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ABSTRACT:

Mobile lidar point clouds are commonly used for 3d mapping of road environments as they provide a rich, highly detailed geometric
representation of objects on and around the road. However, raw lidar point clouds lack semantic information about the type of
objects, which is necessary for various applications. Existing methods for the classification of objects in mobile lidar data, including
state of the art deep learning methods, achieve relatively low accuracies, and a primary reason for this under-performance is the
inadequacy of available 3d training samples to sufficiently train deep networks. In this paper, we propose a generative model for
creating synthetic 3d point segments that can aid in improving the classification performance of mobile lidar point clouds. We train
a 3d Adversarial Autoencoder (3dAAE) to generate synthetic point segments that exhibit a high resemblance to and share similar
geometric features with real point segments. We evaluate the performance of a PointNet-like classifier trained with and without the
synthetic point segments. The evaluation results support our hypothesis that training a classifier with training data augmented with
synthetic samples leads to significant improvement in the classification performance. Specifically, our model achieves an F1 score
of 0.94 for vehicles and pedestrians and 1.00 for traffic signs.

1. INTRODUCTION

Mobile Lidar is the primary technology for capturing detailed
3d spatial data of road environments. Point clouds captured
by mobile lidar systems provide an accurate 3d representations
of real-world objects. Such highly detailed 3d representations
are very useful in a variety of applications such as urban plan-
ning, traffic asset inventory, construction and autonomous driv-
ing (Guan et al., 2016). Although mobile lidar point cloud data
provide an accurate geometric representation of the real world,
they lack semantic information that is necessary for most ap-
plications. The common approach to efficient generation of se-
mantic information from point cloud data is segmentation and
classification using supervised machine learning.

The application of supervised machine learning to mobile lidar
point clouds faces a few critical challenges. Mobile lidar data
are characterised by varying point density and gaps in the point
cloud. In addition, most objects appear incomplete in mobile
lidar point cloud data due to the line-of-sight nature of lidar
as well as occlusion (Xia et al., 2021). For example, a tree
might appear in the point cloud without its trunk and only with
leaves and branches, and vehicles are often scanned from one
side only. But, arguably the most critical challenge in the super-
vised classification of mobile lidar data is the lack of adequate
training samples for every object. This is particularly relevant
for the state-of-the-art deep learning methods, which require a
large number of training samples for training. Without adequate
training data, classification is a challenging task for deep net-
works (He et al., 2020). While in other applications of deep
learning with different forms of inputs, such as images and text,
training data is often available in large quantities, the availab-
ility of 3d training data is a significant problem in the case of
point clouds. Manual annotation of point clouds to generate
training data is a challenging task due to the discrete nature of
the point clouds as well as varying point density and incom-
pleteness of point segments. Therefore, techniques that can aid
in the generation of training data become vital for improving

the classification accuracy of point clouds.

This research is the first attempt to explore the application of
synthetic point segments for improving the performance of deep
networks in the classification of mobile lidar data of road en-
vironments. We propose a semi-supervised approach based on
variational autoencoder (VAE) and generative adversarial net-
work (GAN) to generate synthetic point segments from real
point segments obtained from a mobile lidar dataset. We evalu-
ate the classification performance of a PointNet-like classifica-
tion network trained with and without synthetic samples to test
the effectiveness of synthetic samples for accurate classification
of mobile lidar point clouds. Our results indicate that significant
improvement in the classification performance can be achieved
by using synthetic training samples.

2. RELATED WORK

There is a rich body of literature on segmentation and classifica-
tion of point clouds. In this section, we review the most relevant
works on point cloud segmentation and classification as well as
recent works on synthetic data generation.

