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ABSTRACT: 
 
Looking ahead of 2070, the number of the elderly population will increase rapidly in the European Union and beyond. As society ages, 
it will be confronted to novel challenges related with other concerns like the concept aging in place that the majority of the elderly 
prefer. Concerning that, the living space must be adapted to the requirements of people with a disability, to support their relatives or 
friends that will become more and more important in future due to a lack of professional’s and both overstressed and expensive hospitals 
or nursing homes. Compounding this, those living space requirements are highly individual, depending on the disease. Our study 
focuses on a medical white box decision support system providing advice even for unknowledgeable users by evaluating the suitability 
of an elderly’s living environment in terms of their individual disease. In this paper, we propose tackling this issue with a decision 
support system linked to Building Information Modeling (BIM) and based on Artificial Intelligence using semantic technologies. The 
proposed approach's contribution is a reliable process that uses up-to-date 3D point cloud data of the person’s living environment and 
predicts suitable, non-suitable and adaptable zones therein according to different pathologies using formalised knowledge. We are able 
to provide deep expert knowledge linked from different domains inside a knowledge base and thus produce an outcome through BIM, 
which is understandable and helpful for two types of users, ordinary people concerned by the matter and building experts. We illustrate 
our methodology by a proof of concept concerning a wheel-chaired person.  
 
 

1. INTRODUCTION 

The European Union is facing a variety of challenges in the future 
as the changing demographic structure. As a result, the number 
of the elderly population will increase due to arising life 
expectancy and dropping birth rates by 2070 (European 
Commission 2020). Relating to this long-term trend, medical and 
social investigations identified the demand of senior citizens 
concerning their future life even under care. The majority of the 
elderly prefer an independent and self-determined life in a 
familiar environment (Harrefors et al. 2009; Stula 2012), both in 
urban and rural areas (Ohta et al. 2020). Thus, the concept aging 
in place1 became an advantage in terms of autonomy, safety, 
familiarity and the elderly’s identity (Wiles et al. 2012). 
However, this only takes into account the fragile situation of the 
European healthcare system partially. Often, aging is related to 
the appearance of diseases that need to be treated. Having in need 
of care concerned elderlies, hereinafter patients, remain in their 
homes as long as possible, care services needs to be provided in 
a distributed manner as well, despite already overburdened 
healthcare system and high workloads. To turn these challenges 
into opportunities digital transformation helping healthcare 
system to improve services and treatments. 
E-Health is an emerging way to deliver healthcare through 
applications using information and communication technology 
(ICT), like personal health (PH) or assisted living (AL) systems 
for the elderly or disabled (Avila and Sampogna 2011). 
Particularly in the latter domain, current technical efforts aim at 
treatment and monitoring of patients as well as assistance to care 
professionals (Rösler et al. 2018; Banbury et al. 2014). A key 
technology concerning AL are decision support systems (DSS) 
that are usually associated with processes that aim to support 
people in making decisions by collecting and determining 
                                                                 
*  Corresponding author 
1  Ability to live in one’s own home regardless of age or disability. 

