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ABSTRACT: 

 

Large-scale Digital Surface Model (DSM) generated with high-resolution satellite images (HRSI) are comparable, cheaper, and more 

accessible when comparing to Light Detection and Ranging (LiDAR) data and aerial remotely sensed images. Several photogrammetric 

commercial/open-source software packages are being developed for satellite image-based 3D reconstruction, in which, most of them 

adopt a modified version of Semi-Global Matching (SGM) algorithm for dense image matching. With the continuous development of 

matching cost computation methods, the existing methods can be divided into classical (low-level) and learning-based algorithms (non-

end-to-end learning and end-to-end learning methods). On Middlebury and KITTI datasets, learning-based algorithms has shown their 

superiority compared to SGM derived methods. In this context, we assume that matching cost is the key factor of DIM. This paper 

reviews and evaluates Census Transform, and MC-CNN on a WorldView-3 typical city scene satellite stereo images on the premise 

that the overall SGM framework remains unchanged, providing a preliminary comparison for academic and industrial. We first 

compute the cost valume of these two methods, obtains the final DSM after semi-global optimization, and compares their gemetric 

accuracy with the corresponding LiDAR derived ground truth. We presented our comparison and findings in the experimental section. 

 

 

1. INTRODUCTION 

Everything moves. However, with the development of 

photogrammetry and computer vision, we can achieve roaming 

in the four-dimensional world (three-dimensional physical world 

with the time dimension). Benefit from the revolution of satellite 

sensors and orbit revisit technology, more and more high-

resolution Earth Observation Satellites have been launched, such 

as the WorldView series from the United States, the Pléiades 

series from France, SuperView-1, and the Gaofen series from 

China. Dense image matching (DIM) leverage the growing 

numbers of high-resolution satellite images to generate large-

scale usable 2.5/3D/4D (3D with the time dimension) the Earth’s 

surface models, which fueling remote sensing applications in a 

variety of domains, such as ecological monitoring, city-scale 

3D/4D modeling, urban planning and monitoring, and navigation 

(Gruen, 2012; Haala & Kada, 2010).  

Dense image matching (DIM) algorithms aim to find the pixel-

wise correspondences between two or more epipolar images. 

Matching costs evaluate the similarity of two pixels in the stereo 

images, which is the very first and important step for dense image 

matching. The result after matching cost computation is cost 

volumes, where the z-axis contains the cost value over the whole 

disparity range, while the x and y-axis depict the image 

coordinates. Given the fact that the geometric and radiation 

condition changes exist in the considered stereo, which makes the 
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images no longer meet the luminosity consistency condition, and 

the complexity of the features of the Earth’s surface brings great 

challenges to the matching cost computation. Shadows, moving 

objects, “soft” vegetation canopies, and texture-less regions also 

challenge the results of dense image matching methods. Other 

challenges include effects caused by view difference and 

parameter configuration for various scenarios. These will lead to 

poor matchablility for low-level matching cost, and generally 

reduce the accuracy of the matched points cloud and DSM 

products(Han, Liu, et al., 2020; Han, Wang, et al., 2020). An 

algorithm computing Matching Cost based on Convolutional 

Neural Networks (MC-CNN) is proposed recently (Zbontar & 

Lecun, 2015, 2016), based on the appearance similarity of stereo 

image patches and outperforms many previous methods on 

KITTI2012 (Geiger et al., 2013), KITTI 2015 (Menze and Geiger, 

2015), and Middlebury (Scharstein and Szeliski, 2002, 2003; 

Scharstein and Pal, 2007; Hirschmueller and Scharstein, 2009; 

Scharstein et al., 2014) stereo datasets. On the other hand, 

existing works mainly focus on the close-range or aerial frame 

images in the computer vision community, little research on the 

satellite images, given the vast number of pixels for the satellite 

images created a considerable gap between the photogrammetry 

and computer vision community. The orientation parameters are 

provided as Rational Polynomial Coefficients (RPC) files by 

different satellite image vendors, which helps both in hiding the 

physical sensor model and allowing high accurate mapping and 

surveying (Gong, 2003; Gong et al., 2020). 
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This paper reviewed both classical and learning based matching 

cost computation methods for dense image matching with high-

resolution satellite images. Related works are analyzed in Section 

2. Section 3 gives the details on the experimental dataset and the 

methodology. We did the experiments and gave the analysis in 

Section 4. Last but not least, Section 5 concludes this paper. 

2. RELATED WORKS 

2.1 Dense Image Matching (DIM) or Light Detection and 

Ranging (LiDAR)? 

