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ABSTRACT: 

In this contribution, we propose a versatile image-based methodology for 3D reconstructing underwater scenes of high fidelity and 

integrating them into a virtual reality environment. Typically, underwater images suffer from colour degradation (blueish images) due 

to the propagation of light through water, which is a more absorbing medium than air, as well as the scattering of light on suspended 

particles. Other factors, such as artificial lights, also, diminish the quality of images and, thus, the quality of the image-based 3D 

reconstruction. Moreover, degraded images have a direct impact on the user perception of the virtual environment, due to geometric 

and visual degenerations. Here, it is argued that these can be mitigated by image pre-processing algorithms and specialized filters. The 

impact of different filtering techniques on images is evaluated, in order to eliminate colour degradation and mismatches in the image 

sequences. The methodology in this work consists of five sequential pre-processes; saturation enhancement, haze reduction, and 

Rayleigh distribution adaptation, to de-haze the images, global histogram matching  to minimize differences among images of the 

dataset, and image sharpening to strengthen the edges of the scene. The 3D reconstruction of the models is based on open-source 

structure-from-motion software. The models are optimized for virtual reality through mesh simplification, physically based rendering 

texture maps baking, and level-of-details. The results of the proposed methodology are qualitatively evaluated on image datasets 

captured in the seabed of Santorini island in Greece, using a ROV platform. 

1. INTRODUCTION

In the past few years, there has been a massive adaptation of the 

Virtual Reality (VR) technology on a variety of application fie-

lds, but even more in the entertainment and cultural heritage 

domains. In particular, the radical hardware advancements made 

it possible for the VR applications to run efficiently and with high 

quality graphics. It is, now, widely accepted that VR offers a 

much better understanding of a represented scene and creates a 

higher and more immersive user experience than conventional 

3D environments. Latest advancements in human-machine 

interaction have also influenced the way people interact with a 

virtual world. VR offers to the public, but also to the scientific 

community, an unprecedented way of accessing environments 

that are typically inaccessible to common people without spe-

cialized equipment and, at some cases, huge budget. Underwater 

environments are a significant user scenario for VR technologies 

to demonstrate the potentials of immersive experiences since the 

underwater world hosts an incredible treasure of cultural and 

marine biodiversity. Besides, seas provide a broad range of 

economic and marine engineering activities, such as pipe and 

drilling equipment construction, operation and inspection, 

telecommunications, and fish farms. Hence, underwater VR can 

also assist in interactive and immersive education and training of 

public and experts.  

Underwater VR relies on imaging as a passive, non-invasive, 

non-contact and cheap technique to capture reality. The 

exploitation of images from the underwater environment poses 

significant difficulties comparing to the images acquired in 

typical in-air conditions. Underwater imagery shares a series of 

common quality issues due to absorption and scattering of light 

in the water. The water absorbs light as a function of the distance 

from the surface and the wavelength of the light spectrum. As an 

immediate result is the low visibility range, which is limited at 

20m in clear water and much less in water that contains particles, 

or it is disturbed. Moreover, as the depth increases, the larger 

wavelengths are absorbed faster, thus the red colour (780 – 

622nm) disappears faster, in contrast to the blue colour (492 – 

455nm) that can penetrate at larger depths (Hitam et al., 2013); 

the difference in light absorption according to the wavelength 

leads to colour (spectral) distortion (the “bluish” effect) noticed 

in underwater images (Figure 1). Underwater images also present 

noise, blurriness, low contrast, and bright spots owed to sun 

reflectance. In some cases, artificial light is used in order to 

increase the diminished visibility, which in return causes a non-

uniform lighting of the scene at a much greater extent than at 

grabbing flashed images in the air, and scattering on particles in 

the water. The abovementioned issues degrade the visual quality 

of underwater images and, thus, the quality of image-based 3D 

reconstruction and the quality of the VR experience. Processing 

underwater images is an increasingly active domain, as it is 

related to ocean exploration by remotely operated underwater 

vehicles (ROVs) and autonomous underwater vehicles (AUVs). 

