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ABSTRACT: 

 

The task of semantic segmentation is an important one in the context of 3D building modelling. Indeed, developments in 3D 

generation techniques have rendered the point cloud ubiquitous. However pure data acquisition only captures geometric information 

and semantic classification remains to be performed, often manually, in order to give a tangible sense to the 3D data. Recently 

progress in computing power also opened the way for massive application of deep learning methods, including for semantic 

segmentation purposes. Although well established in the processing of 2D images, deep learning solutions remain an open question 

for 3D data. In this study, we aim to benefit from the vastly more developed 2D semantic segmentation by performing transfer 

learning on a photogrammetric orthoimage. The neural network was trained using labelled and rectified images of building façades. 

Another programme was then written to permit the passage between 2D orthoimage and 3D point cloud. Results show that the 

approach worked well and presents an alternative to help the automation process for point cloud semantic segmentation, at least in 

the case of photogrammetric data. 
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1. INTRODUCTION 

The segmentation of 3D point cloud into different classes is an 

important task to support various workflows, for example the 

generation of 3D GIS and BIM (Bassier et al., 2017). This has 

been done using various approaches which can generally be 

divided into algorithmic or machine learning-based methods 

(Murtiyoso et al., 2020). Algorithmic approaches have shown to 

generate good results (Maalek et al., 2019) while machine-

learning (ML) based classification methods have also showed 

promising results (Malinverni et al., 2019). ML techniques are 

more robust against noise and occlusions, but require training 

data which may not always be available. 

In the field of machine learning, deep learning (DL) as a subset 

has gained much attention in recent years aided by the recent 

developments in computing power and availability of large 

training datasets. DL employs multiple hidden layers of self-

optimising artificial neurons, as opposed to shallow neural 

networks. It is most prominently used in 2D image 

classification, but recent developments have progressed towards 

semantic, instance, and even panoptic segmentation (Kirillov et 

al., 2019) in 3D data classification. A DL framework for 3D 

point cloud saw a breakthrough with the PointNet++ (Qi et al., 

2017b) and subsequently other frameworks. That being said, 2D 

semantic segmentation is nowadays a stable method that may be 

deployed easily. 

In this paper, we develop an approach to semantically segment 

building façades using DL by deploying pre-existing and pre-

trained networks and tuning them to our requirements; a process 

known as transfer learning. In order to benefit fully from pre-

existing networks, the approach performs semantic 

segmentation on 2D orthophoto images generated by 

photogrammetry. A previous research attempted to use fuzzy 

logic in performing image classification (Neusch and 

Grussenmeyer, 2003). With a similar purpose, Grilli et al. 

(2018) performed supervised segmentation on orthophotos and 

UV textures of photogrammetric 3D models, but using an ML-

based approach. In this paper, we present a DL-based transfer 

learning approach for performing a similar task. 

The developed approach deploys a pre-trained ResNet-18  

network (He et al., 2016) to create a DeepLabv3+ network 

(Chen et al., 2018) by training it on a dataset of several 

hundreds of labelled rectified images of building façades. The 

trained network was then applied to semantically segment an 

orthoimage (thus 2.5D) of a case-study building. From this 

image, a function was employed to back-project the pixel 

coordinates into the 3D point cloud, thus extracting the point 

cloud of each class.    

2. RELATED WORK 

Semantic analysis firstly of 2D and more recently of 3D scenes 

has become an increasingly studied topic in various 

applications, such as photogrammetry, remote sensing, 

computer vision and robotics (Heipke and Rottensteiner, 2020). 

Input data might be images, point clouds or textured meshes. 

Several approaches have been developed to automate this task 

with promising results, such as algorithmic (Maalek et al., 

2019) and machine learning (Matrone et al., 2020) approaches. 

At the same time, deep learning and neural networks are 

becoming more popular due to increasing computational 

capacity and growing number of available databases.    

Neural networks are generally used for several tasks: 

classification, semantic segmentation, instance segmentation 
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and more recently, panoptic segmentation. Classification refers 

to the global prediction of an input: it can be the class of an 

object on an image, or the nature of a whole point cloud. The 

semantic segmentation provides a fine understanding of a scene 

by assigning a label to each pixel of an image or to each point 

of a point cloud. To go even further in the comprehension of the 

environment, instance segmentation distinguishes the instances 

of objects belonging to the same semantic class. Thus, it can be 

interpreted as a combination of object detection and semantic 

segmentation (Hafiz and Bhat, 2020). A final task which 

achieves a rich and complete knowledge of a scene is called 

panoptic segmentation. It combines semantic and instance 

segmentation, providing a per-pixel or per-point label that 

combines class and instance information (Kirillov et al., 2019).  