2.1 Point Cloud Segmentation and Classification

Segmentation and classification are two primary tasks for un-
derstanding 3D point clouds. Segmentation and classification
can be performed separately to partition the point cloud into
point segments representing objects and assigning a class label
to each segment to identify its type. This approach is usually
referred to as segment-based (or instance) classification. Al-
ternatively, the two tasks of segmentation and classification can
be combined into one process where every point in the point
cloud is assigned a specific segment and class label. This is
commonly referred to as semantic segmentation. In the follow-
ing we review the related literature on these two approaches.
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2.1.1 Segment-based Classification Segment-based classi-
fication methods involve an initial segmentation of the point
cloud followed by the classification of individual segments
(Khoshelham et al., 2013, He et al., 2020). Compared to im-
ages with a regular structure of pixels, applying deep learning
methods to point segments is more challenging due to the irreg-
ular distribution of the points (Bello et al., 2020). To overcome
this challenge, some deep learning methods use an indirect ap-
proach which involves processing the raw point clouds into reg-
ular structures for feature extraction. These transformations
aid the convolutional operations to process the point clouds,
like regular input data formats, and segment them into differ-
ent clusters. Indirect methods can be broadly categorised as
voxel-based and multi-view based. Voxel-based methods, such
as VoxNet (Maturana and Scherer, 2015), pre-process point
clouds to 3D voxel structures that perform feature extraction
using 3d kernels. Whereas multi-view based methods, such as
VMCNN (Qi et al., 2016) and MVCNN (Su et al., 2015), con-
vert point segments to a collection of 2D image representations.
Indirect methods offer good classification accuracy; however,
they have several limitations. The pre-processing of lidar data
into a regular structure involves additional computation. Point
cloud voxelisation appends additional information to the raw
data, which increases the computational complexity of the net-
work. The transformations can increase the number of voxel
grids in point segments, thereby increasing memory consump-
tion (Maturana and Scherer, 2015). To improve the computation
time, one can generate fewer voxel grids but this could lead
to critical information loss. Due to the limitations of indirect
methods, we explore the direct 3D deep learning methods.

2.1.2 Semantic Segmentation The direct semantic seg-
mentation techniques process the raw point clouds without any
intermediate transformations. PointNet (Qi et al., 2017) is the
first popular network architecture that directly processes the raw
point clouds (Bello et al., 2020). Several other networks (Luo
et al., 2020a, Luo et al., 2020b, Luo et al., 2021, Li et al., 2018,
Wu et al., 2019) use the PointNet architecture as a base network
and propose improvements. The PointNet network has specific
modules that make the processing invariant to point permutation
and geometric transformations. The network learns to assign a
class label either to every individual point in the point cloud,
for semantic segmentation, or an entire segment, for segment-
based classification (Qi et al., 2017).

PointNet has several advantages over the indirect deep learning
methods with respect to space and time complexity. As Point-
Net directly processes every point, the time complexity is O(n).
Other methods based on multi-view representation have a time
complexity of O(n2), whereas those involving volumetric rep-
resentations have a time complexity of O(n3) (Qi et al., 2017).

2.2 Synthetic Data Generation

Synthetic data is artificial data that possess characteristics or
properties similar to original data. The idea of synthetic data
in machine learning is to generate synthetic training samples
that resemble real samples and share similar features with real
data. Synthetic samples are particularly useful for 3D deep
neural networks which require an adequate amount of data to
train and classify objects effectively. Since manual labelling
of mobile lidar data is time-consuming, synthetic samples can
result in faster and cheaper data generation and more accurate
classification of point clouds. Generative networks are a pop-
ular choice for creating artificial data with a feature distribu-
tion similar to that of the original data. We explore generative

models, such as the Variational Autoencoders (VAE) and Gen-
erative Adversarial Networks (GANs), for producing synthetic
point segments.

2.2.1 Generative Adversarial Networks (GANs) GANs
are deep neural networks that comprise two modules, gener-
ator and discriminator, which compete against one another to
generate an output that satisfies certain conditions (Goodfel-
low et al., 2014). These internal neural network components
ensure that the generated samples have a distribution close to
the original real samples. The generator is often an autoen-
coder which encodes the original data into a lower-dimensional
representation and reconstructs the original data from the com-
pressed low-dimensional representation. The low-dimensional
representation in the latent space captures the significant fea-
tures of the original data. However, an autoencoder generates
reconstructed copies of the input real samples, whereas for our
task we require synthetic variations of the real samples. This
requires learning the feature distribution of real samples.

2.2.2 Learning Data Distributions Variational Autoen-
coders (Kingma and Welling, 2013) are generative models that
generate synthetic data by learning the distribution of features
using a loss function. The VAE architecture also consists of two
components, namely the encoder and decoder. The encoder is
a neural network that compresses the input to a lower dimen-
sional vector. On the other hand, the decoder network tries to
reconstruct copies of the input from the compressed vector by
sampling from learned feature distribution. Therefore the de-
coder network can generate instances from a distribution sim-
ilar to the original data (Kingma and Welling, 2013).