Overall, presenting real underwater spaces through immersive 

and interactive VR experiences relies on the advances in several 

research domains.  

3D reconstruction of underwater spaces suffers from geometric 

and visual inaccuracy; hence, this work aims to address these 

issues by proposing a methodology that improves the overall 

image quality of a dataset before reconstruction. The image pre-

processing algorithm proposed in this work consists of five indi-

vidual enhancements: saturation enhancement, haze reduction, 

Rayleigh distribution adaptation, global histogram matching, 

and image sharpening. The methodology proposed in this work 
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was evaluated on custom datasets from Santorini island, acquired 

by a ROV provided by NKUA. The 1st dataset consists of 352 

images depicting a shipwreck, whereas the 2nd one is a collection 

of 492 images presenting a small part of the dykes of Santorini 

volcano island -i.e. dykes are a fluid driven (magma driven) 

extension fracture. 

 

Figure 1. Infiltration of light in the water. [after Hitam et al. 2013] 

 

2. PREVIOUS WORK 

2.1 Enhancement of Underwater images 

Corchs and Schettini (2010) published a thorough review on 

methods that aim at enhancing the resolution, contrast and range 

visibility on underwater images. They categorized the methods 

that restore underwater images as enhancement and restoration. 

Image restoration methods are based on complex physical and 

mathematical image degradation models and the scene depth. On 

the other hand, image enhancement methods, aim at the visual 

amelioration of the underwater images comparing to in-air 

images. Lu et al. (2017) published an updated review of 

underwater image processing in which the physics around 

underwater imaging are described, along with the difficulties of 

defining a degradation model. Moreover, passive and active 

methods of image acquisition are discussed, as well as typical 

methods of image restoration and the categorization of 

restoration methods in hardware-based and software-based, 

depending on the acquisition method. Image quality assessment 

methods are also discussed. Li et al. (2020) propose a newly 

acquired benchmark dataset (UIEB) under which state-of-the-art 

algorithms are reviewed. 

 

Hitam et al. (2013) propose an image enhancement method that 

combines the advantages of RGB and HSV colour spaces; the 

image in each colour space is processed via adaptive histogram 

equalization limited by a threshold for contrast enhancement. The 

results are qualitatively evaluated on their own acquired images. 

A similar work utilizes the Rayleigh distribution to modify by 

modifying the histogram in RGB and HSV colour spaces and 

combine the results (Ghani and Isa, 2014). Qiao et al. (2017) built 

on the previous work to improve contrast and added wavelet 

transformation for better denoising of images of underwater 

cucumbers. The efficiency of this method was qualitatively and 

quantitatively evaluated on 120 greyscale underwater images. 

Emberton et al. (2018) presented a method that achieves 

significant improving (dehazing) via segmenting the water areas 

in the underwater image. Moreover, some methods explicitly 

estimate the medium transmission (Drews-Jr et al., 2013), based 

on the generic work on Dark Channel Prior for estimating haze 

in outdoor scenes (He et al., 2011). This approach relies on the 

statistics of outdoor images via the pixels of exceptionally low 

colour values to compute a haze prior that allows the estimation 

of the thickness of haze in new images and thus image 

restoration. Concurrently, these approaches estimate an image 

depth map. 

 

The advance in deep neural networks and data-driven approaches 

in the latest years has also pushed the advance in image resto-

ration methods. An interesting approach proposed the fusion 

generative adversarial network to correct colour degradation (Li 

et al., 2019), while “Water-Net” proposed a generic convo-

lutional neural network to enhance underwater images (Li et al., 

2020). The depth estimation can also be important to accurately 

determine a transmission model for de-hazing an image and can 

be estimated by a neural network (Ding et al., 2017). (Li et al., 

2015) proposed another method for dehazing images including 

underwater images. Their method exploits an MRF framework to 

simultaneously optimize for depth and cleared colour values in 

image sequences. The energy function is built on photo-

consistency, fog scattering and smoothness term adapted to 

underwater conditions. 

