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ABSTRACT: 

 

Obtaining accurate image interior and exterior orientations is the key to improve 3D measurement accuracy besides reliable and 

accurate image matching. A majority of cameras used for those tasks are non-metric cameras. Non-metric cameras commonly suffer 

various distortions. Generally, there are two ways to remove these distortions: 1) conducting prior camera calibration in a controlled 

environment; 2) applying self-calibrating bundle adjustment in the application environment. Both approaches have their advantages 

and disadvantages but one thing is common that there is no universal calibration model available so far which can remove all sorts of 

distortions on images and systemic errors of image orientations. Instead of developing additional calibration models for camera 

calibration and self-calibrating adjustment, this paper presents a novel approach which applies self-calibrating bundle adjustment in an 

iterative fashion: after performing a conventional self-calibrating bundle adjustment, the image coordinates of tie points are re-

calculated using the newly obtained self-calibration model coefficients, and the self-calibrating bundle adjustment is applied again in 

the hope that the remaining distortions and systematic errors will be reduced further within next a few iterations. Using a “virtual image” 

concept this iterative approach does not require to resample images or/and re-measure tie points during iterations, only costs a few 

additional iterations computational resource. Several trails under various application environments are conducted using this proposed 

iterative approach and the results indicate that not only the distortions can be reduced further but also image orientations become much 

stable after a few iterations.  
 

 

1. INTRODUCTION 

With the rapid development on digital imaging technology and 

imaging platforms, using stereo photogrammetry technique to 

conduct various 3D measurement and reconstruction becomes a 

popular choice and routine tasks for some applications. For 

example, using non-metric cameras mounted on UAV platforms 

to capture images is now very common for 3D measurement and 

reconstruction. Obtaining accurate image interior and exterior 

orientations is the key to improve 3D measurement accuracy 

besides accurate and reliable image matching (Alsadik, 2016). A 

majority of cameras used for those tasks are non-metric cameras. 

Non-metric cameras commonly suffer planimetric distortions, 

namely radial distortion, decentering distortion and the 

orthogonality and affinity (linear) distortion and so on. Generally, 

there are two ways to remove these distortions: 1) conducting 

prior camera calibration in a controlled environment (Feng, 2002; 
Zhang 2000; Tsai, 1986; Zhang, 2002); 2) applying self-

calibrating bundle adjustment in the application environment 

(Grodecki, Dial, 2003; Fraser et al., 2002; Jacobsen, 2003; 

Borlin et al., 2019). Both approaches have their advantages and 

disadvantages. For example, self-calibrating bundle adjustment 

does not require the cameras to be pre-calibrated therefore the 

calibration tasks can be performed in the application 

environments which is very attractive. Prior camera calibration 

can make the application process easier (bundle adjustment 

without self-calibration) but there are risks that the calibrated 

coefficients may be out-of-date or have been changed due to 

various reasons, and some experimental results show that the 

systematic errors still exist even if the camera distortions have 

been pre-calibrated. 

 

Most applications/software (photogrammetry and computer 

vision packages) prefer to the self-calibrating bundle adjustment 

approach probably because the difficulty or not practical to 

perform prior camera calibration (for example, Pix4Dmapper, 

PhotoScan, Smart3D, VisualSFM). However, there is no 

universal calibration model available so far which can remove 

all sorts of distortions on images and systemic errors of image 

orientations. Various models have been developed in the past. 

Choosing suitable self-calibration models for particular 

applications and environments is a complicated analysis and 

process (Tecklenburg et al., 2014; Jia et al., 2015; Zhao et al., 

2017; Snow et al., 1993; Fraser, 1997; Brown, 1971; Ebner, 

Fritsch, 1986; Gruen, 1996; Gruen, Beyer, 2001). 

 

Instead of developing additional calibration models for camera 

calibration and self-calibrating adjustment, this paper presents a 

novel approach which applies self-calibrating bundle adjustment 

in an iterative fashion: after conducting a conventional self-

calibrating bundle adjustment, the image coordinates of tie 

points are re-calculated using the newly obtained self-calibration 

model coefficients, and the self-calibrating bundle adjustment is 

applied again in the hope that the remaining distortions and 

systematic errors will be reduced further within next a few 

iterations. Using a “virtual image” concept (the image only 

contains geometric extents without any visual information), this 

iterative approach does not require to resample images or/and re-

measure tie points during iterations, only costs a few additional 

iterations computational resource. The details of the proposed 

approach are presented and several trials and results are 

described in the next sections. 