The rapid development of 3D acquisition techniques (lidar, 

mobile mapping, etc.) has enabled the production of more and 

more data at lower cost and simultaneously in large quantities. 

As a consequence, researchers have begun to focus on the 

application of neural networks for point cloud processing, 

leading to the emergence of new architectures. These algorithms 

can be divided into three types: projection-based, discretisation-

based and point-based methods (Guo et al., 2020).  

The first two techniques use an intermediate representation of 

the point cloud. Originally unstructured in nature, the common 

idea is to order it in a manner that allows the use of convolution 

operators. Discretisation-based methods consist in transforming 

the point cloud into a regular voxel grid. Projection-based 

methods project the point cloud in several 2D views to extract 

feature maps and perform predictions on it.  The result is then 

projected onto the point cloud, using a depth map (Guo et al., 

2020). However, these methods are limited: switching to an 

intermediate representation involves a loss of information. 

Moreover, the result depends on the choice of projections or 

voxel sampling of the point cloud. Finally, these techniques are 

computationally very expensive (Qi et al., 2017a). 

Confronted with these challenges, approaches dealing directly 

with point clouds have been developed. The reference 

architectures are PointNet (Qi et al., 2017a) and its improved 

version PointNet++ (Qi et al., 2017b) which considers local 

features. According to the authors, it is more efficient, fast and 

robust than methods based on intermediate representations. 

The quality of the database needed to train the neural network is 

a crucial issue, as it will directly influence its performance. One 

of the main challenges of using neural networks for 3D tasks is 

the lack of reference databases, compared to those available for 

image processing. Moreover, manual labelling of a point cloud 

database is a very time-consuming process (Zolanvari et al., 

2019). Faced with this problem, we argue that it is interesting to 

look at projection-based solutions, where labelled databases are 

abundantly available. This argument is also backed by other 

research results which show that object classes concerning 

building façade such as windows and doors are more difficult to 

detect using a purely 3D approach (Malinverni et al., 2019, 

Pierdicca et al., 2020). This problem mainly rose from the lack 

of training data for building opening classes, as well as the 

difficulty in distinguishing different classes in generally 

homogeneous and with reduced relief surfaces such as façades. 

Automatic image segmentation is a research topic that has been 

widely covered in the artificial intelligence community, 

especially with the use of convolutional neural networks 

(Kaushik and Kumar, 2019). Taking advantage of the rapid 

increase in the number of labelled image databases and the 

improvement of the computing capacities of graphics processor 

units, this type of architecture has given state-of-the-art results 

in various fields such as medical imaging, road transportation, 

product quality monitoring, etc. (Meyer et al., 2018).  

There exists many architectures for CNNs; however, they are all 

based on three similar layers: convolutional, pooling and fully 

connected layer. The convolutional layer aims to learn the 

characteristics of the images, called feature maps. The pooling 

layer allows to reduce the dimensionality of the feature maps by 

extracting the most relevant features. After a certain number of 

convolutional and pooling layers, a fully connected layer is 

implemented to perform the segmentation task (Gu et al., 2017). 

The architecture chosen for this study is the DeepLabv3+ neural 

network. It was used in Tang et al. (2020) where it was 

associated with a Faster-R-CNN architecture for liver 

segmentation on medical images. In the cited paper, 

DeepLabv3+ achieved better performance than other state-of-art 

methods used in this domain.  

The aim of this paper is therefore to utilise the DeepLabv3+ 

network and train it on a database of labelled building façade 

images. The trained network will thereafter be deployed on 2D 

orthoimages generated by photogrammetry, before back-

projected to the 3D space later on. 

3. METHODOLOGY 

The deployment of the developed approach requires three 

inputs: (1) a georeferenced orthophoto image of the object 

generated by photogrammetry, (2) a depth map with 2.5D depth 

in the same coordinate system as the orthophoto, and (3) a point 

cloud of the object. The point cloud may come from any source; 

however it should be georeferenced in the same system as the 

orthophoto and the depth map. In this paper, these three inputs 

were acquired from terrestrial photogrammetry, but other 

methods of orthophoto, depth map, and point cloud generation 

may be envisaged e.g. mobile laser scanner (MLS) or static 

terrestrial laser scanners (TLS). As can be consulted in Figure 1, 

in general the approach consists of three steps: generation of 

input using photogrammetry, semantic segmentation using DL, 

and back-projection from 2D to 3D.  