 

2.2 3D Reconstruction of Underwater Scenes 

In underwater imaging, the path of the light ray through media 

with different refractive indices (air/glass/water) deviates 

significantly from the straight line. Especially in the case where 

an imaging system with a flat refractive interface is utilized 

(housing with flat glass port), the adoption of the perspective 

camera model (also known as SVP – Single View Point model), 

cannot cope with the refraction error, leading to inaccuracies in 

calibration and 3d reconstruction (Treibitz et al., 2008). This 

incompatibility arises mainly from the fact that refractive 

distortion is related to the distance of the point from the imaging 

system and particularly from the housing interface. In fact, it can 

be illustrated in Figure 2, where object point P is projected to the 

image point p1 following the actual path of the light-ray. The 

incident ray is refracted according to Snell’s low, at point K due 

to the different density of the media (air/water) and, afterwards, 

it defines point p1 on the image plane. The adoption of the 

perspective camera model defines a new image point p2 that 

deviates substantially from its actual position p1. The 

establishment of a new object point P’ at a greater distance from 

the housing interface along the incident ray PK, further distorts 

image point location (point p3) that confirms the inadequacy of 

the central projection model.  

 

 

Figure 2. Refracted light-ray path and invalidity of Single View 

Model. 
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In this context, Treibitz et al. (2008) have presented the caustic, 

a geometrical interpretation of the refractive geometry that 

represents the locus of all viewpoints, which can be derived in 

closed form as the surface tangential to the bundle of refracted 

rays. In a similar manner, following a geometrically driven 

approach, Telem and Filin (2010) proposed a method that can 

handle light propagation in the different media by explicitly 

interpreting the ray path. Their approach adapts collinearity 

model to underwater imagery by the integration of Snell’s law of 

refraction, accommodating two distinct camera configuration 

cases: the optical axis being strictly perpendicular to the housing 

interface and the optical axis has a random and unknown 

orientation. Agrawal et al. (2012) first modelled the geometry of 

flat refraction systems using an axial camera. By exploiting two 

additional constraints, they achieved accurate calibration and 

pose estimation of a monocular camera employing a linear 

initialization at first, and then a final non-linear optimization. 

Jordt et al. (2016) used the results of Agrawal et al. (2012) and 

implemented a complete scalable 3D reconstruction framework 

for underwater acquisition, which combines an RSfM (Refractive 

Structure from Motion) and the Refractive Plane Swipe 

algorithm. 

On the other hand, the exploitation of a camera housing with a 

dome port can significantly alleviate the previous geometrical 

implications. Nevertheless, dome port devices are not as 

convenient to use as flat ones, while, at the same time, exhibit 

severe field curvature (Chadebecq et al., 2019). However, 

considering a limited range of object distances and for moderate 

accuracy requirements, the approximation of the perspective 

camera model (with lens distortion) is proved to be sufficient for 

many underwater 3D reconstruction applications. 

 

2.3 Evaluation and Datasets 

Public datasets and evaluation platforms play an essential role in 

developing algorithms. The ground truth data for underwater 

images are almost impossible to get, thus, image datasets that 

contain original and enhanced images are based on subjective 

relative qualitative assessment (Chen et al., 2014). Li et al. (2019) 

published the U45 image dataset for developing and evaluating 

algorithms to restore the degraded images of underwater scenes. 

The dataset consists of image extracted from other public datasets 

and it is split to green, blue and haze categories. Moreover, the 

images are restored via seven algorithms as a baseline. Data-

driven approaches can exploit the large dataset of Liu and Chen 

(2019), which is based on RGB-D captured indoor images trans-

formed via degradation models. Ground truth data are also 

relying on the assessment of a group of people. The underwater 

image enhancement benchmark (UIEB) consists of large-scale 

real-world images with reference images created by top 

algorithms and assessed by fifty people (Li et al., 2020). Since 

UIEB includes 890 images, it is adequate for training deep 

networks for image enhancement. On a different benchmarking 

approach, Berman et al. (2020) published a newly collected (via 

SLR cameras) underwater stereo-images dataset to assist the 

research on image restoration. The images depict colour charts in 

multiple distances from cameras and ground truth information 

from a variety of dive sites, 57 sites in total. The stereo-pairs are 

calibrated, although the refraction is disregarded, and the depth 

of the scene is estimated to assist with colour restoration. Another 

different approach is the one proposed by Li et al. (2018) to create 

synthetic underwater images from real in-air images, so that the 

ground truth exists. 

