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ABSTRACT:  

 

The underwater environment has substantial properties for underwater research such as marine archaeology, monitoring coral reefs, 

and shipwrecks. SfM, as a major step of photogrammetry, has been widely used in the field. For a high 3D construction quality, images 

must have a clear visual sight environment and known orientations of the images. However, underwater images have various types of 

visual disturbances, but also GPS/INS, commonly used on the ground, are not accepted. Finding more feature points or using more 

images for SfM are solutions to the problems. However, these methods take high computational costs. An alternative to this problem 

is to provide the known orientations of the images. For a solution to provide known orientations of images, the presented method in 

this study uses visual SLAM that processes the localization of a vehicle system and mapping of surroundings. The experiment aims to 

verify whether SLAM improves the quality of underwater 3D reconstruction and the computation efficiency of SfM.  We examine the 

two aqualoc datasets with the results of the number of cloud points, SfM processing time, and the number of matched images/total 

images and mean reprojection errors. The outcome shows SLAM-determined orientations improved the quality of 3D reconstruction 

and the computation efficiency of SfM with results of the increased number of point clouds and the decreased processing time. 

 

1. INTRODUCTION 

The underwater environment has substantial properties for 

underwater researches such as marine archaeology, monitoring 

coral reefs, and shipwrecks. In the second half of the twentieth 

century, AUVs (Autonomous Underwater Vehicles), USBL 

(Ultra-short Baseline), DVL (Doppler Velocity Log) are widely 

used for underwater researches, and they commonly exploited 

acoustic sensors such as sonar. Due to their disadvantage of being 

expensive and large (), alternatives such as ROV (Remotely 

Operated Vehicle) with visual cameras, which are flexible, have 

been utilized (Teague & Scott, 2017). Additionally, underwater 

researches using cameras have often involved SfM (Structure 

from Motion) to reconstruct the underwater environment, which 

is a major step in the photogrammetric method of 3D 

reconstruction. 

To get a good quality of 3D reconstruction from SfM, the images 

should contain a stable surface, visually distinct objects, uniform 

illumination, and known intrinsic and extrinsic parameters 

(Dellaert et al, 2000). However, unlike the environment on the 

ground, GPS (Global Positioning System) for absolute locations 

and INS (Inertial Navigation System) for computing orientation 

devices are difficult to be used in the underwater environment. 

Besides, difficult visual challenges that are not encountered on 

the ground are in the water. Backscattering that changes the 

direction of the light ray, turbidity from the cloudiness or 

haziness caused by large numbers of particles and dynamism 

from the motion of water are commonly shown in underwater 

images (Ferrera et al, 2019a). These obstructions can be major 

hindrances to 3D construction. 

Features mean interest points in an image that can be identified 

even if the location and scale of the object, the photometric state 
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changes. By corresponding features between images, the location 

of images can be defined with geometry transformations in SfM. 

Features in images, in other words, are the dominant part of 3D 

reconstruction of SfM. Thus, in underwater images having visual 

disturbances, features are not guaranteed. To overcome visual 

disturbances for SfM, more images to increase the image 

overlaps or setting a higher keypoint limit (relevant to finding 

more feature points) for each image can solve problems. 

However, this increases the time complexity of SfM. 

Underwater SLAM (Simultaneous Localization and Mapping) 

using visual cameras has also been applied contribute to 

underwater researches, commonly in robotics (Hidalgo and 

Bräunl, 2015). SLAM is an approach to localize a system with 

sensors that perceive unknown surroundings and to map the 

surroundings at the same time. SLAM can be divided according 

to the sensors used. Visual SLAM uses a visual camera, and its 

method to estimate camera poses and map the surrounding 

environment resembles the method of SfM. However, since it 

targets a real-time operation, SLAM calculates a camera frame 

trajectory from frames of a video; for example, if a video has 20 

frames per second, 20 positions are determined for a second. The 

positions from SLAM are frequently computed and fast, 

compared to SfM. 

 

A presented method in this paper aims to reconstruct an 

underwater environment by combining SfM with SLAM-

determined orientation. The experiment here is to verify whether 

the known orientation from SLAM improves the quality of 

underwater 3D reconstruction and the computation efficiency of 

SfM.  We inspect the two aqualoc sequences including visual 

disturbances to compare the results; i.e. the number of cloud 

points, processing time, mean reprojection error, and dense 

models depending on the setting (number of keypoint limit, 

number of images, and SfM-determined orientation) of SfM. 
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2. METHODOLOGY 

2.1 Overview of SfM with SLAM-determined orientation 

In the first stage of the SfM with SLAM-determined orientation, 

the SLAM extracts a frame trajectory from a sequence of frames 

in an underwater environment. In the second stage, the frame 

trajectory synchronizes with input images for SfM. At the last 

stage, SfM generates dense point clouds with SLAM-determined 

orientation. The described SfM with SLAM-determined 

orientation is as follows (Figure 1).  