VAEs are suitable for generating variational samples; however,
they do have limitations. Firstly, VAEs use the normal dis-
tribution as prior with a zero mean and unit variance. The
normal distribution helps the regularisation parameter, KL di-
vergence, in the loss function to be tractable (Zamorski et al.,
2019). Therefore we cannot use any other distribution, such
as Bernoulli. Secondly, there is a possibility that the explod-
ing latent space problem due to a restrictive model causes bad
sampling ability (Braithwaite and Kleijn, 2018).

Due to the shortcomings of the VAE, Adversarial Autoencoders
(AAE) (Makhzani et al., 2015) that use the Jensen-Shannon di-
vergence as the regularisation term have been preferred for the
generation of synthetic samples. AAEs can be trained with any
distribution as the prior. The AAE architecture consists of a
variational autoencoder as the generator and a binary classifier
as the discriminator. The generator learns a probabilistic latent
representation of real samples, which can be sampled to gener-
ate synthetic samples. The training aims to minimise the recon-
struction error and at the same time enforce the latent variables
to form a prior distribution. This is achieved by defining a train-
ing loss function that combines a reconstruction error term with
a regularisation term that represents the distance between the
learned distribution and the prior (Makhzani et al., 2015).

3. METHODOLOGY

3.1 Combining Geometrically Similar Categories

Our objective is to study and improve the classification of mo-
bile lidar objects in a roadside environment. Therefore, we use
the Sydney Urban Dataset, a mobile lidar dataset captured in
Sydney inner suburbs, as the original real dataset. We club
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the objects with similar geometric representations, such as cars,
buses, vans clubbed together into vehicles. Traffic lights and
traffic signs are clubbed together, and pedestrians are separated.
Therefore, we have three classes in our Sydney dataset, namely
vehicles, pedestrians, traffic symbols as seen in Table 1.

3.2 Synthetic Point Segment Generation using 3dAAE

To generate synthetic samples from the original point segments,
we propose a workflow illustrated in Figure 1. We train a
3d adversarial autoencoder (3dAAE) to create synthetic point
segments similar to the real data distribution based on the
3dAAE of (Zamorski et al., 2019). To adequately train the
3dAAE, we apply data augmentation techniques to increase
our dataset by a factor of 30. Data augmentation gives the
classification network a new perception of the same points
permutated in the 3d space. Data augmentation helps the model
to generalise the training data and improve the performance
(Yang et al., 2018). We apply rotation around the z-axis to the
point segments in 10-degree intervals and add jitter to slightly
displace the points.

Figure 1. Architecture of 3dAAE

The encoder of our 3dAAE network has two roles during the
training: First, it encodes the original point segments into a
lower dimension embedding in the training phase. Second,
it acts as a generator during the GAN stage of the training.
The 3dAAE is trained in two phases: In phase one, the re-
construction phase, the AAE works as a simple autoencoder,
focusing on generating highly-reliable reconstructed point seg-
ments that are as close to the original point segments, using the
compressed vector embeddings. In the second phase, the reg-
ularisation phase, the GAN comes into effect and imposes the
Jensen-Shannon divergence (JSD) as shown in the GAN flow
of Figure 1. The JSD ensures that the distribution of the latent
embeddings is close to the distribution of the original dataset
(Goodfellow et al., 2014). Following the training procedure de-
scribed in (Zamorski et al., 2019), the parameters of encoder
and discriminator are updated alternately.

The resulting initial synthetic samples may not necessarily re-
semble the actual samples. Therefore, they are fed to a dis-
criminator, which is a binary classifier that tries to discern syn-
thetic samples from the real ones. The training aims to min-
imise the reconstruction error while maximising the confusion
between the real and the synthetic point cloud instances. Con-
sequently, the 3dAAE network learns to generate variational
synthetic samples that resemble actual point segments of the
Sydney dataset.

3.3 Point Segment Classification using PointNet

PointNet consists of multiple fully-connected layers that extract
the global features of a point cloud segment and two trans-

formation networks for input and feature transformations. As
point clouds do not have a structured grid-like structure, con-
volutional operations are challenging. PointNet uses the multi-
layered perceptron (MLP) for feature extraction from raw point
clouds. The MLPs are connected to a Max pooling layer that
aggregates the global and local features from all the segment
points. The Max pooling layer is a symmetric function that ac-
cepts several vector inputs and outputs a new vector invariant
to the order of the inputs. The aggregated features of the point
cloud are then passed to an MLP for classification (Qi et al.,
2017).

