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ABSTRACT: 

 

The well-established spread of Remotely Piloted Aircraft Systems (RPAS) as high-performance devices in the acquisition of huge 

datasets has found a fertile field in the geomorphological change detection in coastal areas. The ability to retrieve image datasets 

with multi-epoch frequency makes them effectively incisive for planning ongoing monitoring. Considering the wide accessibility to 

multiple Structure-from-Motion (SfM)-3D point clouds, it follows the need for their proper management to identify a profitable co-

registration approach valid for a proper comparison among them. In most cases the co-registration is inherited from the same 

georeferencing; in other cases, it can be done manually. Unfortunately, these methodologies are time consuming and often do not 

properly consider geometric errors on the models. The purpose of this research work was therefore to analyse an alternative method 

such as the co-alignment of sparse point clouds. Given the independently or co-aligned processed multi-epoch datasets, mean errors 

(ME) and root-mean-square error (RMSE) on Check Points (CPs) were evaluated by adopting different georeferencing strategies. 

Lastly, by first generating dense point clouds and from these the Digital Elevation Models (DEMs), scalar fields regarding DEM of 

Differences (DoD) were computed and allowed to localize any uncertainties δz among the estimated elevations. A cloud-to-cloud 

comparison was obtained using the M3C2 algorithm to extrapolate systematic georeferencing errors and the local deviation between 

models, an evidence of how the method can affect the detectable changes. The co-alignment methodology showed encouraging 

results proving to be a valid alternative to more traditional approaches. 

 

 

 

1. INTRODUCTION 

An accurate and high-resolution mapping of Earth surface is 

essential to describe its morphology and to understand the 

processes that rule the environment (Peppa et al., 2019; 

Capolupo et al., 2020b; Carvalho et al., 2020; Saponaro et al., 

2020b). The baseline information of landform is provided by the 

Digital Elevation Model (DEM) extracted via different methods, 

i.e., for instance, remote sensing and conventional aerial 

photogrammetry (Tarantino, Figorito, 2011; Capolupo et al., 

2018a). Nevertheless, over the years, these techniques have 

shown several limits in monitoring processes at plot scale (i.e., 

an area of sufficient homogeneity to be treated as a single unit), 

mainly due to high costs in terms of data acquisition and 

processing times. Therefore, collecting multi-epoch imageries 

using conventional techniques does not seem convenient at plot 

scale (Laporte-Fauret et al., 2019; Carrera-Hernández et al., 

2020). This has encouraged the spread of alternative 

methodology, like Remotely Piloted Aircraft Systems (RPAS), 

appearing as high-performance devices in the acquisition of 

huge datasets in a short time and at low cost (Capolupo et al., 

2018b; Lamsters et al., 2020). These small and smart aircrafts 

can be used to acquire imagery featured by Ground Sampling 

Distance (GSD) of centimeter-order and an unrestricted 

frequency of revisiting, except for any weather or regulatory 

limits (Ewertowski et al., 2019). These RPAS-based datasets 

can subsequently be processed using Structure-from-Motion 

(SfM) techniques to generate sparse point clouds. Subsequently 

these latter can be thickened with Dense Matching algorithms 

from which then orthomosaics, Digital Elevation Models 

(DEM) or detailed 3D reconstruction of the scene were 

achieved (Caprioli et al., 2007; Jiang et al., 2020; Meinen, 

Robinson, 2020). These are therefore generally identified as 

SfM-products, as the final characteristics are essentially related 

to how the sparse point clouds are processed. 

However, a functional change detection requires repeated 

surveys of the area of interest at the relevant geomorphic time 

scale, sufficient accuracy and precision to correctly interpret 

changes and their relevance (James et al., 2019). Moreover, a 

coherent co-registration among products for any accurate 

comparison becomes crucial (Saponaro et al., 2018; Saponaro et 

al., 2019a; de Haas et al., 2020). It is of key importance that the 

time-differentiated SfM-products are both accurate and spatially 

consistent. Hence, there is a growing need to establish a proper 

management of SfM-clouds starting from their generation up to 

the identification of a viable co-registration approach for a 

proper comparison among them (Coulter et al., 2019; Saponaro 

et al., 2020a). 