Gone are the days when laser scanning sensors, both airborne and 

terrestrial, provided the fundamental point clouds in the past two 

decades, photogrammetric dense image matching can deliver 

comparable dense and detailed 3D point clouds these days, 

thanks to the significant investigations in both photogrammetry 

and computer vision, which have contributed to the current 

automatic dense image matching methods; examples are feature 

detection/ matching algorithms (Bay et al., 2006; Förstner & 

Gülch, 1987; Harris & Stephens, 1988; Lowe, 2004); bundle 

adjustment (Gruen & Beyer, 2001; Hartley & Zisserman, 2003); 

and dense image matching (DIM) (Heiko Hirschmüller & 

Scharstein, 2009; Scharstein et al., 2014; Scharstein & Szeliski, 

2002).  

 

LiDAR sensors, although lighter and cheaper than decades ago, 

are still relatively expensive for large-scale 2.5D/3D/4D 

modeling, mapping compared to photogrammetric sensors. High-

resolution Earth Observation Satellites made it possible for 

surveying and mapping in the case of without a flight permit, or 

inaccessible places. 

 

2.2 Dense Image Matching Cost Computation 

Almost all the present photogrammetric pipeline implemented 

these components aforementioned in Section 2.1, and DIM might 

be the most challenging part. Dense image matching aims to find 

pixel-wise correspondences between stereo images to recover the 

scene depth information. In the past decades, DIM methods have 

been facing unprecedented development. Many algorithms were 

developed and adopted both in the photogrammetry and 

computer vision community, examples include, multi-image 

matching (Zhang, 2005), dynamic programming (Van 

Meerbergen et al., 2002), semi-global matching (H. Hirschmüller, 

2005; Heiko Hirschmüller, 2008), patch-based matching 

(Furukawa & Ponce, 2010, 2012), and deep learning-based stereo 

matching (Zbontar & Lecun, 2015, 2016).  

 

The Semi-global Matching algorithm was designed one decade 

ago, implemented in several commercial/open-source software 

packages and outperformed most of the existing DIM methods 

when considering both accuracy and efficiency (Han, Qin, et al., 

2020). However, with different matching cost computation 

method adopted, the result of SGM vary dramatically. Different 

matching costs evaluate the similarity of two pixels in the stereo 

images, which is the very first and important step for dense image 

matching. Typical examples are Census transform and MC-CNN 

for traditional and learning-based matching cost computation 

methods. Hence, in this paper, we evaluate the performance of 

the classical Census transform and exploring the benefits of MC-

CNN, which adopting CNN for large-scale DSM generation. 

 

2.2.1 Census  

Census uses a non-parametric transformation to convert the local 

grayscale difference between the neighborhood pixel and the 

central pixel in the neighbor pixels window 𝛺 (the size of the 

window 𝛺 is 𝑛 × 𝑚, and both 𝑛 and 𝑚 are odd numbers) into a 

string to express the local texture information of the image. This 

string is the Census transform feature descriptor 𝐶𝑆 of the central 

pixel 𝑝(𝑢, 𝑣), as shown in formula (1): 

 

𝐶𝑆(𝑢, 𝑣) ∶=⊗𝑖=−𝑛′
𝑛′

⊗𝑗=−𝑚′
𝑚′

𝜉(𝐼(𝑢, 𝑣), 𝐼(𝑢 + 𝑖, 𝑣 + 𝑗)) (1) 

where, 𝑛′ ≤
𝑛

2
， 𝑚′ ≤

𝑚

2
， and 𝑛′ ∈ 𝑁+, 𝑚′ ∈ 𝑁+ . ⊗ is the 

bitwise concatenation operation of the string, 𝜉(·) is defined by 

formula (2): 

𝜉(𝑥, 𝑦) = {
0   𝑖𝑓 𝑥 ≤ 𝑦
1   𝑖𝑓 𝑥 > 𝑦

 (2) 

Given Census transform uses the relative relationship of the local 

texture information of the image, it can avoid the influence of 

abnormal values such as noise to a certain extent; at the same 

time, it can also obtain relatively ideal results in the disparity 

jump area such as the edge of buildings. The matching cost of the 

Census transform is to calculate the Hamming distance of the 

Census transform values of the center pixels of the two windows 

corresponding to the left and right epipolar images, as shown in 

formula (3): 

𝐶(𝑢, 𝑣, 𝑑) ∶= 𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝐶𝑆𝑙(𝑢, 𝑣), 𝐶𝑆𝑟(𝑢 − 𝑑, 𝑣)) (3) 

We summarised the matching cost computation method based on 

Census transform as Figure 1. 