relevant information (Papathanasiou et al. 2016). As a subject of 
intensive research for years, DSS have already been successfully 
used in various fields. Today’s market offers many examples in 
common day-to-day usage to improve decision-making in 
biology (Suphavilai et al. 2018; Fiannaca et al. 2011), economics 
(Dutta et al. 2011), engineering (Simões-Marques 2016; 
Papathoma-Köhle et al. 2019; Coelho et al. 2021) or e-commerce 
(Leung et al. 2018; Masaro et al. 2020). Refer to Sutton et al. 
(2020) and Stark et al. (2019), DSS are also widely used in the 
medical domain for disease diagnostic (Kumar et al. 2011; 
Kihlgren et al. 2016) and patient monitoring (Kaczmarek et al. 
2011; Billis et al. 2015; Hussain et al. 2015). In general, studies 
are patient-related and assist both at clinical sites or in their living 
environment. So called medical DSS (MDSS) produce 
recommendations to the caregiver based on recognition of 
patients habits or anomalies. Often, just a certain use case such 
as Alzheimer disease is considered. The elderly that want to age 
in place, usually tend to suffer multiple diseases that cause new 
examinations whether safe living at home is still possible. 
Our research provides a solution based on DSS to address the 
dynamics of aging in place in terms of changing domestic 
preconditions as a result of various disease profiles. To achieve 
this, multiple technologies such as Building Information 
Modeling (BIM) and Artificial Intelligence (AI) are utilized to 
create a system, which is able to provide insightful information 
about an as-is home of a senior citizen with already existing 
disabilities. With respect to the patient’s disease profile, our 
MDSS evaluates the suitability of the living space and gives 
advice on necessary home modifications, improving the living 
quality and safety. As main users patients or relatives are 
addressed in order to discharge the healthcare system. In human-
related MDSS applications it is urgent to justify each decision in 
a transparent and comprehensive manner (Richter and Vogel 
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2020). This is why we chose a knowledge-based approach 
already suggested in similar domain by Bouchard et al. (2007), 
Kaczmarek et al. (2011), Augustyniak (2013), Billis et al. (2015), 
Chiang and Liang (2015), Hussain et al. (2015) and Lopez-Guede 
et al. (2015).  
As a proof of concept of our approach we present in this paper 
the case study of a wheel-chaired person. In order to evaluate the 
suitability of the living environment, up-to-date information is 
needed as well as criteria, which can be checked. According to 
state of the art, geometric information for 3D representation can 
be obtained from point cloud data acquired by scanning or 
imaging techniques. Based on point cloud data, geometric 
representations with semantic attributes of constituent interiors 
such as walls, doors, stairs, tables or chairs need to be modeled 
and stored as component-related into a graphical BIM database 
intending to provide information about constitute elements with 
its functionality and suitability for a wheel-chaired person. 
Geometric information from those solid 3D building components 
contribute to the transparency of the decisions made by our 
approach and thus plays a major role for the main users. Beyond 
that, the knowledge for evaluation purposes need to be formalised 
as an ontology. Four main components are considered in our 
knowledge-based approach such as (a) the disease profile of a 
wheel-chaired according to barrier-free living requirements 
under the terms of DIN 18040-2, (b) the data processing aside 
from (c) the expert knowledge in order to determine the 
suitability of a living environment by logical linkage of the states 
for each interior element which are (d) finally transferred into a 
BIM model. For reasoning in the penultimate aspect, a deeper 3D 
understanding beyond the elementwise BIM provision is needed 
and realised thanks to KnowDIP (Ponciano et al. 2017). Those 
fine BIM components are checked against the formulised expert 
content, resulting in the living environment evaluation 
concerning criteria of barrier-free living and unrestricted 
wheelchair usage. A more precise description of the knowledge-
based approach is described in the methodology. Further 
information concerning our chosen case study is given in the 
proof of concept section. We transfer standardised expert 
knowledge from professional domains into reusable ontologies 
and thus create an extensible approach for transparent suitability 
evaluations of a patient’s living environments. With our 
knowledge-based DSS, we expand the portfolio of E-Health 
technology and contribute to sustain life quality, autonomy and 
safety of patients aging in place for a longer period of time.  
 

2. RELATED WORK AND CHALLENGES 

During our studies, we encountered several challenges to 
conceptualize the proposed approach. As a conclusion, those can 
be subdivided into four areas. 
 
2.1 MDSS requirements 

In spite of an arising application domain, there is a lack of recent 
research in the field of MDSS for homecare describing 
requirements and study experiences. As reviewed by 
Marschollek (2012), Baumgärtel et al. (2018) and Stark et al. 
(2019), only a few papers offer details about the knowledge base 
(KB), system architecture and study outcome. In addition, 
presented researches lack of accuracy, best practices, 
comprehensibility, interchangeability, user acceptance, stability 
and insightful evaluation methods (Richter and Vogel 2020; 
Baumgärtel et al. 2018; Baig et al. 2019; Manar et al. 2017; Stark 
et al. 2019). Considering this, we focus on a case research based 
on expert rules to reason of a suitable living environment 
according to different patient’s diseases. We tackle the lack of 
evidence and accuracy by a MDSS linked to BIM and based on 

AI using semantic technologies to represent extensible 
knowledge and perform insightful understanding of as-is home 
scene. As already stated in literature research, our proof of 
concept also lacks evaluation methods. However, this will be 
addressed in a future real life study. 
 