In a more traditional approach, co-registration is inherited from 

the georeferencing itself, or else it can be set manually by taking 

one cloud as a reference and overlaying the others in at least 4 

point-benchmarks. Unfortunately, these methodologies are 

time-consuming and often do not adequately account for 

geometric errors on the models (Cucchiaro et al., 2020). The 

lack of a priori knowledge of optimal conditions makes difficult 

to identify a precise number of ground control points (GCPs), 

valid across different scenarios in shape and size. At most, on a 

comparable basis of scenario, technology and methodology 

adopted, the US Geological Survey (USGS) findings suggest 

that a number greater than 10 and with a high accuracy of less 

than 3 cm makes co-registration between models sufficiently 

accurate (Kasprak et al., 2019; Collins et al., 2009).  

In practice, the co-registration procedure was proceeded 

iteratively, reducing the registration root-mean-square error 
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(RMSE) from time to time, significantly lengthening the 

operating time. Automated registration tools, such as 

CloudCompare's Iterative Closest Point algorithm (Peppa et al., 

2019; Cucchiaro et al., 2020), were often used to automatically 

search and match thousands of points to reduce registration 

RMSE below a certain threshold. On the other hand, while co-

registration can be considered as improved, errors can be 

exaggeratedly manipulated. The automated procedure generates 

distortions by exaggerating the fit of the clouds to the reference 

cloud, particularly in cases where the distribution of GCPs is 

not well dispersed. In short, this bias causes the automated 

registration to adjust the clouds to have a lower RMSE but at 

the same time gives them a false shape cause of erroneous 

change detection. 

More recently, (Feurer, Vinatier, 2018) first and (Cook, Dietze, 

2019) later demonstrated that processing multi-epoch datasets 

as a single block in the alignment phase of SfM processing 

allows to compute coherent multi-temporal point clouds. 

Referred to as "Co-Alignment" (Cook, Dietze, 2019), this 

methodology requires aligning a much larger number of images, 

especially when combining multiple surveys. This certainly 

involves a non-linear increase in processing time and requires 

greater hardware capacity, but with an increase in 

computational capabilities aided by the strong parallelization of 

SfM methods (de Haas et al., 2020). (Cook, Dietze, 2019) 

demonstrated that the co-alignment of RPAS-derived images by 

direct georeferencing generates blocks for each dataset 

characterized by orientations comparable to those obtained by 

the classical approach by indirect georeferencing. 

In multi-epoch scenarios the individual epochs are processed 

and combined in a common framework, initially using the poses 

of the various images (Zhang et al., 2020). Subsequently, the 

blocks are optimized using GCPs, collimated in a single 

solution, or by direct georeferencing. Compared to the classical 

approach, co-alignment improves the accuracy of the detection 

of topographical changes by a factor of 4, in the case of indirect 

georeferencing, and by a factor of 3 with direct georeferencing 

(de Haas et al., 2020). Since this topic has only recently become 

an object of study, very little support literature is available.   

The aim of this research work is therefore to analyse the co-

alignment of sparse point clouds as an alternative method of co-

registration. Given the multi-epoch datasets processed 

individually or co-aligned, mean errors (ME) and root-mean-

square error (RMSE) on well-distributed Control Points (CPs) 

were evaluated by adopting different georeferencing strategies. 

Thereafter, running dense matching algorithms, from their 

outputs the Digital Elevation Models (DEMs) were computed. 

Output performance were assessed computing the DEM of 

Differences (DoD), capable of locating any discrepancies 

among the vertical estimations (Wheaton et al., 2010), and 

Cloud-to-cloud comparisons were obtained using the M3C2 

algorithm (Lague et al., 2013), aimed at extrapolating the local 

deviation between models. 

 

2. METHODS 

2.1 Pilot site and field activities  

The rocky shoreline stretch of about 400 m, located in the 

southernmost district of Bari - Torre a Mare (Apulian region, 

Italy) (Figure 1), was selected as pilot site since affected by 

recurrent soil degradation phenomena, such as the collapse of 

cliffs. The area features a rugged coastline with typical stepped 

profile, characterized by an irregular elevation ranging between 

1 and 5 m, with many small sandy bays and coves. 

Data acquisition campaigns were scheduled between 2018 and 

2019 in compliance with national regulations. Specifically, 

RPAS photogrammetric pictures were collected in December 

2018, March 2019, and October 2019. No flight missions were 

conducted between April and September 2019 due to the 

operational restrictions related to the beach season. 