We apply the mean squared error (MSE) loss function, which
gives better classification results than multi-class cross-entropy
loss, to measure the classification error between the predicted
and ground-truth labels of input point segments. Hence, we
formulate the classification loss as:

MSE =

∑n
i=1 (yi − ŷi)

2

n
(1)

where yi denotes the ground-truth one-hot encoded vector, ŷi
denotes the predicted one-hot encoded vector and n denotes the
number of point segment samples.

4. EXPERIMENTS

4.1 Training Setup

We use the Sydney Urban Dataset, which contains labelled
point segments captured by mobile lidar, for training and test-
ing. We club the categories that are geometrically similar to
obtain three main categories: vehicles, pedestrians, and traffic
signs. We split the data for every point cloud category in an
80%-20% split for training and testing respectively. From the
training data, we split another 5% as validation samples, to
monitor the training phase. Most of our point segments have
1024 points, but some instances may have fewer. Therefore,
we implement zero padding for instances with fewer points, to
ensure all segments have the same size.

4.2 Baseline Classification

We perform a baseline classification on the Sydney dataset
without performing any preprocessing or data augmentation
techniques on the raw point cloud segments. Table 1 sum-
marises the number of real training and test samples obtained
from Sydney dataset. Our classifier is a PointNet-like network
trained by minimising the MSE loss (Eq. 1). We use the rec-
tified linear unit (ReLU) as our activation function during the
convolution and feature transformation.

Class Labels Training Samples Test Samples
Veh. 119 34
Ped. 118 31
Tra. 70 21
Total 307 86

Table 1. Overview of real training and test samples obtained
from Sydney Dataset

The baseline classification results are shown in the confusion
matrix in Figure 2. The baseline classification achieves an
accuracy of 83.72% on test data from Sydney Urban dataset.
We observe that there are eight vehicle point segments that are
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predicted as pedestrians. Also, five traffic signs are classified
as pedestrians and one pedestrian is identified as a vehicle.
Visualising samples of pedestrians and traffic signs reveals that
the linear shape of some of the pedestrian point segments can
be confusing with traffic signs as shown in Figure 3.

Figure 2. Confusion Matrix for the baseline model trained and
tested on real samples from Sydney dataset

Figure 3. Misclassification due geometrical similarities between
Traffic Signs (Left) and Pedestrians (Right)

Figure 4 shows the training curves for the baseline classification
experiment. The relatively large validation loss means that the
baseline classifier is not able to generalise to samples that it has
not seen during training. This is caused by the inadequacy of
the training samples which results in the inability to distinguish
vehicles from pedestrians and pedestrians from traffic signs.

4.3 Synthetic Segment Generation

4.3.1 Training 3dAAE without data augmentation We
train the 3dAAE network on each individual category separ-
ately using real samples from Syndey Urban dataset to generate
synthetic samples. Since the size of our dataset is very small,
as shown in Table 1, the 3dAAE network is unable to learn
the global features of the different categories effectively. Con-
sequently, the generated synthetic segments do not resemble
real point segments captured by mobile lidar. Figure 5 shows
an example synthetic synthetic point segment generated from
real vehicle samples. We observe that the points are unevenly
scattered with a dense cluster in the centre, and do not form the
geometric representation of a vehicle point segment.

4.3.2 Training 3dAAE with data augmentation To gen-
erate more real-looking synthetic samples, we apply data aug-
mentation to increase the number of real samples for training
3dAAE. We rotate every segment in 10-degree intervals and ap-
ply jitter to increase the training data by a factor of 30. We then

Figure 4. Training curves for the baseline model trained with
real samples from Sydney dataset

Figure 5. Synthetic vehicle sample generated by 3dAAE trained
without data augmentation

use these samples to train our 3dAAE. The generated synthetic
samples are then visualised to examine their similarity to real
samples.