The Hamming distance is the number of different characters on 

the corresponding bits of the two Census transform feature 

descriptors. The calculation method is to perform an XOR 

 

Figure 1. The matching cost computation based on Census. 
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operation on two Census transformed values, and the number of 

the result string that is not 1 is the Hamming distance of the two 

Census transformed values, that is, the 𝐿1 norm of the string 

XOR operation result, as shown in the formula (4). 

𝜌𝐶𝑒𝑛𝑠𝑢𝑠(𝑓, 𝑔) = |𝐶𝑒𝑛𝑠𝑢𝑠(𝑓) − 𝐶𝑒𝑛𝑠𝑢𝑠(𝑔)|1 (4) 

The range of Hamming distance is [0, 𝑛 × 𝑚], and the size of the 

window 𝛺 is 𝑛 × 𝑚. 

2.2.2 Matching Cost-CNN  

Dense matching based on deep learning is generally divided into 

two strategies: learning only part of the four steps of classic dense 

matching, namely non-end-to-end learning and end-to-end 

learning. The former includes MC-CNN (only used to learn the 

matching cost, as shown in Figure 2, the cost aggregation, left 

and right consistency check, median filtering and bilateral 

filtering and other post-processing steps refer to SGM) and SGM-

Net (in SGM, introduce CNN learning penalty items to solve the 

problem of difficulty in adjusting penalty parameters). It is still 

necessary to introduce artificially designed post-processing steps 

to optimize the matching results for these methods. The end-to-

end learning methods predict the disparity map directly with the 

stereo image, including DispNet (a fully convolutional network 

for disparity map prediction), GC-Net (Geometry and Context 

Network, which uses geometric and semantic information 

between pixels to construct a 3D tensor, Learning disparity maps 

from 3D features) and PSMNet (Pyramid Stereo Matching 

Network, a network composed of spatial pyramid pooling and 

three-dimensional convolutional layers, incorporating global 

background information into stereo matching to achieve 

occlusion areas, untextured areas or repetitions Reliable 

estimation of disparity in texture area). The end-to-end methods 

produce disparity directly, thus we will discuss and compare 

these methods in the future. All learning strategies need to 

prepare tens of millons training data containing epipolar images 

and true disparity values obtained via LiDAR or structured light 

methods for retrain, which also requires more human and 

material support. Thus, in this paper, we adopt the pretrained 

weights from KITTI stereo dataset for MC-CNN in the 

comparison. 

 

Figure 2. The accurate architecture of the MC-CNN. (Zbontar & 

Lecun, 2015, 2016) 

3. DATASET AND METHODOLOGIES 

In our experiments, a 1×1 km2 area of interest with complicated 

ground object classes is focused on, charactered with the elevated 

road/bridge, low-rise residential buildings, high-rise buildings 

are selected. The satellite images and corresponding ground truth 

LiDAR data are covering this region created for the Creation of 

Operationally Realistic 3D Environment, CORE3D (Marc Bosch 

et al., 2016; M Bosch et al., 2017). WorldView-3 satellite 

imagery is provided courtesy of DigitalGlobe, and HSIP provides 

ground truth LiDAR. As shown in Figure 3, there exist 26 

WorldView-3 satellite images collected between 2014 and 2016, 

and 1 WorldView-2 satellite images collected in 2010 covering 

100 km2 area in Jacksonville, Florida. The ground sampling 

distance (GSD) of the panchromatic images is approximate 0.3 

m. The reference DSM at 0.3 m GSD is generated from the 

LiDAR data as the ground truth. The ground truth DSM in this 

paper is shown in Figure 1(middle). 

 

 

 

 
Figure 3. Overview of the 1 WorldView-2 and 26 WorldView-3 

images in two years (above), and the acquired LiDAR-DSM 

(middle). The imaging time is summarized (bottom). 

The Johns Hopkins University Applied Physics Laboratory and 

the Intelligence Advanced Research Projects Agency (IARPA) 

based on the CORE3D dataset, provided satellite multi-view 

images, aerial LiDAR, and semantic masks for the 2019 IEEE 

Data Fusion Competition The competition data set is called 

grss_dfc_2019 (Contest, 2019). The experimental data in 

subsequent sections comes from this data set. 

 

An area from one WorldView-3 satellite stereo images is selected 

in this paper, as shown in Figure 4. 

  
a. left epipolar image b. right epipolar image 

  
c. Ground Truth covering the 

middle area of the left epipolar 

d. Semantic mask covering the 

middle area of the left epipolar 

Figure 4. Epipolar images generated from the selected 

WorldView-3 Stereo Image and corresponding ground truth 

DSM and the Semantic mask provided in the CORE3D dataset 
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The experiment is designed to compare the performance of 

Census with 9x9 window size and MC-CNN with pre-trained 

weights from KITTI stereo dataset for matching cost comparison. 