Each campaign was performed adopting a DJI Inspire 1 Pro v.2 

commercial quadcopter, equipped with a 3-axis gimbal fitted 

with a DJI ZenMuse X3 non-metric camera (focal length 3.61 

mm, pixel size 1.56 μm, effective pixels 12.4M). Moreover, a 

low-cost GNSS/INS positioning receiver, set to record RPAS 

geographical coordinates in WGS84 (EPSG: 4326) reference 

system, and a barometer, aimed at storing the flight altitude, 

were used as well. 

The flight plan was programmed to obtain an average Ground 

Sampling Distance (GSD) of about 0.04 m/pix, a forward and 

side overlaps of 85% and 75%, respectively, by applying DJI 

Ground Station Pro application (Capolupo et al., 2020a). This 

ensured to perform all field data campaigns using the same path, 

waypoints and flight conditions (e.g., cruising speed of 4.0 m/s 

and flight height of 100 m Above Ground Level (AGL)). Three 

datasets were built, one from each mission, consisting of 77 

nadiral images.  

 

 

 

Figure 1. Study area depicted by using the textured orthophoto 

generated from the photogrammetric datasets acquired on 

October 16th, 2019, overlapped on a Bing Satellite Map 

(EPSG:3857 - WGS84/Pseudo-Mercator). Points measured in 

the GNSS survey campaign in the three analysed scenarios: i) 

Indirect Georeferencing with 20 GCPs (red dots), ii) Indirect 

Georeferencing with 10 GCPs (marked red dots), Direct 

Georeferencing. CPs (yellow dots) in the three scenarios. 

 

A GNSS survey campaign was also designed by identifying 30 

permanent natural features easily detectable in all RPAS 

imagery (Figure 1). Their position measurements were practiced 

with a Leica Viva CS10/GS10 GNSS receiver in Network Real 

Time Kinematic (NRTK) mode connected to the Leica 

SmartNet Italpos permanent station network. An average 

accuracy of 0.02 m on the measured targets was attested 

(Saponaro et al. 2019a). The system RDN2008/UTM zone 33N 

(NE) (EPSG: 6708) was adopted as reference. 

 

2.2 Photogrammetric workflow 

A processing workflow (Figure 2), consistent with the outcomes 

of previous works (Saponaro et al., 2020c), was planned to 

handle photogrammetric imagery, generating accurate point 

clouds and Digital Elevation Models (DEMs). It was run 
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independently in three separate chunks (DEC, MAR, OCT), 

each of them created to process a specific dataset built from a 

corresponding flight mission. A last fourth chunk (CO) was also 

generated to treat the total of data acquired in all campaigns 

(231 pictures) simultaneously. The multi-chunks processing was 

performed in parallel in Agisoft Metashape (v.1.5.2) software 

on an Intel(R) Core (TM) i7-3970X CPU 3.50GHz workstation, 

featuring 16GB of RAM and an NVIDIA GeForce GTX 650 

graphic cards. 

  

 
Figure 2. General sequence of steps designed for dataset 

processing. 

 

The Workspace Setting is aimed at ensuring the plausibility of 

each subsequent operation (Saponaro et al., 2020c). This step is 

mainly based on the definition of a reference system, needed to 

guarantee the consistency of orientation and scale of the final 

models, and camera calibration parameters, required to 

drastically reduce final error. Indeed, a lack of homogeneity of 

reference systems among acquired data and workspace 

encourages the propagation of errors in the final models (Sanz-

Ablanedo et al. 2020). Without a purposed calibration of the 

parameters of the camera and its lever arm, errors might be even 

more significant. While a self-calibration procedure is 

commonly preferred, this can also be arranged through rigorous 

operations in laboratory (Capolupo et al., 2020a; Saponaro et 

al., 2020d). The Agisoft Metashape software uses Brown's 12-

component lens representation model (Fryer, Brown, 1986): in 

this work the radial and tangential distortion parameters above 

the third order (K3, K4, P3, P4, respectively) were not 

accounted in order to avoid overparameterisation issues (James 

et al., 2017). Lastly, as suggested by (Coulter et al., 2019), the 

illumination variation was balanced using Set Brightness option 

(Table 1) to equalize it across all datasets. 