2.2 Automatic 3D understanding and data processing 

As already mentioned above, accurate 3D data are highly 
important for obtaining 3D representation from objects such as in 
living environmental sites. Scanning (Lehtola et al. 2017; Bassier 
et al. 2015; Lercari 2016) or imaging (Lin et al. 2017; Lu and Lee 
2017) methods provide dense point cloud data much faster than 
in-situ measurements and thus are considered as state of the art 
acquisition techniques by numerous literature. Compared to 
mostly efficient and fast data acquisition, the processing of the 
dense 3D point cloud is a complex and challenging task. The 
automatic understanding of unstructured 3D point cloud data has 
become a popular research field in recent years that is not only 
limited to BIM in architecture, engineering and construction 
(AEC) industry. Methods such as semantic segmentation and 3D 
object detection can subdivide a point cloud scene into its 
constituent elements in order to gain a deeper understanding and 
thus help in decision-making. Research relating these methods in 
3D data has gained high impact factor, shown by the appearance 
of well-known datasets like ModelNet (Wu et al. 2015) and 
ShapeNet (Chang et al. 2015) for recognition of Computer-Aided 
Design (CAD) models or for building and furniture elements by 
Stanford Large-Scale Indoor Spaces (S3DIS) (Armeni et al. 
2016). Recent research substitutes rule-based methods like 
random sample consensus (RANSAC) or Hough transform 
(Adan and Huber 2011; Jung et al. 2016) for simple geometry 
detection and has been dedicated in using computer vision and 
deep learning approaches to train models end-to-end for direct 
mapping from 3D inputs to object labels (Chen et al. 2019; 
Malinverni et al. 2019; Qi et al. 2016; Ben-Shabat et al. 2018). 
However, these approaches still remain inflexible and unable to 
detect objects or geometry for which they are not trained. 
Furthermore, just a small change of the data acquisition process 
or external factors that influence the 3D data can result in a 
change that turns the elaborately trained model useless. Point 
cloud data from living environments are characterised by 
unstructured, scattered and spatiotemporal objects (Chen et al. 
2019; Bassier et al. 2019). Face to such characteristics, the object 
detection is currently a challenging task despite deep models due 
to lack of training data. On the contrary, other approaches based 
on semantic technologies propose to use prior knowledge about 
object, point cloud and sensing process to drive and adapt the data 
processing (Poux et al. 2018; Dietenbeck et al. 2017; Poux and 
Billen 2019). These methods bring a huge flexibility to process 
3D point clouds based on less strict acquisition criteria and are 
able to outperform deep learning accuracy. For this reason we 
build our method on a knowledge-based approach using AI on 
semantic technologies to understand 3D data in a more 
comprehensive and accurate way (Poux and Ponciano 2020). 
 
2.3 On-site construction management 

The patient’s living environment constitutes the main data 
component for evaluating the suitability to aging in place 
concerning a disease profile. As an individual candidate, this data 
represents an exchangeable value and acts as the information 
backbone of our knowledge-based MDSS. Discretised as an 
unstructured but colorized 3D point cloud, the as-is living site 
provide all valuable geometric and semantic data that need to be 
modeled and stored as component-related into a database. A 
solution to organize this data is given by the most advanced  
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Figure 1. Overview of the proposed methodology. 
 
method of geometric modeling in recent years: Building 
Information Modeling (BIM). The concept of BIM is manifold in 
AEC industry. In general, it represents a digital facility as a 
shared information resource providing a reliable basis for various 
stakeholders for decision-making processes during its life cycle 
(Borrmann et al. 2015; Eastman 2008). Within our study we use 
the term as a comprehensive object-oriented 3D building model 
with semantic, topologic and geometric attributes. As a graphical 
3D database, information related to building components are 
stored and provided through Industry Foundation Class (IFC) 
description in solid model paradigm. IFC is an open, international 
standard (ISO 16739-1) for interdisciplinary collaboration 
purposes providing agnostic and interoperable capabilities across 
a broad range of software platforms for lots of different use cases. 
Intended to experts in the vast AEC industry, the 3D data schema 
granularity is fine and due to multiple redundancies even for 
small building sites the information in such data is too heavy to 
be treated automatically. This is why we have added a manual 
step that uses the annotated point cloud resulting from our 
approach to generate an IFC file enriched with the suitability 
states of the living environment for a disease. It allows the 
approach’s results to be useable twice, by the patient’s entourage 
and the building expert community. 
 