 

2. ITERATIVE APPROACH 

An iterative approach for camera calibration was developed by 

the author and others recently (Wang et al., 2019; Cui et al., 

2018). This approach has been successfully applied to prior 

camera calibration situations – performing camera calibration in 

well control environments with sufficient control points. The 

basic idea was developed further and extended here to provide 

an iterative solution for self-calibrating bundle adjustment to suit 

more broad applications. 
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The main drawback of the conventional self-calibrating bundle 

adjustment (CSCBA) is that only a single self-calibration model 

is employed during the whole exercise. The proposed iterative 

approach for self-calibrating bundle adjustment assumes that 

there are still some considerable errors left after CSCBA and 

those errors can be corrected further using the same or a different 

self-calibration model. The new approach treats CSCBA as its 

units and each CSCBA unit can choose the same or a different 

self-calibration model. The iterative approach is illustrated in 

Figure 1. The current iteration’s results (self-calibration model 

coefficients) are used to calculate the new image coordinates of 

tie points for the next iteration, therefore CSCBA can be applied 

again and again until the criteria of convergences are met. A 

CSCBA unit and “Virtual image coordinates” computation 

complete one iteration cycle. The differences between two 

iterations are the image coordinates of tie points. Normally after 

each iteration, the images need to be resampled and the tie points 

need to be re-measured/matched. However, these labor extensive 

tasks can be eliminated or avoided through the introduction of a 

“virtual image” concept. Instead of actually resampling the input 

image into a new image using the coefficients of the self-

calibration model, only the extents of the new image (so called a 

virtual image) are calculated and only the coordinates of tie 

points on the virtual image are calculated. Using this idea the 

new image coordinates of tie points can be calculated very easily 

and quickly, and most importantly, very accurately, therefore 

makes the iteration approach very efficient. 

 

Assuming after a few iterations, the criteria of convergences are 

met, multiple sets of coefficients of self-calibration models 

together with image orientation parameters have been generated. 

A final resampling process may be required to generate 

distortion-free images. This is achieved through applying the 

above virtual image concept to calculate the image coordinates 

of each pixel on the next virtual image extents until the final 

virtual image extents are reached. Because the final image 

colors/intensities are only to be resampled once therefore the 

iterative approach can maximally preserve the original image 

qualities if the convolution kernel is chosen carefully. 

 
 

 

 
Figure 1. The iterative approach of self-calibrating bundle adjustment with different configurations (CSCBA stands for Conventional 

Self-calibrating Bundle Adjustment and Model means the selected self-calibration model). The left diagram is Iterative Approach 
Configuration One: the different self-calibration models can be applied alternatively among iterations; the right diagram shows Iterative 

Approach Configuration Two: the different self-calibration models can be applied independently in their own iterations. 

 

Various configurations of how CSCBA units fit into the iteration 

scheme can be designed based on how many self-calibration 

models to be used and how complicate they are. Figure 1 shows 

two kinds of configurations which could be commonly adapted. 

In Configuration One different self-calibration models are 

chosen for sequential CSCBA units, while in Configuration Two 

Model A is iterated first until stable, then Model B is iterated 

until the finial satisfied results are derived. For demonstration 

purpose, Australis model (Snow et al., 1993, Fraser, 1997) is 

used as the planimetric distortions self-calibration model 

throughout this paper. Australis model can be briefly described 

using Equation 1. 