3.1 Input data generation and pre-processing 

The first step of the study involves the creation of the three 

required input data. For the purposes of these experiments, the 

main façade of the Zoological Museum in Strasbourg, France 

was used as the test data. The façade was reconstructed using 

terrestrial photogrammetry using a Canon EOS 6D camera. The 

3D point cloud was generated through dense matching using the 

software Agisoft Metashape.  

 

 

Figure 1. General workflow of the developed approach. 
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Figure 2. Depth map of the Zoological Museum façade 

generated by terrestrial photogrammetry used as input. 

 

Figure 3. Corresponding orthophoto to the depth map in Figure 

2 created also from photogrammetry. 

As the images were taken from an average camera-to-object 

distance of 10 m, this yields a Ground Sampling Distance 

(GSD) of roughly 4 mm. The point cloud used in this regard 

was generated using the “High” quality in Metashape, which 

implies the subsampling of the raw images with a factor of 2 for 

the dense matching process; the theoretical spatial resolution of 

the point cloud is therefore 8 mm.   

The point cloud was scaled using coordinates from control 

points located on the façade and measured for the purposes of 

the research project. Furthermore, in order to facilitate the 

algorithm down the pipeline, the 3D photogrammetric network 

was rotated on the Z axis in such way that the façade is 

perpendicular to the Y axis. The transformation was computed 

automatically by identifying the point cloud’s major axes using 

the Principal Component Analysis (PCA) method. 

Using the rotated point cloud, a depth map (Figure 2) was 

computed from an arbitrary reference plane. Consequently, an 

orthophoto (Figure 3) was computed using this depth map with 

a set pixel resolution of 1 cm. The generated point cloud, depth 

map, and orthophoto are all in the same rotated coordinate 

system as required by the semantic segmentation algorithm.  

3.2 Deep learning training and deployment 

As has been previously established, the DL part of the method 

is based on the transfer learning approach. In this study, a 

DeepLabv3+ network was created from a pre-trained ResNet-18 

network (He et al., 2016). The choice of ResNet-18 as the initial 

network was empirical; more experiments and tests need to be 

performed to assess the potential results from other pre-trained 

networks.  

The pre-trained network was thereafter augmented using 

another dataset of labelled rectified images of façades prepared 

by the Center for Machine Perception (CMP) of the Czech 

Technical University, Prague (Tyleček and Šára, 2013). This 

dataset consists of 606 rectified images of building façades 

(Figure 4) of various architectural styles, although the majority 

seems to belong to modern and/or European style buildings.  

 

Figure 4. Sample rectified images of building façades from the 

CMP database. The complete database comprises of 606 

labelled images from around the world. 

The images were classified into 12 classes, of which only six 

(“shops”, “pillar”, “door”, “window”, “façade”, and 

“background”) are retained in this study with other classes 

merged into these six. The CMP façade dataset can be accessed 

here: https://cmp.felk.cvut.cz/~tylecr1/facade/ (last accessed 2 

February 2021). The choice of the classes included in the 

training was based on their existence in the test image of the 

Zoological Museum’s façade orthophoto. While no free-

standing pillars exist in the test dataset, several engaged 

columns can be observed on the second floor. “Shops” in this 

regard refer to business signs and plaques.  

For the purpose of the training, the labelled image dataset was 

randomly divided into training (80%) and validation data 

(20%). The training was performed for 100 epochs yielding a 

validation accuracy of 79.65%. Once trained, the network was 

deployed to predict the classes of each pixel in the input 

orthophoto image. In these experiments, a spatial pixel 

resolution of 1 cm for the orthophoto and depth map was used.  

3.3 Back-projection from 2D to 3D 

The last step of the developed method involves the back-

projection of the classified pixels into the 3D point cloud. Since 

all inputs are in the same coordinate system, this process was 

quite straightforward. The XY coordinates of each pixel in the 

orthophoto was used to determine the corresponding 

planimetric coordinates (with regards to the façade plane) of the 

points in the point cloud.  

The identical resolution of the orthophoto and depth map means 

that the depth value from the corresponding pixel in the depth 

map can then be directly correlated and therefore extracted to 

obtain the depth element for each orthophoto pixel.  