2.4 Formalisation of expert knowledge 

In addition to the challenges described earlier, another one exists 
linked to the expert knowledge, which needs to be gathered first, 
then validated and formalised afterwards. While International 
and European standards according to barrier-free living lack, the 
German DIN 18040-2 describe requirements even for wheelchair 
-accessible living that are well-structured and usable either. 
Relating to our proof of concept of a wheel-chaired, the expert 
KB only includes DIN criteria. Intending to expand our system 
to other common as well as non-common diseases e.g. 
Alzheimer’s or Rheumatism, gathering similar valid criteria 
might be challenging and tedious. For this issue, we have already 
added the standardised Human Disease ontology (DO) in 
biomedical community by Schriml et al. (2019). DO has been 
developed collaboratively in order to provide consistent 
descriptions of human disease terms and facilitated discussion 
with experts in healthcare. 
 
The absence of proper approaches for the evaluation of housing 
suitability under care-related aspects serves as a best practice 
study. We learned about several challenges that being tackled 
with a knowledge-based MDSS linked to BIM and using 
semantic technologies. The following chapter specifies more 
details of our methodology subdivided into our three main 
components, hereby state of the art technologies are used in an 
advantageous way. 

3. METHODOLOGY 

Our approach is based on knowledge and aims at providing a 
MDSS to assist aging in place by identifying the suitability of the 
living environment by rooms or furniture elements according to 
a patient’s disease. It results appear in two different forms, in an 
IFC file representing a BIM model with the suitability of objects 
and an explanation of that classification as added value. The 
proposed approach takes 3D data acquired by state of the art 
acquisition techniques as input. The methodology is composed of 
two main process steps using AI, a knowledge-based data 
processing and a knowledge-based decision support. Figure 1 
presents an overview of the methodology with its main steps and 
its associated processing actions. The two main steps use expert 
knowledge to provide interchangeability, flexibility and 
adaptability to the system. Therefore, this section presents both, 
the proposed approach's knowledge modeling component and the 
two main processing steps of the methodology. 
 
3.1 Knowledge base modeling 

The proposed approach builds on a KB gathers its expert input 
from two different domains. First, object detection ontology 
including building object modeling and second, assisted living 
information for patients according to their disease. The latter 
comprises human disease terms from DO and knowledge of 
building object requirements for diseases from DIN 18040-2. To 
link these fields, the KB accounts for three local modules. In the 
following, the role and the global structure of each module is 
described. 
 
Object detection ontology: This ontology for object detection 
originates from KnowDIP by Ponciano et al. (2019c) that 
provides flexibility and adaptability to different contexts and 
objects for the knowledge-based data processing regarding object 
detection. This approach uses a knowledge model gathering 
object, data and algorithm description, explained below. 
Objects are described through their geometries (e.g. shape, 
orientation, surface) and features (e.g. color, texture, roughness). 
They are contained in data and belong to a scene. A scene is 
characterized through a context (e.g. indoor, outdoor) and 
describes topological relationships between objects. Data are 
described through features (e.g. density, resolution, size) and 
acquisition technology that generates it. They represent a scene 
and contain objects and geometries. The algorithm description 
relates to data and objects. An algorithm generates data and 
detects objects. It is defined as suitable for geometry and has data 
prerequisites and parameters. Its parameters are defined 
according to data and the object’s features. 
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Disease modeling: The KB component has integrated the DO by 
Schriml et al. (2019). This ontology contains all diseases 
vocabulary structured in different levels of disease sub-types 
such as disease by an infectious agent or disease of mental health 
e.g. cognitive disorder and sleep disorder. Diseases are described 
through an ID, a name, a description, synonyms, subsets, and 
references. 
 