 

Both SLAM and SfM are carried out, in a way that they 

correspond to features, based on them, and determine the map 

and pose of images. In the next section, SLAM and SfM are 

shown from the perspective of how the precision differs in 

corresponding features and determining the pose of images. 

Feature correspondence means a problem of finding two 

corresponding points in two images, where features should 

remain unchanged in the movement, scale, rotation, and light of 

the object. Depending on the type of algorithm, the degree of 

matching features may vary, and the better the performance, the 

more time it takes. Feature correspondence is solved through the 

three stages of detection, description and matching feature points; 

1) the points likely to be feature points are detected for each 

image, 2) and the invariant descriptors for the various variations 

(movement, rotation, intensity, etc.) of each feature point are 

generated, 3) and the similarity or distance between the feature 

points of the two images is measured and matched. ORB (Rublee 

et al., 2011) is widely known for being fast and robust in change 

as fast feature correspondences are the main concern in SLAM. 

On the one hand, SIFT in SfM is an algorithm that extracts and 

matches many features which are robust in any change than ORB, 

but it takes more time. 

Based on feature correspondences, SLAM and SfM determine 

the camera poses. If the complete orientation of two cameras and 

the perfect intersection of two rays from two images to a point in 

3D are available, the projection centers from the two cameras and 

the point are dependent on one plane in 3D, which is called 

coplanarity constraint. The camera poses are calculated with the 

coplanarity constraint; 1) the computation based on the 

coplanarity constraint is achieved with the essential matrix (for a 

calibrated camera) or the fundamental matrix (for an uncalibrated 

camera). 2) Once the adjacent camera poses are established, the 

location of the point in 3D is calculated with triangulation. In this 

process, errors are leaded because rays from an image onto a 

point do not meet when it projects back into the image. 3) 

Remaining uncertainties from camera poses and points in 3D 

should be corrected for 3D reconstruction with higher precision. 

SLAM integrates pose-graph optimization and local BA (Bundle 

Adjustment), to make local corrections quickly and efficiently. 

SLAM and SfM use BA to be refined globally. SfM has a more 

complex computational process than SLAM because it can use 

(control points if possible) more images and observations (see 

Section 2.3.3). 

 

2.2 Visual SLAM 

Visual SLAM is a solution to determine the pose of sequence 

images taken on the vehicle system while simultaneously 

mapping the surrounding environment. Visual SLAM constitutes 

three steps; 1) corresponding features between images, 2) 

estimating the camera poses based on feature correspondences, 

and 3) optimizing the poses globally, all steps of which are driven 

almost in parallel (Figure 1).  

 

2.2.1 Feature correspondence: Since the camera poses are 

determined based on the matching feature points, the 

correspondence problem has a significant effect on the accuracy 

of the position. The method used to solve the problem of feature 

correspondences, called a feature-based method, involves feature 

detection, feature description, and feature matching. One of the 

feature-based algorithms, commonly used in SLAM, is ORB, 

which is used in ORBSLAM2 (Mur-Artal et al, 2017) and 

OpenVSLAM (Sumikura et al, 2019). ORB combines oFAST 

(FAST Keypoint Orientation) that detects only peripheral pixels, 

which are quickly considered feature points, and an rBRIEF 

(Rotation-Aware Binary Robust Independent Element Features), 

which uses a binary detector to describe the direction of features. 

In this way, ORB was constructed in a similar way to SIFT, 

reducing computational costs by using faster and robust methods 

for scale and orientation in change. It takes 15.3 ms for ORB and 

5228.7 ms for SIFT when extracting about 1,000 feature points 

from the image.