Using this method, each pixel divides the point cloud into 

voxel-like cuboids with the same XY dimensions as the pixels. 

Finally, a winner-takes all approach was applied to annotate the 

3D points located inside these cuboids with the respective 2D 

pixel class.  

This algorithm was implemented using a script written in 

Matlab. In this regard, the approach uses the planar nature of 

building façades as an advantage in performing a 2.5D 

operation, whereas this feature is sometimes considered one of 

the reasons behind the failure of more direct 3D deep learning 

methods in identifying classes within a building façade.  
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Figure 5. Result of the semantic segmentation on the test data 

superimposed on the original orthophoto. 

 

 

Figure 6. Result of the back-projection to the 3D space: 

segmented and classified point cloud. 

  
GROUND TRUTH 

 

 
Class Window Door Shops Pillar Facade Background Total 

P
R

E
D

IC
T

E
D

 

Window 2 374 435 40 542 0 45 088 686 323 8 251 3 154 639 

Door 199 202 370 335 633 6 119 182 298 11 542 770 129 

Shops 9 374 4 348 14 573 0 17 770 707 46 772 

Pillar 0 2 606 0 29 838 88 917 3 599 124 960 

Facade 943 476 53 311 2 796 220 726 14 219 690 1 099 793 16 539 792 

Background 8 977 92 834 234 16 639 034 256 089 997 184 

 
Total 3 535 464 563 976 18 236 301 787 15 834 032 1 379 981 21 633 476 

Table 1. Confusion matrix of the classification results. True positive values are highlighted in blue. 

 
Window Door Shops Pillar Facade Background 

Errors of commission (%) 24.73 51.91 68.84 76.12 14.03 74.32 

Errors of omission (%) 32.84 34.33 20.09 90.11 10.20 81.44 

Precision/Producer accuracy (%) 75.27 48.09 31.16 23.88 85.97 25.68 

Recall/User Accuracy (%) 67.16 65.67 79.91 9.89 89.80 18.56 

F1 Score (%) 70.98 55.52 44.83 13.98 87.85 21.55 

Intersection over Union (%) 70.92 65.71 82.59 11.66 99.73 22.54 

Table 2. Statistics derived from the result of the semantic segmentation. 

4. RESULTS AND DISCUSSIONS 

The result of the semantic segmentation can be seen in Figure 5. 

Visually, while the algorithm managed to correctly determine 

the class of most of the pixels, some problems can also be 

observed. Indeed, misclassification is seen in the ground and 

second levels of the building. The texture data for the ground 

level was plagued by shadows and this may play an important 

role in explaining these results. As for the errors in the second 

floor, the quality of the original 3D reconstruction deteriorated 

as the point of view is farther from the ground. This is due to 

the terrestrial nature of the original data acqusition, therefore 

generating holes and textural distortions on higher positions. 

To add to these explanations, the orthophoto, unlike the 

rectified images of the training dataset, is a reconstructed raster. 

The orthophoto pixel grey values were reconstructed from the 

projection of input image pixel RGB values into the depth map. 

This means that in places where the quality of the depth map is 

low (notably the borders of the building and again, higher 

storeys) distorted textures may be present. In turn this also 

influences the quality of the semantic segmentation. 

The segmented image as shown in Figure 5 was then back-

projected using the aid of the input depth map to the 3D point 

cloud. The result is a semantically segmented point cloud as 

displayed by Figure 6. 

In order to present a more robust analysis and borrowing from 

the remote sensing domain, a confusion matrix (Table 1) was 

prepared in order to illustrate the performance quality of the 

proposed approach in a quantitative manner. A quick statistical 

parameter which may be used to represent the quality of multi-

class classification is the overall accuracy value, defined as: 

 

 
(1) 

Note that the true positive values in Table 1 are highlighted in 

blue. Using formula (1), an overall accuracy of 0.80 (79.81%) 

was obtained. 
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Figure 7. Bar chart illustrating the precision, recall, F1 score, 

and intersection over union (IoU) of each class. 