 

{

∆𝑥 = �̅�𝑘1𝑟
2 + �̅�𝑘2𝑟

4 + �̅�𝑘3𝑟
6 + 𝑝1(𝑟

2 + 2�̅�2) + 2𝑝2𝑥𝑦̅̅ ̅
+𝑏1�̅� + 𝑏2�̅�

∆𝑦 = �̅�𝑘1𝑟
2 + �̅�𝑘2𝑟

4 + �̅�𝑘3𝑟
6 + 𝑝1(𝑟

2 + 2�̅�2) + 2𝑝2𝑥𝑦̅̅ ̅

 (1) 

 

𝑟 = √(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 = √�̅�2 + �̅�2  

 

where k1, k2, k3 represent the radial distortions, p1, p2 represent 

the decentering distortions and b1, b2 represent the orthogonality 

and affinity (linear) distortions, xo, yo are the image coordinates  

of the principal point, x, y are the image coordinates of any pixel, 

r is the radial distance (from the principal point). 
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For non-metric cameras, the focal length and the principal point 

are usually unknown. Those three coefficients are estimated 

using an interior calibration model. 

 

Besides self-calibration model coefficients, the six image 

exterior orientation parameters can be estimated simultaneously. 

If the tie points’ spatial coordinates are also going to be estimated, 

the unknowns can be sorted into two groups and solved in an 

alternative fashion to avoid huge matrix handling during the 

computation process. 

 

There are some flexible options in the iterative approach worth 

to be mentioned: 

1. Self-calibration model can be the same or different in 

each iteration cycle (Iterative Approach Configuration One 

in Figure 1);  

2. Different self-calibration models or part of the 

coefficients can be applied separately and multiple iterative 

solutions can be integrated into one solution (Iterative 

Approach Configuration Two in Figure 1). This is 

particularly worthwhile for some situations where the self-

calibration model coefficients could be highly correlated. 

For example, it was our experience that interior orientation 

parameters are highly correlated to some Australis model 

coefficients if all of them are put into one model. In the 

following experiments, the interior orientation model is 

applied independently first and Australis model is applied 

afterwards; 

3. The iterative approach suits both controlled network 

or free network (only free networks were tested in the 

following experiments); 

4. Outlier detection and robust estimate techniques could 

be implemented during iterations (for simplicity assumed 

no outliers in the following experiments). 

 

3. RESULTS 

In order to demonstrate the effectiveness of the proposed 

iterative self-calibrating bundle adjustment method, three trials 

were conducted. The camera information and image parameters 

are listed in Table 1. Trail A is a close-range photogrammetric 

application using a Canon EOS 5Dr full-frame DSLR camera; 

Trial B is an underwater close-range photogrammetric 

application using a GOPRO HEREO 5 BLACK camera; and 

Trial C is an aerial photogrammetric application using a SONY 

RX1R full-frame DSLR camera mounted on a UAV platform.  

 

Because all three cameras are non-metric cameras, besides the 

planimetric distortions need to be removed, the interior 

orientation (the focal length, the principal point) also need to be 

estimated. From author’s experiences, it’s better to separate the 

interior orientation estimate from the planimetric distortions 

estimate, therefore, the Iterative Approach Configuration Two 

(see Figure 1) is employed in all three trials: the interior 

orientation model (this model includes three parameters: the 

corrections of focal length, the image coordinates of the 

principal point, df, dxo, dyo) was applied in the first iterative 

solution, then the planimetric distortions model (Australis model, 

coefficients are k1, k2, k3, p1, p2, b1, b2) was applied afterwards. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Table 1. Camera information and image parameters of three trials 
 

3.1 Trail A 

Trail A use the camera of Canon EOS 5Dr, the camera 

information and image parameters are listed in Table 1. A 

consecutive relative orientation was initially performed to link 

all images together and using relative orientation results as the 

initial values for the bundle adjustment. The iterative approach 

firstly applies to obtain the interior parameters. The corrections 

of interior orientation parameters (df, dxo, dyo) and the root of 

mean squares (σ) in each iteration are shown in Table 2. It can 

be seen that after 5 iterations, the root of mean squares σ reaches 

0.11 pixel, comparing to 49.10 pixels if only one iteration is 

applied (conventional method). The lines in Figure 2 clearly 

show that the corrections of interior orientation parameters trend 

to be very small and stable after 5 iterations. 

 

The iterative approach then employed Australis model to 

estimate the planimetric distortions coefficients (k1, k2, k3, p1, p2, 

b1, b2) together with final image exterior orientation parameters. 

The planimetric distortions coefficients and the root of mean 

squares (σ) are shown in Table 3 and Figure 3. The lines in Figure 

2 clearly show that the planimetric distortions coefficients trend 

to be very small and stable after 6 iterations. The results of this 

example successfully demonstrated that using a combination of 

two self-calibration models in the proposed iterative approach 

can adequately remove image distortions and recover the focal 

length and the principal. 