 

 
Figure 1. SfM with SLAM-determined orientation 
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2.2.2 Pose estimation: Once the feature points are matched 

between frames in the process of feature correspondences, the 

two adjacent camera poses can be estimated based on the 

matched features. For a calibrated camera, the essential or 

fundamental matrix indicating the relationship (R; rotation, t; 

transition) between two 2D images (𝐼𝑘−1, 𝐼𝑘) is calculated.  In the 

process of estimating the location of a point (assumed as a feature) 

in 3D by triangulation, the relative scale can be computed from 

the two adjacent image pairs. This process may result in drift 

errors (motion errors) and image reprojection errors because the 

line passing through a point on one image is not the same as the 

back-projection line. By minimizing the reprojection error of 

triangulated points, the proper scale set, and the camera pose can 

be determined. To solve this problem, keyframes that reduce the 

reprojection error is often used. After the keyframe selection and 

triangulation, errors still remain. Local bundle adjustment (local 

BA), one of the nonlinear optimization techniques, for the last 

acquired frames is widely used. Here, BA aims to minimize 

reprojection errors. Through the process, local drift errors of 

camera poses are corrected. 

 

2.2.3 Global optimization: Global optimization is a step in 

which the entire camera pose wants to remain optimal based on 

long-term camera positioning. The remaining noises (errors) still 

affect camera pose decisions. To explain the uncertainties of 

camera poses from the previous estimation, there are linear 

techniques such as Kalman Filter, Particle Filter, and non-linear 

techniques such as pose-graph and BA. A method based on pose-

graph and BA is often used in SLAM to maintain the optimality 

of camera poses while maintaining the efficiency of the operation 

time. Loop closing detection, which detects the starting point of 

a loop at the last point of the loop, and keyframe are elements for 

the optimization. After pose-graph optimization, global BA can 

be applied in the gross. The final results of SLAM are a map of 

the surrounding environment and a frame trajectory. In this study, 

information about camera poses (frame trajectories) is used for 

SfM. 

 

 

2.3 Structure from Motion 

SfM is a process of 3D reconstruction of objects from the motion 

of the camera. In particular, SfM, as an early stage in the 

photogrammetric process, is a major step in determining the 

reliability of 3D reconstruction. SfM takes a substantial amount 

of time for feature correspondence because it aims to match more 

features, for high-precision mapping, than visual SLAM that 

solves a real-time problem. The process in SfM, similarly in 

SLAM, consists of 1) feature correspondences, 2) relative 

orientation of images and 3) multi-view stereo to cover the whole 

surface of the objects and make higher precision of 3D 

reconstruction (Figure 1). 

 

2.3.1 Feature correspondence: SIFT is a key technique to 

match features in SfM. In visual SLAM, feature detection and 

description were operated by separate algorithms, but SIFT has 

both detection and description parts. In particular, for scale, SIFT 

solves the problem by building a pyramid structure that includes 

multi-scale images. SIFT descriptor contains a solution to the 

problem of rotated images. Before setting the feature description, 

the algorithm obtains a gradient histogram of the pixel set. In this 

histogram, it finds the direction with the greatest value as the 

dominant orientation. One way to solve the feature 

correspondence problem is to check all features as much as 

possible. Another way is to use as many images for SfM as 

possible, given logistical constraints, which is highly 

recommended as this optimizes the ultimate number of keypoint 

matches and system redundancy (Westoby, et al., 2012). 

However, this approach increases computational complexity 

𝑂(𝑁𝐼
2𝑁𝐹𝑖

2 ) , where 𝑁𝐼  is the number of images and 𝑁𝐹𝑖 is the 

number of features (Schönberger, et al., 2016).  

 

2.3.2 Relative orientation: Once the features are matched 

between images, a mathematical solution can determine at which 

orientation the images were taken. Relative orientation starts with 

calculating the essential or fundamental matrix to determine the 

geometric relationship between the two cameras. Typically, 8-

point, 7-point, and 5-point algorithms are known as solutions to 

calculate essential matrices. In case of relative orientation with 

known rotations, the degree of freedom of essential matrix can be 

reduced by two. By reducing the number of unknowns to be 

estimated, the required computation time decreases. There are no 

guarantees that the features extracted in one image at this stage 

are the same for the counterpart image. RANSAC (Fischler, et al., 

1981) in this problem can be used. RANSAC is to sample random 

points, determine them as inliers, set the range of inliers, and 

determine the target points that have many inlier points. Given 

the relative orientation of images, in triangulation, the points in 

3D are computed, where uncertainties of these 3d points are 

obtained. 

 

2.3.3 Multi-view stereo: Multiple images are needed to cover 

the whole environment for the estimated poses of all the adjacent 

images. This is to adjust the remaining uncertainties caused by 

long correspondences between images. The standard approach 

for this is BA, where it adjusts orientations, calibration 

parameters, and point locations with initial guess in the previous 

step. All observations and the uncertainties and correlations are 

exploited in BA for the correction. In the aerial bundle 

adjustment, control points are commonly assumed to be provided. 