Once the workspace was defined, the next step was Alignment. 

The software started the algorithms looking for key and tie 

points and their correspondences, image by image. The camera 

pose geometries were reconstructed: given the internal 

orientations obtained from the self-calibration estimates of the 

cameras and the positional information for each pose, a relative 

external orientation of the photogrammetric block was 

calculated (Eltner, Sofia, 2020). A sparse point cloud was thus 

returned. 

Generally, the sparse point cloud undergoes an ideal filtering 

treatment to reduce points characterized by a reprojection error 

above a threshold commonly set at 0.5 pixels. The 

photogrammetric block captures any corrections by 

compensating for estimates of relative image orientation 

quantified in the previous image alignment step. In Agisoft 

Metashape platform, selecting the Gradual Selection item sifts 

through several filtering options. Table 1 shows the filtering 

manipulations carried out on the sparse point clouds, according 

to (Saponaro et al., 2020c). 

In the same step, georeferencing strategies were implemented. 

The coordinates of points measured in the field were loaded into 

the workspace and marked in all images, where distinctly 

visible. Thus, they were randomly split in GCPs and CPs 

without losing the homogeneity criteria in spatial distribution 

(Figure 1) (Awasthi et al., 2020). The former group was useful 

for indirectly georeferencing (IG) the photogrammetric blocks; 

the latter for controlling the final accuracy. Three different 

setups, based on the adoption of i) 20 GCPs (red dots in Figure 

1), ii) 10 GCPs (marked red dots in Figure 1), iii) 0 GCP (Direct 

georeferencing (DG) case (James et al., 2017; Padró et al., 

2019), were carried out per each chunk. Selected CPs (10) were 

not modified in the three examined setups, as shown in Figure 

1. 

Going to the next step, adjustments to the estimates were 

enabled by means of the Bundle Block Adjustment (BBA) 

algorithms using the Optimize Cameras command. This 

command adjusts and refines the scene geometries and camera 

calibration (if authorized) while minimizing squared redesign 

errors between image and photogrammetric block points. The 

software aggregates heterogeneous information useful for BBA 

compensations: GCPs implemented in the block are 

fundamental for their accuracy (Saponaro et al. 2019c; 

Capolupo et al., 2020a). In the case of DG, the position 

information recorded in each image by the RPAS receiver were 

useful, even if they transferred less sizeable corrections due to 

their lower accuracy. The chosen parameterization for the 

performed computations is reported in Table 1, according to 

(Saponaro et al., 2020c). 

 

AGISOFT METASHAPE PARAMETRIZATION 

REFERENCE SETTINGS 

Coordinate System RDN2008/UTM zone 33N (NE) (EPSG:6708) 

Initial Principal 

Point Position  
(xP, yP) (0, 0) 

Camera 

positioning 

accuracy 

3 m 

Camera accuracy, 

attitude 
10 deg 

Marker accuracy 

(Object Space) 
0.02 m 

Marker accuracy 

(Image Space) 
0.5 pixel 
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GPS/INS Offset 

Vector value 

 

∆x = 0.005 ± 0.002 m   

∆y = 0.100 ± 0.01 m  

∆z = 0.250 ± 0.01 m  

PROCESSES PLANNED 

Estimate Image 

Quality 

CO [max, min]: 0.909649, 0.821651 

DEC [max, min]: 0.917886, 0.802005 

MAR [max, min]: 0.919395, 0.808475 

OCT [max, min]: 0.924632, 0.824041 

Set Brightness 

CO [Brightness, Contrast]: 90, 110 (%) 

DEC [Brightness, Contrast]: 110, 93 (%) 

MAR [Brightness, Contrast]: 80, 140 (%) 

OCT [Brightness, Contrast]: 80, 120 (%) 

Alignment 

Cameras 

Accuracy: High 

Generic Preselection: Yes 

Reference Preselection: Yes 

Key Point Limit: 0 

Tie Point Limit: 0 

Adaptive Camera Model Fitting: No 

Gradual Selection 

Reconstruction Uncertainty: 10 

Projection Accuracy: 3 

Reprojection Error: 0.4 

Optimize Cameras K3, K4, P3, P4: No 

Build Dense Cloud 
Quality: Medium 

Depth Filtering: Aggressive 

Table 1. Summary sheet of the parameterization used in Agisoft 

Metashape processing. In Reference Settings, the 

parameterizations adopted are shown in order to make the 

workspace consistent with the instrumental limits and the image 

space of the software used. In Processed Planned, the choices 

made in the processes carried out. In particular, the labels DEC, 

MAR, OCT and CO indicate respectively the datasets of 

December, March, October and the one obtained by Co-

Alignment. In Optimize Cameras only the camera self-

calibration parameters, belonging to the Model of Brown, not 

used in the BBA are reported. 