 

Iteration 1 2 3 4 5 

σ (pixel) 49.10 9.43 4.24 2.04 0.11 

df (mm) 3.72E-01 -3.32E-02 -1.90E-02 -1.22E-02 -6.78E-04 

dx0 (mm) 7.05E-02 -8.36E-04 -2.70E-03 -3.30E-03 -2.70E-04 

dy0 (mm) -6.36E-02 3.76E-02 1.58E-02 5.65E-03 2.72E-04 

 

Table 2. The corrections of interior orientation parameters of Trail A 
 

 

Trial 

Name 
Camera 

Focal Length 

(mm) 

Image Size 

(pixel) 

Number of 

Images 

Distance to 

Objects 

(meter) 

Application Description 

A 
Cannon 

EOS 5Dr 
24 8688×5792 8 1.50 

Close-range 3D 

reconstruction 

B 

GOPRO 

HERO 5 

BLACK 

3.6 4000×3000 4 0.50 
Underwater close-range 

photogrammetry  

C 
SONY 
RX1R 

35 6000×4000 6 200.00 
3D building reconstruction 
using a UAV platform 
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Figure 2. Changes of σ and the corrections of interior orientation parameters of Trial A. 

 

Iteration 1 2 3 4 5 6 

σ (pixel) 1.99 1.33 0.79 0.62 0.40 0.33 

k1(mm) -6.23E-06 -2.29E-06 -1.30E-06 -9.67E-07 -6.54E-07 -5.16E-07 

k2 (mm) 9.60E-09 9.00E-10 0.00E+00 -1E-10 -1E-10 -1E-10 

k3 (mm) 0 0 0 0 0 0 

P1 (mm) -1.22E-06 -5.62E-06 -3.54E-06 -2.96E-06 -1.92E-06 -1.64E-06 

P2 (mm) 5.72E-06 7.61E-06 1.95E-06 3.50E-07 -8.17E-07 -9.98E-07 

b1 (mm) 5.69E-05 8.36E-06 2.09E-05 1.88E-05 1.83E-05 1.27E-05 

b2 (mm) 2.04E-06 -2.95E-05 -2.85E-05 -2.55E-05 -7.94E-06 -8.28E-06 
 

Table 3. The planimetric distortion coefficients (Australis Model) of Trial A 

 

 
Figure 3. Changes of σ and planimetric distortion coefficients of Trial A. 

 

Although those 120 tie points in Trial A have accurate spatial 

coordinates pre-measured using a total station (with accuracy 

about 2mm), the above exercise deliberately avoided to use 

control information during the process, only performed the free 

network adjustment. In order to check the absolute spatial 

accuracies in each iteration, those 120 tie points’ spatial 

coordinates (free networks) were transformed into the absolute 

coordinate system (controlled network) and the statistical 

comparisons are listed in Table 4. The RMS of coordinate spatial 

discrepancies (dXYZ) and mean values of those tie points clearly 

show the improvement after each iteration. 

 

Iteration 1 2 3 4 5 6 

Mean (mm) 0.91 0.73 0.60 0.50 0.44 0.39 

dXYZ (mm) 5.29 4.67 4.23 3.93 3.74 3.59 

 

Table 4. The absolute spatial accuracies of each iteration of Trial A 

 

3.2 Trial B 

In order to illustrate the possible broad applications of the 

proposed iterative approach, GOPRO HERO 5 BLACK camera 

was chosen for an underwater close-range stereo measurement 

application in Trial B. The camera information and image 

parameters are listed in Table 1. The procedure is exactly the 

same as Trial A (except no control points to be compared). The 

corrections of interior orientation parameters are shown in Table 

5, and changes of those parameters are shown Figure 4. Table 6 

and Figure 5 show the results of planimetric distortions 

coefficients (Australis model). In both iterative processes, the 

agreed solutions were reached after 4 iterations.   
 