Modeling of building object requirements relating to disease: 
This role is based on the building object from data processing 
modeling and disease modeling. It aims primarily at evaluating 
the suitability of rooms and furniture objects within, but can also 
determine issues that need to adapt to fulfil suitability. To 
represent this expert knowledge, we have used rules allowing a 
reasoning on the object and disease profile for the decision 
making. These rules point at defining three states for rooms and 
objects inside according to a disease such as isSuitable, 
Need2Adapt and isNotSuitable. While isSuitable meaning that 
the room or object fills the requirements for a disease, 
isNotSuitable means non adaptable opposite. Need2Adapt means 
that the room or object does not fill the disease requirements yet 
but can be adapted to be suitable then. 
With respect to that states, there are two groups of rules: rules 
concerning objects inside a room and rules concerning the room 
itself. Object-related rules define the suitability and need of 
adaptation of an object for a disease according to its type, its 
features (e.g. dimension) and its components (e.g. door handle). 
The following example illustrated the reasoning of our 
knowledge: a room with a window is not suitable for a wheel-
chaired if the window handle is higher than 1.05m. This expert 
knowledge defined in DIN 18040-2 allows us to define the 
logical rule presented in Listing 1 to assess the windows that are 
not suitable for a wheel-chaired. 
 

kd:Window(?w) ^ kd:Room(?r) ^ kd:isInside(?w, ?r) ^ 
kd:hasHandle(?w, ?h) ^ kd:hasDistanceDouble(?h, ?dh) ^ 

kd:Disease(?di) ^ kd:hasDistanceDouble(?di, ?dwc) ^ 
swrlb:greaterThan(?dh, ?dwc) -> kd:isNotSuitableFor(?w, ?di) 

 

Listing 1. Logical rule defining the unsuitability of a 
window for a wheel-chaired. KnowDIP namespace is 

shortened by kd. 
 
Rules concerning rooms define a room's state from above 
according to objects contained inside and the type of itself. There 
are three main global rules to define the state of a room: rule 1 
refers to suitable rooms, rule 2 to unsuitable rooms and rule 3 to 
rooms needing adaptation. A room is suitable only if all objects 
inside got the state isSuitable. A room is unsuitable, if in it exists 
at least one object, which has the state isNotSuitable as presented 
in Listing 2. Finally, a room needs adaptation, if it contains no 
object with the state isNotSuitable and at least one object with the 
state Need2Adapt. 
 

kd:Room(?r) ^ kd:isInside(?element, ?r) ^ kd:Disease(?d) ^ 
kd:isNotSuitableFor(?element, ?d) -> kd:isNotSuitableFor(?r, ?d) 

 

Listing 2. Logical rule defining the unsuitability of a room 
for any disease. KnowDIP namespace is shortened by kd. 

 
3.2 Knowledge-based data processing 

The processing of point cloud data provided as input is performed 
through the KnowDIP approach. This approach is based on two 
major components, which are the knowledge and a set of 
algorithms. These two components communicate together 
through SPARQL queries (Prud'hommeaux and Seaborne 2008) 
in order to (a) allow the knowledge to guide data processing by 
executing an algorithm, which has been selected and defined as 

executable and (b) allow the algorithm part to enrich the 
knowledge through a representation of the algorithm execution 
result. This knowledge-based approach of data processing has 
shown its performance and ability of adaptation to different 
contexts of application in previous works (Ponciano et al. 2019a), 
whose building indoor context (Ponciano et al. 2019b). It 
processes the point cloud data iteratively through three main 
steps: segmentation, classification, and a self-learning process 
(Ponciano 2019). The approach achieves the segmentation by 
using its knowledge on objects it needs to recognize, data to 
process, and available algorithms to select suitable methods for 
the case study. It then determines the order of algorithm 
execution according to knowledge on algorithm requirements 
and results of previously executed algorithms iteratively. The 
classification process is also performed thanks to knowledge. The 
OWL2 (Hitzler et al. 2009) formulisation describing objects 
creates the possibility of classifying a segment that results from 
algorithm execution by applying logical reasoning. Finally, the 
knowledge-based approach performs a self-learning process to 
tackle the limits of the knowledge description. This self-learning 
process uses the classification result to make hypotheses to 
improve object descriptions and thus their detection. This 
approach, based on AI, provides a flexible object detection and 
results in a KB containing the different objects, their features and 
their topological relationships in the scene are represented inside 
the input data (c.f. processing action 1 in Figure 1). 
 