 

Typical assessment measures include mean square error, peak 

signal to noise ratio and entropy, although others have been pro-

posed, such as a linear combination of standard deviation of 

chroma, mean of saturation and lightness contrast (Yang and 

Sowmya, 2015). It is noticeable that quantitative measures can 

contradict qualitative evaluation of underwater image restoration 

(Emberton et al., 2018). 

 

Beyond the image datasets for image restoration,  Ferrera et al. 

(2019) published a dataset for simultaneous localization and 

mapping, which can be exploited for evaluation of 3D recon-

struction purposes. The data are captured via ROV and depict 

industrial, archaeological and physical scenes. Similarly, Mallios 

et al. (2017) published a dataset of images and sensor data 

acquired via a ROV under scuba diver guidance, which depicts a 

complex of caves and can be useful for SLAM. The provided data 

include raw RGB images, inertial and sonar measurements from 

a variety of navigation and perception sensors, as well as ground 

truth points for relative accuracy estimation, and cameras’ 

calibration estimation. 

 

2.4 VR Experiences of Underwater Scenes 

Although the inaccessible underwater environments pose an ideal 

scenario of exploiting VR potentials, the work in the field has not 

matured, yet. Research in the field of underwater VR includes 

interactive experiences based on 360° videos, 3D reconstructed 

real scenes, and even fully immersive experiences via underwater 

HMI equipment and trackers (Costa et al., 2017). (Osone et al., 

2017) evaluate the underwater VR experience of a head-mounted 

display (HMD). Lately, companies such as (“Ballast VR,” n.d.), 

have offered mass underwater VR experiences, whereas equip-

ment for capturing underwater scenes for VR have been made 

available to the public (“Vuze,” 2020). “TheBlu: An Underwater 

VR Experience,” (2017) expedition invited the public to 

experience swimming with whales in the Natural History 

Museum of Los Angeles.  

 

Underwater cultural heritage is an important application field for 

VR, as it enables the public to taste, but also the experts to study, 

the hidden treasures of the oceans. In McCarthy and Martin 

(2019), a VR diving experience for maritime archaeology is 

presented and the writers argue that the implemented 2.5D 

approach of a pre-set navigation is more appropriate than full 3D 

interactive experience for the public. Bruno et al. (2016b, 2016a, 

2016c) proposed a methodology for surveying underwater 

archaeological sites and presenting them interactively in VR. VR 

for education is also an emerging topic; Calvi et al. (2018) 

developed a game played in oceanic environment hoping to raise 

awareness on the delicate maritime environments. The VR envi-

ronment was constructed via a mixed approach combining the 

real 3D model as reconstructed from images and artificial 3D 

models designed from scratch. Furthermore, VR can support 

training for operating in harsh environments, which pose a threat 

for human safety,  such as diving in the ocean. Jain et al. (2016) 

developed a VR system for diving that arouses a variety of senses 

compared to bare HMD and also imitates the neutral buoyancy of 

the ocean. Hatsushika et al. (2019a, 2019b) developed a tether 

head mounted display (HMD) for underwater usage in order to 

train scuba divers in realistic conditions and supported the VR 

experience with artificial 3D scenes and content. Zhang et al. 

(2019) developed a VR simulator for training operators to 

submarine vehicles. In Sinnott et al. (2019), a typical scuba 

diving mask was converted to a head-mounted display for 

underwater experiences, and although the goal was to study the 

effects of neutral buoyancy to VR experiences for NASA, the 

proposed approach is a step towards more immersive underwater 

experiences.  Fernandez et al. (2019) and Amores et al. (2019) 

have pioneered on  an interactive, immersive VR experience that 

it is based on videos and 3D of oceanic life and a collection of 
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physiological, chemical and EEG signals, in order to influence 

the relaxation state of a user.  