Iteration  1 2 3 4 

σ (pixel) 5.21 1.79 2.32 0.19 

df (mm) -2.26E-03 -1.42E-03 -1.54E-03 -1.26E-04 

dx0 (mm) 2.31E-03 -2.14E-03 -2.73E-03 -2.24E-04 

dy0 (mm) 7.48E-03 -1.29E-03 -1.85E-03 -1.56E-04 

 
Table 5. The corrections of interior orientation parameters of Trail B 
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Figure 4. Changes of σ and the corrections of interior orientation parameters 

of Trial B. 

Iteration 1 2 3 4 

σ (pixel) 3.42 0.91 0.08 0.05 

k1(mm) -1.89E-03 -3.95E-04 -1.42E-05 -7.49E-06 

k2 (mm) 1.46E-04 6.78E-05 2.09E-06 1.04E-06 

k3 (mm) 4.63E-06 -3.74E-06 -1.19E-07 -5.83E-08 

P1 (mm) 1.18E-04 8.96E-05 9.06E-06 5.43E-06 

P2 (mm) 1.51E-04 -1.13E-05 -2.17E-06 -1.30E-06 

b1 (mm) 3.49E-03 6.69E-04 3.49E-05 1.97E-05 

b2 (mm) 5.91E-04 5.62E-04 5.67E-05 3.41E-05 

Table 6. The planimetric distortion coefficients (Australis Model) of Trial B 

Figure 5. Changes of σ and planimetric distortion coefficients of Trial B. 

Even in underwater environment, the results clearly 

demonstrated iterative approach’s effectiveness. 

3.3 Trial C 

The third experiment is a kind of common aerial 

photogrammetric application. In Trial C, 6 aerial consecutive 

stereo images were extracted from a survey, which were captured 

using a UAV. The camera information and image parameters are 

listed in Table 1. The procedure is exactly the same as Trial B. 

The corrections of interior orientation parameters are shown in 

Table 7, and changes of those parameters are shown Figure 6. 

Table 8 shows the results of planimetric distortions coefficients 

(Australis model). It is worth to mention that among three 

cameras used, the camera used in Trial C seems less distorted 

and this evidence was demonstrated through the results listed in 

Table 8 where the convergence criteria was met just after 2 

iterations. 

Iteration 1 2 3 4 

σ (pixel) 22.26 1.38 0.08 0.01 

df (mm) 2.19E-01 4.41E-03 1.94E-04 1.64E-05 

dx0 (mm) -9.63E-02 -5.67E-03 -4.15E-04 -2.84E-05 

dy0 (mm) -5.41E-02 5.78E-03 2.76E-04 1.86E-05 

Table 7. The corrections of interior orientation parameters of Trail C 

Figure 6. Changes of σ and the corrections of interior orientation 

parameters of Trial C 

Iteration 1 2 

σ (pixel) 0.67 0.12 

k1(mm) 8.75E-06 5.82E-07 

k2 (mm) -3.32E-08 -7.10E-09 

k3 (mm) 0 0 

P1 (mm) 3.06E-06 -8.04E-07 

P2 (mm) -2.43E-06 -4.62E-07 

b1 (mm) -4.12E-04 -6.32E-05 

b2 (mm) 7.42E-06 2.98E-05 

Table 8. The planimetric distortion coefficients (Australis Model) of Trial C
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4. CONCLUSION

Instead of developing additional models for camera calibration 

and self-calibrating adjustment, or evaluating and making 

complicate decisions on choosing suitable models for certain 

applications, this paper proposes a novel iterative approach for 

self-calibrating bundle adjustment. The proposed iterative 

approach treats the conventional self-calibrating bundle 

adjustment as its units and each unit can choose its own self-

calibration model to form some flexible configurations for 

various requirements. The results from several experiments 

demonstrated that the proposed iterative approach can 

effectively and efficiently improve the accuracies of 

conventional self-calibrating bundle adjustment and stabilize the 

results within a few iterations. Although the idea and 

implementation of the proposed iterative approach is relatively 

simple and easy, it could avoid the complication of choosing 

self-calibration models and improve the triangulation accuracy. 

It is believed that better and stable accuracies of bundle 

adjustment could be obtained if the proposed iterative approach 

were adapted by existing self-calibrating bundle adjustment 

algorithms. The further development includes testing a large 

amount of images, detecting/removing outliers and automating 

the process further. 
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