3.3 Knowledge-based decision support 

The knowledge-based decision support process intends to 
provide a visualization and explanation of each object state. It 
firstly produces an annotated point cloud with colored objects 
according to their states and then give an explanation of that state 
(c.f. processing action 3 in Figure 1). This explanation contains 
both, a list of rooms with their corresponding states and a 
description of objects inside with their associated states that can 
serve as a checklist for unknowledgeable users. The output of the 
proposed approach is generated from the KB component content 
after having applied reasoning on it (c.f. processing action 2 in 
Figure 1). This reasoning process consists of applying expert 
rules, explained in section 3.1 on the object modeling obtained 
from the previous step and represented into the KB. Enriched 
with the several object states, the use of reasoning on a KB for 
decision making provides comprehensible and explainable 
results. Thus, this approach of decision support brings more 
transparency than a majority of DSS based on a black box system. 
Moreover, an IFC file is generated from the annotated point cloud 
by a manual process (c.f. processing action 4 in Figure 1). As a 
major benefit this 3D BIM model contains full building 
information combined with the inferred object states by 
geometric intersection. Thanks to that our results provide a 
detailed visualisation for patient’s entourage and building expert 
community. 
 

4. PROOF OF CONCEPT 

The suggested approach presented in the previous section has 
been tested as part of a proof of concept (PoC). The approach has 
thus been applied on a point cloud representing one investigation 
room, described in subsection 4.1. Our PoC focuses on the 
walking disability of a wheel-chaired person. Expert rules related 
to building object constraints for a wheelchair are presented in 
subsection 4.2. Then, results for each step of the methodology are 
given and graphically illustrated in subsection 4.3 and 4.4 such 
as the result of data processing and the result of the decision 
support system. 
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4.1 Input point cloud of the case study 

For our PoC the S3DIS dataset by Armeni et al. (2016) is used. 
Out of this point cloud, we randomly selected a room and defined 
it as the area of investigation. As illustrated in Figure 2a, the raw 
point cloud is roughly sparse with few occlusions. Despite this, 
constitute room structures and furniture elements can be detected. 
The dataset represents several chairs, a large table in the middle 
of the room and a small cupboard towards the opened door. 
Besides, there is a special ceiling construction and a window at 
the opposite side. Light elements are also available, but are not 
considered in our approach. 
 
4.2 Expert knowledge modeling related to a wheel-chaired 

Rules applied for the PoC have been formulised from the 
requirements described in the German DIN 18040-2 with respect 
to a standard wheelchair of 0.70 × 1.20 m related to barrier-free 
living and unrestricted wheelchair usage. In addition to the three 
global rules concerning rooms (c.f. section 3.1) 21 rules related 
to objects and specific to a wheel-chaired have been added to the 
KB. These rules represent the following assertions:  
 

 A room is not suitable for a wheel-chaired, if 
R1 the floor has any kind of stairs or thresholds above 0.02m. 
R2 there are less than 1.50 × 1.50m free space zones for direction 

changes and manoeuvring. 
R3 there are unmovable objects like tables, cupboards that limit 

the free space zones for movements. 
R4 there is no free parking space of at least 1.80 × 1.50m. 
R5 there is less than 1.20m space for movement in viewing 

direction and 1.50m across. 
R6 areas are more sloped than 3%. 
R7 handles are turning handles or recessed handles. 
R8 the area in front of a door in opening direction is  less than  