However, if images without control points are provided, such as 

images taken in an underwater environment, BA corrects the 

geometry up to a similarity transform because the reference 

frame is not defined. Instead, the observations of camera pose 

determined by SLAM is used in this study. 

 

 

3. EXPERIMENTAL RESULTS 

3.1 Experimental Overview 

The purpose of this experiment is to examine how the SLAM 

trajectory insertion influences the 3D reconstruction results of 

underwater images that have multiple visual disturbances. The 

aqualoc dataset provided by http://www.lirmm.fr/aqualoc/ 
is an underwater dataset to contribute to the localization of 

underwater vehicles for navigating close to the seabed (Ferrera 

et al, 2019b). Two sequences of the total 17 sequences provided 

from the aqualoc dataset were selected, which shows frequent 

visual disturbances at different depths.  The sequence of A and 
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B are divided again according to the following conditions: the 

number of key point limit which means the upper limit of key 

points for each image, the number of images for the same video, 

and whether to process 3D reconstruction with the trajectory 

from visual SLAM. At the different settings for the experiment, 

we compare the results of SfM by the number of cloud points, 

SfM processing time, number of matched images/total images, 

and mean reprojection errors. Furthermore, dense point clouds 

of SfM are used for analyzing the quality of 3D reconstruction. 

 
3.2 Description of Dataset and Experimental Method 

3.2.1 Dataset: Archaeological site #2 (A) and #8 (B) acquired 

by the same camera sensor include visual disturbances such as 

turbidity, backscattering, sandy clouds, and dynamics around 

270m and 390m depth. Most of the images in site #2 (A) include 

homogeneous textures of the seabed. In particular, site #2 (A) has 

a greater degree of disturbances than site #8 (B), making it 

difficult to perform feature correspondences for SLAM and SfM. 

In site #8 (B), amphorae are stacked in piles, which gives 

sufficient features, but, in the rest of them, uniform textures of 

the seabed come into the sight.  

The camera for acquiring the dataset has a resolution of 

986×604px and monochromatic images. The duration of videos 

is over 7’ 30’’ and under 8’ 00’’. The data description is in table 

1, and the samples are shown in figure 2. 

 

 
Archaeological site 

#2 (A) 

Archaeological site 

#8 (B) 

Depth ≈270m ≈380m 

Resolution 986×604px 

Focal length 6mm 

Duration 7’29’’ 7’49’’ 

Visual 

disturbances 

turbidity, 

backscattering, 

sandy clouds 

dynamics 

turbidity, 

backscattering, 

dynamics 

Table 1. Data description of archaeological site #2 and #8 

 

 

 
 

 
Figure 2. Samples of archaeological site #2 (top) and #8 

(bottom)  

3.2.2 Experimental method: The experiment set four 

conditions according to the following reasons. For A-1, a key 

point limit of 80,000 set as a default setting of SfM. The higher 

key point limit of 140,000 set for A-2 to see the quality of SfM 

by extracting more features. The number of images for A-3 sets 

every-half second to increase overlap, while the images for 3D 

reconstruction of A-1, A-2, and A-4 are extracted from each 

video every second. A-4 is processed with SLAM-determined 

orientations under the condition of 80,000 key point limit and 

every second frame. For B-1, B-2, and B-3, the settings are the 

same as A-1, A-2, and A-3. On the other hand, B-4 uses every 

half-second frame to see how much the result would be improved 

by more images and SLAM-determined orientations. The results 

for each of them were compared with the number of point clouds 

(SfM had generated up to the dense model), processing time, 

number of matched images out of total images, mean reprojection 

errors. The experiment utilized OpenVSLAM for visual SLAM 

and Photoscan (2014) for SfM.  

 

 

3.3 Results of SfM with SLAM 

3.3.1 Results from SfM with SLAM-determined 

orientation: Results of the experiment are shown in Tables 2 and 

3. For A-1 setting 80,000 of key point limit, 245 images out of 

450 images were matched for generating cloud points. 

Comparing A-2 with A-1, increasing the key point limit to 

140,000 resulted in having more cloud points with increasing 

processing time. The number of images of A-3 has almost 

doubled, extracting images every-half second. Thus, cloud points 

have remarkably increased, but the processing time has increased 

nearly four times than A-1. Moreover, a mean reprojection error 

of A-3 has also increased by about 0.07 pixels. On the one hand, 

for A-4 that has the frame trajectories from SLAM, the number 

of cloud points has also increased with minimal increasing time, 

compared to A-1 under the same conditions of the number of 

images and key point limit. Since the feature tracking of 

OpenVSLAM was lost in the middle, 74 locations of images can 

be used in A-4. However, through the results of A-4, the 

trajectory from SLAM efficiently helped to increase the number 

of cloud points with minimal increasing time and almost 

invariant reprojection pixel errors. 