 

3. PRE-PROCESSING UNDERWATER IMAGES 

Typically, the water as a medium for travelling light causes to 

images the following problems: greenish and blueish effect, haze 

effect, low contrast, noise and lack of vividness. Additionally, 3D 

reconstruction from underwater filtered images adds certain 

limitations to the image filtering techniques and enforces global 

image adjustment. Moreover, the water reduces the visibility 

range and the attempt to increase it with artificial lights causes 

bright spots due to intense reflections on particles and uneven 

lighting. The algorithm proposed in this work consists of five 

individual enhancements: saturation enhancement, haze 

reduction, Rayleigh distribution adaptation, global histogram 

matching, and image sharpening (Figure 3). 

 

 

Figure 3. Flow chart of pre-processing underwater images for 3D 

reconstruction purposes. 

 

3.1 Saturation Enhancement 

There are three main colourmap representations of the RGB 

domain, the HSL, HSV, HSB. In this work, we used the HSV 

colourmap to isolate the saturation parameter (Hitam et al., 

2013). Saturation is the intensity of a colour and how dominant 

can be, which is particularly important on underwater images. 

The selected colourmap transformation between the HSV and the 

RGB domain was proposed by Smith (1999). Initially, the 

normalized -[0,1]- image is converted via the RGB to the HSV 

hex cone colourmap model to enhance the saturation value S. The 

reason for this is that underwater images also lack in vividness. 

Experiments showed that scaling the S value by 1.5 is adequate; 

it is important not to over-saturate the images. In some cases, this 

scaling might need tuning after visual assessment of the results 

on a sample of the dataset. After changing S, the image is 

remapped to the RGB domain.  

 

3.2 Haze Reduction 

After saturation enhancement, the image is “de-hazed” via the 

dark channel prior, after He et al. (2011) to remove the image 

blurriness. As observed in Figure 5, the enhancement in 

underwater images is exceptional. The resampled image 𝐽 is 

𝐽(p) =  
𝐼(p) − A

r(p)
+ A (1) 

  

where 𝛪 is the observed intensity, A the atmospheric light, and r 
the transmission. If at least one colour channel of an RGB image 

has some pixels, whose intensity values are close to zero, then 

the dark channel 𝐽dark is 

  

Jdark(p) = min
q∈Ω(p)

 ( min
c∈{r,g,b}

Jc(q)) (2) 

  

where 𝐽 is the scene’s radiance, 𝐽cis a color channel and Ω(p) is 

the local neighbourhood of a pixel p.  

 

After computing the dark channel prior, the colour imbalances 

are minimized by white balancing the image following Park et al. 

(2014). To estimate the atmospheric light, it is assumed that it 

diffuses to a larger part of an image and its intensity peaks are in 

a smaller part. Initially, the RGB corresponding grayscale image 

is subdivided into blocks of 30x30 size and the pixel values of 

each block are replaced with their minimum. Then, a quad-tree 

subdivision of pre-specified repetitions on the grayscale image is 

enforced. The atmospheric light is the vector which minimizes 

the Euclidean norm, 

  

||(rp, gp, bp) − (1,1,1)|| (3) 

  

where p is the selected pixel. Afterwards, the transmission 𝑟(𝑝), 
which offers a nice contrast to the dehazed image, is computed 

from an objective function fobjective which relies on, fentropy and 

ffidelity.  