1.50 × 1.50m. 
R9 the area in front of a door in reverse opening direction is  less 

than 1.20 × 1.50m. 
R10 handrails are lower than 0.85m or higher than 0.90m 
R11 there exist sharp edges. 
 A room with a door is not suitable for a wheel-chaired, if 
R12 the door opening direction is into the room. 
R13 the door handle is lower than 0.85m or higher than 1.05m. 
R14 the door width is lower than 0.90m. 
R15 the door height is lower than 2.05m. 
 A room with a window is not suitable for a wheel-chaired, if 
R16 the window handle is lower than 0.85m or higher than 1.05m. 
R17 the path to a window is blocked at a distance at ≥1.00m. 
R18 the window opening direction is outside the room. 
R19 the window height above ground is more than 0.60m. 
R20 A room with a table is not suitable for a wheel-chaired, if the 

table surface is lower than 0.80m. 
R21 A room with a cupboard is not suitable for a wheel-chaired, 

if it is higher than 1.30m. 
Table 1. Rules that refer to a barrier-free living and 

unrestricted wheelchair usage for our case study. 
 
Concerning the rule R11, we have defined a sharp edge as an edge 
having an angle under 90°. 
 
4.3 Results of knowledge-based data processing 

As explained in section 3.2, data processing is composed of data 
segmentation followed by an initial classification, which is then 
improved by a self-learning process. Figure 2 shows a visual 
representation of the input point cloud (a) and the results obtained 
after these processing steps (b and c). The segmentation step is 
performed by a region growing algorithm. This algorithm groups 
                                                                 
2  https://github.com/JJponciano/knowdip 

nearby points in the same segment if they have a similar normal 
vector. This algorithm is automatically configured by the 
KnowDIP framework2 according to the objects to be segmented, 
here mainly planar objects, and the data features such as noise or 
density. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Overview of data processing step results: 
input point cloud (a), segmentation result (b), 

object detection result (c). 
 
The result of this segmentation step, illustrated in Figure 2b, is a 
list of segments from which the proposed features such as 
dimension, planarity, location and connectivity are extracted. 
Each segment and its features are then integrated into the KB. 
After this integration, the reasoning on object modeling classifies 
these segments. The results of this classification are used as a 
learning base for self-learning, which adapts the object modeling 
to the specific context of the application case. Adapting the object 
modeling provides a better classification. The final result is 
shown in Figure 2c. 
 
4.4 Results of the decision support 

As explained in section 3.3 of the methodology, the decision 
support result depends on a rule-based reasoning. Table 2 
presents the validation result for the 21 rules defined for the case 
study (c.f. section 4.2). 
 

 validated invalidated 
 

 validated invalidated 
R1  × 

 

R12 ×  
R2 ×  

 

R13 ×  
R3  × 

 

R14 ×  
R4  × 

 

R15 ×  
R5 ×  

 

R16 ×  
R6  × 

 

R17  × 
R7 - - 

 

R18 - - 
R8  × 

 

R19 ×  
R9 - - 

 

R20 ×  
R10  × 

 

R21  × 
R11  × 

 

   
Table 2. Validation result of the case study. Hereby, 

invalidated means there is no information available to 
validate the rule. Empty fields indicate no test candidates. 

 
From the rule validation results, the adapted state has been added 
to each object inside the room. The result of data processing has 
recognised the door and rule-based reasoning has identified its 
dimensions do not fit the requirements. The door has a height of 
2.01m, which validates the rule R15 and a width of 0.82m, which 
validates the rule R14. Furthermore, the door being open during 
the acquisition process, so the data processing has allowed to 
identify its opening direction as into the room, which validates 
the rule R12. The door also has a handle, at a height of 1.05m and 
thus validates the rule R13. With the validation of rules R12-R15, 
the door obtains the isNotSuitable state. The window has a 
handle that is higher than the maximum height for a wheel-
chaired and validates the rule R16. The window also has an above 
ground height superior to 0.60m, which validates the rule R19. 
Thus, the window obtains the isNotSuitable state too. The table 
has a height of 0.7m, which validates the rule R20. Therefore, the 
table obtains the isNotSuitable state. Finally, the free space of the 
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room is not sufficient according to the rule R2. The free space is 
defined according to movable and unmovable objects and was 
calculated as the difference of the room's area to the total sum of 
the area occupied by several objects. If the sum of the area 
occupied by unmovable objects does not provide sufficient free 
space, then these objects are considered as not suitable in terms 
of rule R3. In this case, the area occupied by the table and 
cupboard objects allow sufficient free space. After estimating the 
free space according to the unmovable objects, the same process 
is carried out with the movable objects such as the remaining 
chairs. In this example, the total sum of the chairs also allows 
sufficient free space. However, the chair’s current arrangement 
does not provide a continuous area of 1.50 × 1.50m free space 
concerning rule R2. Because of the movable chair objects that 
can be arranged differently the rule R2 assigns the Need2Adapt 
state to these chairs. The validation of rule R5 is similar to the 
validation of the rule R2, with a change in dimension in the 
computation of free space zones (c.f. Table 1). It also obtains a 
similar result. 
The application of the rule set let’s our MDSS define the state of 
each object according to the disease profile and produces a point 
cloud annotated with the defined states. This annotated point 
cloud is then used to enrich the IFC file illustrated in Figure 3a 
with those states as finally shown in Figure 3b. Red objects 
represent the isNotSuitable state, while green objects mean 
isSuitable. Furthermore, orange objects are relating to the 
Need2Adapt state and different colors represent other objects, 
which have no checkable requirements for a wheelchair usage in 
terms of barrier-free living. 
 