B-1 and B-2 showed similar results as A-1, A-2, producing the 

increased number of clouds points by the different settings for the 

key point limit. Although the number of images was doubled for 

B-3, the number of cloud points did not increase unlike A-3, 

which could implicit that increasing the number of images is not 

always a solution to solve the 3D reconstruction problem for the 

unstable visual environment. Since OpenVSLAM was able to 

process for the whole frames, the entire trajectory was used for 

B-4. The results of B-4 has increased the number of point clouds 

as did A-4. Compared with the B-3, less time, the increased 

matched images, and the increased point clouds have revealed in 

B-4. 
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 Archaeological site #2 (A) 

A-1 A-2 A-3 

A-4 

(with 

SLAM) 

Key point 

limit 
80,000 140,000 80,000 80,000 

Number of 

images 
450 450 899 450 

Matched 

images 

/Total 

images 

245/450 430/450 898/899 435/450 

Number of 

cloud points 
274,634 428,156 478,297 454,925 

SfM 

processing 

time(s) 

13’ 16’’ 18’ 58’’ 69’ 7’’ 16’ 6’’ 

Mean 

reprojection 

error(px) 

0.3885 0.3796 0.4598 0.3705 

Table 2. Results of SfM with SLAM (with dataset A) 

 

 Archaeological site #8 (B) 

B-1 B-2 B-3 
B-4 (with 

SLAM) 

Key point 

limit 
80000 140000 80000 80000 

Number of 

images 
470 470 940 940 

Matched 

images 

/Total 

images 

368/470 470/470 728/940 835/940 

Number of 

cloud points 
546,956 771,698 606,884 1,772,008 

SfM 

processing 

time 

15’ 27’’ 22’ 39’’ 67’ 32’’ 50’ 3’’ 

Mean 

reprojection 

error(px) 

0.4072 0.4137 0.4727 0.4450 

Table 3. Results of SfM with SLAM (with dataset B) 

 

3.3.2 Dense model of SfM with SLAM-determined 

orientation: The dense model results from dataset A and B are 

shown below. The dense model of A-3 is at the top of figure 3, 

which includes twice images as extracted in every half-second 

from a video. The bottom of figure 3 shows the result of A-4 

reconstructed with SLAM-determined orientation. Since most of 

the frames contained the uniform seabed, the dense model of A-

3 and A-4, outliers, which are assumed as sandy clouds, from A-

3 (downward) are visible compared with A-4. The dense model 

of B-3 and B-4 in figure 4 shows the qualitative 3D 

reconstruction of SfM. Frames from both B-3 and B-4 are 

extracted every-half second, every 10 frames. Point clouds of B-

3 appear to be less dense compared to B-4. B-4 with SLAM-

determined orientation led to the shape of the amphora with a 

clearer curve than B-3. 

 

 

 
Figure 3. Dense models of A-3 (top) and A-4 (bottom) 

 

 
Figure 4. Dense models of B-3 (top) and B-4 (bottom) 
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4. CONCLUSIONS 

A clear visual sight and known orientations of cameras are 

conditions for obtaining high-quality 3D reconstruction of SfM. 

In an underwater environment, visual disturbances and difficult 

usage of GPS/INS deteriorate the 3D reconstruction quality of 

SfM. This study intended to solve the 3D construction problem 

from these problems with SLAM-determined orientations. Visual 

SLAM, a solution to localization and mapping with a visual 

camera, provided frequent positioning decisions for all frames of 

the video, and the frame trajectories applied to SfM. The 

sequence of A and B are selected for this experiment. The two 

sequences were divided under certain conditions: number of 

keypoint limit, number of images for the same video, and whether 

the SLAM-determined orientation is inserted. In the final section, 

through the results of the number of cloud points, SfM processing 

time, and the number of matched images/total images and mean 

reprojection errors, we could see that the insertion of SLAM-

determined orientation increases the number of points and the 

time efficiency. For the future work of this study, visual SLAM 

integrated with IMU and depth sensor, called Visual-inertial 

SLAM, will be combined for underwater 3D reconstruction, and 

the results of point clouds with known scales of objects will be 

included to assess trajectories from just SfM and SfM with 

known orientations of visual SLAM. 
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