  

{
 
 
 

 
 
 

fentropy(r) = −∑
hi(r)

N

255

i=0

log
hi(r)

N

ffidelity(r) = min
c∈{r,g,b}

sc(r)

sc(r) =
1

N
∑δ(p),

N

p=1

 δ(p) = {
1, 0 ≤ Jc(p) ≤ 255
0,     otherwise       

 (4) 

  

where 𝑁 is the number of the pixels in the image, hi(r) is the 

number of pixels that have intensity i in the greyscale image 𝐽. 
The transmission value 𝑟 is computed, which acts as local 

optimum for each subdivided block rk
block , 

  

rk
block = arg max

r€{0.01≤r≤1}
fobjective(r) (5) 

  

At the end, a refinement of the transmission variable is needed 

for the dehazing to perform seamlessly along the blocks. 

 

3.3 Rayleigh distribution adaptation 

Rayleigh distribution is a continuous probability distribution for 

positive values. In image processing aggregates pixel values to 

the middle range of the intensity level and it is basically, a bell-

shaped distribution. After haze removal, some pixel values are 

either too dark, or too bright.  Although haze reduction and high 

contrast typically result to a nice visualized image can lead to 

information loss mainly during the 3D reconstruction process. 

The probability distribution function (PDF) of the Rayleigh 

distribution is 

  

PDFRayleigh = (
x

a2
) e

(−
x2

2a2
)
 (6) 
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where 𝑎 is the distribution parameter and 𝑥 is the input pixel 

value. 

 

3.4 Global histogram matching 

While filtering techniques are typically treating the images 

individually, the 3D reconstruction process is favoured by a 

consistent appearance of the scene across the image sequence 

used in structure-from-motion and dense matching. Underwater 

image sequences suffer from abrupt light changes. Global 

adjustments are very sensitive and only small changes can be 

compensated without totally distorting the histogram but for 3D 

reconstruction purposes, even minor corrections can add value. 

Initially, the coefficient variation CV for each image is estimated 

  

CV(𝐼) =
std(H)

m(H)
 (7) 

  

where 𝐼 is the image and H is the computed histogram of 𝐼. The 

histogram with the lowest coefficient values is selected and all 

the other images are transformed so that their histograms 

approximately match to the histogram of the lowest CV. The 

transformed image dataset contains minimized colour differences 

among all images. This step facilitates the texture generation of 

the model during the 3D reconstruction process. 

 

3.5 Sharpening 

As a final enhancement, unsharp masking is applied, since, based 

on these experiments, the global histogram matching equa-

lization could result in blurring some features of the image 𝐼, such 

as object edges. 

  

𝐼sharpened = 𝐼original + (𝐼original − 𝐼blurred)a (8) 

  

where a is the strength value of the sharpening effect.   

 

3.6 Image Pre-processing Results 

The five image enhancements proposed in this work were 

evaluated on two custom datasets before the 3D reconstruction 

and their results are presented in Figure 4. The left columns 

present the initial images and the right the enhanced images.  

 

  

  

1st dataset 

  

  

2nd dataset 

Figure 4.  Image pre-processing results. Left: initial images; right: 

enhanced images. 

 

In Figure 5, the image pre-processing steps were also evaluated 

via the corresponding histograms. The results are cumulative, as 

each algorithm is applied on the result of the previous step. The 

image depicts a healthy coral, including both hard and soft coral, 

in the northern region of Australia's Great Barrier Reef [Credit: 

NASA/JPL-Caltech/BIOS] and it is chosen for its vivid colours 

to present the results of the enhancement algorithms. 
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Figure 5. Results of pre-processing on the images and the 

histograms, i.e. saturation enhancement (S), haze reduction (RH), 

Rayleigh distribution adaptation (RD), global image equalization 

(GE), and sharpening (SH). 1st row: initial image; 2nd row: S; 3rd 

row: S – RH; 4th row: S – RH – RD; 5th row: S – RH – RD – GE; 

6th row: S – RH – RD – GE – SH. 

 

4. 3D RECONSTRUCTION 

The 3D models were reconstructed using “Meshroom”, a 

prominent open source photogrammetry software. The geometric 

and visual quality of the reconstructed scene heavily depend on 

the quality of the images. Hence, the image pre-processing can 

significantly assist the reconstruction process, as shown in our 

evaluation. Holes, ambiguities and degenerated geometry that 

result from the degradation of the impact of the water medium on 

the unfiltered images were corrected, while the overall 3D model 

became more vivid and realistic. As presented in Figure 6, the 

reconstruction results from feature extraction and dense matching 

algorithms on pre-processed images, outperform the results 

produced by the initial images.  