This overall accuracy value is encouraging; however, some 

discrepancies between the true positive in each class may be 

observed in the confusion matrix. In order to analyse this 

phenomenon in more detail, Table 2 presents other quality 

metrics commonly used in the field of remote sensing and image 

segmentation (Heipke et al., 1997, Landes et al., 2012). These 

statistics were computed as such: 

 

 (2) 

 
(3) 

 
(4) 

 
(5) 

 

Note that the formula (4) corresponds to the notion of precision 

in ML and DL parlance, while formula (5) corresponds to the 

notion of recall. Furthermore, formulae (2) and (4) represent 

normalised quantitative value for the incidence of false 

positives (type I error); as such the sum of their outputs is equal 

to 1. This is also true for formulae (3) and (5), themselves 

representing the incidence of false negatives (type II error). 

Also note that in Table 2, these values are represented in 

percent in order to synchronise them with ML conventions. In 

addition, normalised F1 scores were also computed from the 

outputs of formulae (4) and (5) using the following equation: 

 

 
(6) 

 

Figure 7 displays the precision, recall and F1 score values in a 

bar chart for a visual comparison between the different classes. 

As can be seen from both Table 2 and Figure 7, the developed 

approach managed to attain good results for some classes, while 

the performance of some others are underwhelming. 

As may be expected, the “facade” class fared the best. This is 

because this class represent a majority of training data during 

the DL semantic segmentation. On the other hand, the “pillar” 

class suffered the most. This is also to be expected for two main 

reasons. First, the amount of training data concerning pillars 

was significantly lower because the input database mainly 

consists of building façades of architectural styles where pillars 

were not the main feature. Secondly, in the test dataset of the 

Zoological museum, no free-standing pillar was present. 

Instead, engaged pillars or faux pillars were present mainly as 

decorative adornments.  

In the context of our particular requirements, the detection of 

building façade openings i.e. the “window” and “door” classes 

are particularly interesting. In both classes, the results were 

quite satisfactory even though improvements may be necessary. 

The “window” class yielded an F1 score of 70.98% while the 

“door” class fared worse with a score of 55.52%. Several factors 

may explain these results. First of all, the confusion between 

doors and windows in this particular dataset mainly concerns 

both the second and ground levels of the museum. As has been 

previously mentioned, the texture data for the ground level was 

not ideal as a lot of shadow was present. For the second storey, 

the terrestrial point of view prevented an accurate modelling in 

the 3D point cloud, which undoubtedly also influenced the 

generated orthophoto.  

Secondly, in some instances the windows were classified either 

as façades or background. A possible factor amounting to this 

result is the fact that due to current renovations most of the 

museum’s windows were boarded using tan or pale brown paper 

sheets, effectively a similar colour to the building façade. Note 

that in order to validate these hypotheses, more experiments 

must be conducted to eliminate possible causes. That being 

said, the results from our developed approach for building 

openings already shows promising results which significantly 

outperform some 3D DL techniques for the same task, e.g. 

results from Pierdicca et al. (2020). However, both DL and ML 

semantic segmentation develops in a very fast pace and this 

conclusion must be taken with caution following other recent 

developments, for example those of Matrone et al. (2020). 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we presented a novel approach for the semantic 

segmentation of building façades. Being notoriously difficult to 

perform in a pure 3D space-based DL approaches, we proposed 

a two-step process in which the DL semantic segmentation was 

performed on the building’s orthoimage. Helped by a depth 

map, the results of this segmentation was thereafter back-

projected into the 3D space to generate a semantically 

segmented point cloud. Using the standard metrics for 

classification, results of this study show an overall accuracy of 

79.81%. This is similar to the validation accuracy of 79.7% 

during the training process, which means that the results may be 

considered as promising. 

Some important remarks can be inferred from the results. As the 

DL part of the method relies on pixel RGB values, the quality of 

the orthophoto became an important issue. Due to the terrestrial 

nature of the data acquisition, several parts of the orthophoto, 

notably blind spots were distorted by the orthorectification 

algorithm. Low lighting spots also present more error when the 

result is consulted visually. A possible solution to improve the 

quality of the orthophoto would be the addition of images from 

more favorable angles, either using a drone or other means. The 

use of other sources of input e.g. MMS and TLS can also be an 

alternative, as the orthophoto input can be generated from a 

projection of point cloud into a 2D surface. 

Considering these promising results, more experiments and tests 

are planned. Some of the planned improvements include the 

tuning of the DL hyperparameters (including choice of pre-

trained network), improvement in orthoimage quality, and tests 

on other sources of point cloud data. Comparisons with other 

algorithmic approaches as well as 3D-based DL is also planned 

in the near future. In supporting the overall task of building 

façade classification, a DL-based semantic photogrammetry 

workflow is also being considered as an alternative method.  
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