIII, 310–321.

Moulton, J., Karapetyan, N., Bukhsbaum, S., McKinney, C.,
Melebary, S., Sophocleous, G., Quattrini Li, A., Rekleitis, I.,
2018. An Autonomous Surface Vehicle for Long Term Opera-
tions. OCEANS.

Paparazzi, Source Code. https://github.com/paparazzi/
paparazzi.

PX4, Source Code. https://github.com/PX4/Firmware.

Raber, G. T., Schill, S. R., 2019. Reef Rover: A Low-
Cost Small Autonomous Unmanned Surface Vehicle (USV) for
Mapping and Monitoring Coral Reefs. Drones, 3(38).

Ramirez-Atencia, C., Camacho, D., 2018. Extending QGround-
Control for Automated MissionPlanning of UAVs. Sensors,
18(7), 2339.

Sani, A. Y. M., He, T., Zhao, W., Yao, T., 2019. Hybrid Un-
derwater Robot System Based on ROS. International Confer-
ence on Robotics, Intelligent Control and Artificial Intelligence,
396–400.

Schillaci, G., Schillaci, F., Hafner, V. V., 2017. A Customisable
Underwater Robot. ArXiv, abs/1707.06564.

Siciliano, B., 2008. Springer Handbook of Robotics. Springer.

Sinisterra, A., Dhanak, M., Kouvaras, N., 2017. A USV Plat-
form for Surface Autonomy. OCEANS.

TauLabs, Source Code. https://github.com/TauLabs/

TauLabs.

Velaskar, P., Vargas-Clara, A., Jameel, O., Redkar, S., 2014.
Guided Navigation Control of an Unmanned Ground Vehicle
using Global Positioning Systems and Intertial Navigation Sys-
tems. International Journal of Electrical and Computer Engin-
eering, 4(3), 329–342.

Wardihani, E. D., Ramdhani, M., Suharjono, A., A., S. T.,
Hidayat, S. S., Helmy, Widodo, S., Triyono, E., Saifullah,
F., 2018. Real-time Forest Fire Monitoring System using Un-
manned Aerial Vehicle. Journal of Engineering Science and
Technology, 13(6), 1587–1594.

Washburn, L., Romero, E., Johnson, C., Emery, B., Gotschalk,
C., 2017. Measurement of Antenna Patterns for Oceanographic
Radars Using Aerial Drones. Journal of Atmospheric and
Oceanic Technology, 34(5), 971–981.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-933-2020 | © Authors 2020. CC BY 4.0 License.

 
939