 

  

  

  

1st dataset 

  

2nd dataset 

Figure 6. 3D reconstruction results, from initial (left) and 

enhanced images (right). 1st dataset. 1st row: textured mesh; 2nd 

row: triangular mesh; 3rd row: reconstruction detail from the 

shipwreck, where the improved geometry and texture are 

presented. 2nd dataset. Details from the dykes. 

Even though the SfM error was slightly higher when calibrating 

the filtered images, 10% more images of the dataset were 

included in the solution, comparing to the initial image dataset. 

Also, the geometry is better recovered from the processed 

images, as one can notice from the details and complex structures 

in the scenes. Nevertheless, in most VR games, cultural and 

tourism applications, geometric accuracy does not play a 

significant role. Hence, a more important effect of the pre-

processing proposed in this work is that the image enhancements 

add realism and vividness to the reconstructed scene and signi-

ficantly improved the VR experience, as presented in Figure 6. 

 

5. 3D MODEL OPTIMIZATION FOR VR 

The obtained mesh from the 3D reconstruction approach is often 

too complicated and complex to be handled directly in real-time 

Virtual Reality applications. To overcome this, a typical 

workflow from the computer graphics domain is adopted. This 

includes: i) mesh simplification; ii) physically based rendering 

(PBR) texture maps baking; and iii) level-of-details (LODs) 

generation. Moreover, a de-lighting effect is applied to remove 

the natural lights and shadows of the environment, where 

possible. To simplify the geometry of the reconstructed 3D mesh 

the “Instant Meshes” tool (Jakob et al., 2015) is employed. The 

original 3D surface is remeshed into an isotropic triangular or 

quad mesh via a local based approach that optimizes both the 

edge orientations and vertex positions in the output mesh (Figure 

7). The first step computes an orientation field, i.e., a set of 

directions that the edges of the simplified mesh should align with. 

The second step computes a local uv parameterization, whose 

gradient is aligned with the orientation field and which is 

discontinuous over edges. Finally, a 3D triangular, or quad, mesh 

is extracted from the two fields. 

 

  

Figure 7. Mesh simplification. Left: original mesh; right: simpli-

fied mesh. 

The photo-texture of the original 3D mesh model is then applied 

to the simplified mesh by typical uv unwrapping and 
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interpolation techniques. Alternatively, photo-texture can be 

estimated from the original oriented images. For better 

visualization in VR, PBR is adopted. Normal maps, height maps 

and ambient occlusion maps for the simplified 3D mesh are 

estimated from the more complex geometry of the original mesh 

using “xNormal” tool (Figure 8). 

 

  

  

Figure 8. PBR texture maps. Upper-left: visualizations of the 

simplified mesh geometry without normal map; upper-right: with 

normal map; lower-left: ambient occlusion texture; and lower-

right: final PBR render. 

 

Finally, “simplygon” software was used for generating LODs to 

ease the rendering process in the VR software (Unity 3D) (Figure 

9). The latter is essential to achieve real-time performance for the 

exceptionally large meshes that are typical from images in the 

cases where high fidelity scenes needs to be modelled. 

 

 

Figure 9. LODs visualization. Triangular meshes per LOD. From 

left to right: the full-resolution model to the simplified model. 

 

6. CONCLUSIONS 

This work proposes a methodology to 3D reconstruct underwater 

scenes and efficiently present it in an immersive and interactive 

VR experience. The difficulties that water causes as a medium 

for light-rays, in contrast to in-air images, are discussed. Here, an 

image pre-processing pipeline is adopted to assist the 

reconstruction process and facilitate the VR result. The 

methodology proposed in this work was evaluated on custom 

datasets. As a next step, this approach will be evaluated on public 

datasets and new algorithms on image de-hazing will be tested. 
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