We take the epipolar images and corresponding RPC file as the 

input, the matching costs are computed by Census and MC-CNN, 

respectively. Then, semi-global optimization is adopted on these 

cost valumes to compute the disparity image. At last, the 

computed disparity maps are further triangulated to produce 

DSMs for the fact that DSM is the usable product in practice. 

 

4. EXPERIMENTS AND RESULTS 

The computed DSMs with both Census and MC-CNN based 

matching cost are shown in Figure 5. The first column in Figure 

5 shows the DSM computed using Census based matching cost 

and SGM, while the second column shows DSM MC-CNN based 

matching cost and SGM. 

Figure 5 shows that the two considered matching costs can 

achieve good digital surface models result in the area of interest, 

including elevated road/bridge, low-to-high buildings. However, 

some mismatches occurred in untextured or weakly textured or 

shadow regions, e.g., roads, building roofs, and building 

boundaries, due to matching uncertainties on these objects. For 

building boundaries, there exists an extension for all the matched 

DSMs when comparing with LiDAR-DSM. 

Moreover, some areas covering with trees (especially the trees in 

the shadow caused by the tall building boundaries) were not well 

reconstructed, due to there existing a time gap between imaging 

and LiDAR acquisition, besides seasonal changes on the 

vegetation areas among temporal images, which caused the high 

matching uncertainty reason. 

   
a. Census based DSM b. MC-CNN based DSM 

Figure 5. Results visualization from considered matching cost 

computation methods. 

For better analysis on the performance of different solutions 

quantitatively, firstly, the ground truth DSM is generated from 

the LiDAR points cloud. Given a matched DSM from one of the 

three latest solutions and the LiDAR-derived gound truth DSM, 

the root means square error (RMSE) of all the pixels on the DSM 

is computed. 

Table 1 shows the RMSEs between the matched DSM and the 

LiDAR ground truth. By comparing each column, it can be seen 

that the DSM generated using MC-CNN based matching cost and 

SGM got a smaller RMSE. 

 

Solution DSMCensus DSMMC-CNN 

RMSE 1.939 1.324 

Table 1. Quantitative analysis between the DSM computed 

from the selected matching cost computation methods and 

the LiDAR-DSM (meter). 

To give a better visual comparison and determine the digital 

surface modeling performance of an individual matching cost 

computation method on specific ground feature, we also 

computed the spatial error distribution maps, as shown in Figure 

6. 

The spatial error distribution indicates the distance between the 

matched DSM with the LiDAR-DSM, where red and blue 

indicate the most considerable distance. It can be seen that the 

DSM computed using MC-CNN fits the LiDAR-DSM better, 

while the Census performs slightly worse. However, blunders can 

be found on the boundary of buildings and vegetation areas. It 

can be seen from the Census-based DSM, that more blunders 

exist on the complicated building area. Errors on the boundary 

areas are caused by the occlusion of objects, which are texture-

less and are challenging for matching. The natural seasonal 

change often causes errors in the vegetation areas. Even with 

recent CNN methods, it is difficult to reconstruct occlusion 

objects. 

 

 
a. Error distribution map of Census based DSM 

 
b. Error distribution map of MC-CNN based DSM 

Figure 6. Error distribution map of the computed DSMs from 

considered matching cost computation methods (red and blue 

indicate the largest distance). 
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5. CONCLUSION 

Matching cost computation in dense image matching is 

challenging due to the complexity of imaging conditions, thus it 

is necessary to compute matching cost as accurately as possible 

as the basis for the final DSM product. Given that learning-based 

algorithms has shown their superiority compared to SGM derived 

methods on Middlebury and KITTI datasets, we assume that 

matching cost is the key factor of DIM. This paper reviews and 

evaluates Census Transform, and MC-CNN on a WorldView-3 

typical city scene satellite stereo images on the premise that the 

overall SGM framework remains unchanged. We first compute 

the cost valume of these two methods, obtains the final DSM after 

semi-global optimization, and compares their gemetric accuracy 

with the corresponding LiDAR derived ground truth. The result 

computed from MC-CNN is based on a pretrained weights from 

KITTI stereo dataset, achieved a better geometric accuracy on the 

selected area, which demonstrates its potential power for dense 

image matching. However, compared with Census, the MC-CNN 

has higher requirements for computer hardware and a longer 

running time. 

 

We will consider more aspects, such as more ground covers, 

more satellite images with different metadata, such as 

intersection angle and solar angles for a better understanding of 

the performance for classical and learning based matching cost 

computation methods in future research. 
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