 
(a) 

 
(b) 

Figure 3. BIM of the room of investigation: IFC model (a) 
and result of the reasoning process of our MDSS transferred 

to IFC model (b). 
 
In addition to the point cloud and the IFC file annotated with 
object state, our approach generates an explanation of inferred 
results. Results presented in Figure 3b illustrates the following 
suitability and the need of adaptation from the objects of the 
proof of concept room. Table 3 refers to the justifications of the 
decisions made. 
 

Window is unsuitable due to its handle that is too high. 
due to its height above ground that is  
    higher than 0.60m. 

Door is unsuitable due to an incorrect opening direction. 
due to its handle that is too high. 
due to its width that is too narrow. 
due to its height that is too low. 

Table is unsuitable due to its height that it too low. 
Chairs need to be adapted due to insufficient free space. 
Floor is suitable  
Cupboard is suitable  
Room is unsuitable due to unsuitable window, door and  

    table. 
Table 3. Explanation result of the reasoning process of our 

medical decision support system. 
 

5. CONCLUSION AND FUTURE WORK 

With our research, we take into account demands and wishes of 
an increasingly aging society to live a self-determined life in their 
own houses as long as possible without dangerous restrictions. 

The aim of this research is to develop a transparent decision 
support system as part of an emerging E-Health technology 
supporting aging in place by evaluating living sites. Subjects of 
the evaluation are in particular constitute and furniture objects 
like walls, tables, chairs, which have been processed in terms of 
an individual disease and thus classified as suitable or unsuitable 
for living at home without professional caregivers. For this 
purpose, we used different expert knowledge such as (a) human 
health and (b) building construction into our knowledge base. 
Thanks to that we are able to process 3D point cloud data, which 
describe as-is living sites in a detailed manner and thus delivers 
a great information resource automatically. As a result of the 
knowledge-based reasoning after data acquisition we produce an 
annotated point cloud illustrating objects that are suitable for the 
disease, unsuitable or need adaption towards being suitable 
afterwards. This annotation is transferred later into BIM 
paradigm to achieve more precise visualisation and description 
in building context. We have tested and validated our proposed 
approach in a case study according to the walking disability of a 
wheel-chair bound person successfully. Thanks to the transparent 
processing methodology and the comprehensible output through 
BIM, we expect to reduce scepticism of the elderly towards new 
technology, as our objective is to support patients on the one hand 
and to unburden caregivers on the other.  
In future works we will take into consideration both, a more 
realistic use case with further disease profiles and the automatic 
generation of BIM components through ifcOWL proposed by 
Pauwels and Terkaj (2016). The latter promises to increase our 
level of automation by adding more knowledge from construction 
domain through IFC schema, which provide the entire 
information of BIM components. In addition, an automated BIM 
generation process empowers further developments linked to IoT 
technology aiming intelligent guidance and interaction with 
elderly or residents in general. We will also address the textual 
explanation in order to provide a transparent understanding of our 
OWL results. 
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