Figure 6 shows a real traffic sign point segment in blue, with
a grid-like structure on top, a pole-like structure in the middle
and three leg-like stands at the bottom. Our variational syn-
thetic segments, shown in black, exhibit similar properties, such
as the pole-like structure of varying heights. Figure 7 shows a
real vehicle segment in blue, where occlusion results in lack of
points on one side of the segment. The synthetic vehicle seg-
ment, shown in black, is a variation of the original giving a more
complete car like structure. The occlusion is observed at certain
angles for the synthetic segment, however the geometrical fea-
tures resemble the real vehicle segment.

Figure 6. Real traffic sign sample (Blue) and variational
synthetic samples (Black)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-139-2021 | © Author(s) 2021. CC BY 4.0 License.

 
142



Figure 7. Real vehicle sample (Blue) and variational synthetic
sample (Black)

4.4 Classification with PointNet Trained by Both Real and
Synthetic Point Segments

Using 3dAAE trained by augmented real samples, we generate
synthetic samples for each category. Table 2 shows the num-
ber of real and synthetic training samples per category. With
a combination of 50%-50% original and synthetic samples, we
train our PointNet with the same parameters as we did for the
baseline.

Class Labels Original Samples Synthetic Samples
Veh. 119 120
Ped. 118 120
Tra. 70 70
Total 307 310

Table 2. Number of real and synthetic training samples

Figure 8 shows the confusion matrix for PointNet classifier
trained by both original and synthetic samples. The classifier
achieves an accuracy of 95.34%. From the confusion matrix,
we see a notable improvement in detecting traffic lights and
signs, which are particularly challenging categories in the
classification of mobile lidar point clouds. We also see a
significant improvement in the classification of vehicles, with
5 out of 8 vehicles that were previously misclassified, being
correctly identified. The training curves for PointNet trained
by the combination of real and synthetic samples are shown in
Figure 9. We observe that the addition of synthetic samples to
the training results in smaller validation loss for the model.

Figure 8. Confusion Matrix for PointNet trained with original +
synthetic segments

Table 3 provides a comparison of classification results for the
baseline model and the model trained by both real and syn-
thetic samples. As it can be seen, the introduction of synthetic

Figure 9. Training curves for the model trained with
real+synthetic samples

samples to the training leads to a significant improvement in the
classification results. In particular, traffic signs and traffic lights
are identified with an accuracy of 100%.

To observe the effect of synthetic training samples on the
weights of the trained classifier, we plot the distribution of the
weights for the global feature aggregation layer of PointNet.
Figure 10 shows the distribution of the weights of the PointNet
model trained with and without synthetic samples. We observe
that the weights in the two networks have a similar distribution,
although the baseline model has a wider distribution with a
peak that is slightly shifted towards larger weights.

Model trained by real
samples

Model trained by
real+synthetic samples

Precision Recall F1 Precision Recall F1

Veh. 0.96 0.76 0.85 0.97 0.91 0.94
Ped. 0.70 0.97 0.81 0.91 0.97 0.94
Tra. 1.00 0.76 0.86 1.00 1.00 1.00

Table 3. Comparison of classification results for models trained
with and without synthetic samples

5. CONCLUSION

In this paper, we proposed a novel method for the generation of
synthetic 3D samples to improve the classification accuracy of
mobile lidar point clouds. We demonstrated that the use of syn-
thetic point segments for training a deep classification network
leads to significant improvements in the classification results.
Contrary to strategies that utilise point clouds of CAD models
for synthetic data generation, we use a mobile lidar point cloud
dataset.

Our results show that data augmentation is important for gen-
erating synthetic samples. Using augmented data, we success-
fully train a 3dAAE to generate multiple synthetic point seg-
ments with variations and increase the volume of the training
data. Our results and analysis show significant improvement in
the accuracy of a PointNet classifier trained by a combination
of real and synthetic samples. We achieve an F1 score of 1.00
for traffic signs and traffic lights, which are some of the difficult
categories to classify.

This research demonstrates the potential of synthetic data for
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Figure 10. Distribution of weights of the baseline model (Top)
and the model trained by real+synthetic samples (Bottom)

improving the performance of machine learning methods ap-
plied to point clouds. For future research, we seek to include
more categories from the Sydney Urban dataset. Classes such
as poles, pillars and buildings are common to road environ-
ments and will be included in future research. We will also ex-
periment with other mobile lidar point cloud datasets to further
evaluate the effectiveness of using synthetic training samples
for point cloud classification. Lastly, we will experiment with
other classifiers in addition to PointNet to observe the effect-
iveness of synthetic samples in training different classification
networks.
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