 

Once the BBA phase was completed, the fourth chunk, related 

to the co-alignment case, was duplicated in three sub-chunks. 

This sub-chunk CO were subjected to a phase of split: precisely, 

in each of them were removed the images respectively referred 

to the acquisitions of (March, October), (December, October) 

and (December, March). Thus, the first sub-chunks involved 

just the pictures captured in December, the second one only the 

images collected in March and the third one just the photos 

collected in October. This operation does not affect the 

orientation of the blocks calculated in the previous step as the 

software maintains the estimates weighed during the Co-

Alignment and BBA phase. 

To evaluate the performance of generated models in all cases, 

Mean Error (ME), planar and 3D-dimensional Root-Mean-

Square Error (RMSEP and RMSE3D), were estimated on CPs for 

the three georeferencing strategies implemented per each 

dataset. Thus, dense point clouds were generated and exported 

into .las format to be processed in CloudCompare software. The 

adopted parameters are reported in Table 1. Lastly, the 

corresponding DEM were generated too. 

 

2.3 DEM of Difference Analysis 

The DEM of Differences (DoD), estimated by subtracting the 

early epoch DEM (DEM1) from the subsequent period DEM 

(DEM2) (Equation 1), is a useful tool to evaluate 

geomorphological changes between multi-epoch surveys 

(Wheaton et al., 2010). 

 

 DoD = DEM1 – DEM2   (1) 

 

Moreover, when computed between DEMs belonging to the 

same epoch, as in the case under this study, it allows to quantify 

the uncertainties on the vertical component of DEMs which 

corresponds to the vertical error component δz. Therefore, it 

may be expressed as in Equation 2: 

 

 δz = Z2 - Z1  (2) 

 

where Z1 and Z2 represent the vertical component of the two 

subsequent DEMs. A high value of δz affects the reliability and 

consistency between the products of the examined outcomes 

since it implies noise presence. Conversely, a low value reveals 

that the two DEMs can be considered as interchangeable in 

terms of elevation. Moreover, in the case of co-registration, it 

indicates how often the software consistently co-registers pairs 

of multi-epoch datasets, giving insight into any detectable 

problems in subsequent automated comparisons (Coulter et al., 

2019). 

 

2.4 Cloud-to-Cloud Analysis 

An appropriate test to examine any registration is related to the 

analysis of spatial trends in the data using a cloud-to-cloud 

comparison (Coulter et al., 2019). In this step, the Multiscale 

Model-to-Model Cloud Comparison (M3C2) implemented in 

the CloudCompare plug-in (Lague et al., 2013) was used to 

calculate the distribution of existing cloud-to-cloud distances 

between equal month and GCPs-implementation datasets. This 

provides an index of cloud-to-cloud variations. M3C2 results 

are affected by the radius (r) value selected to compute it. 

Therefore, identifying its optimal value for the scenario under 

investigation is essential to calculate these distances. (Saponaro 

et al., 2020b) defined the criteria, based on the computation of 

the geometric characteristics of point clouds, such as, for 

instance, roughness and number of neighbors, to detect it. 

Therefore, such features were computed firstly by varying r 

from 0.05 to 0.50 m and identifying the best value of r able to 

descript the most significant geometric entity of the area (i.e., 

the rocky masses) (Di Francesco et al., 2020). The value of r 

was set equal to 0.35 m. 

 

3. RESULTS AND DISCUSSION 

3.1 Photogrammetric outcomes 

Table 2 reports the characteristics of the generated point clouds, 

showing that, in terms of numerical entity, co-alignment 

procedures do not disturb the consistency of photogrammetric 

procedures. Given the inability to detect a precise systematicity 

among the datasets behavior and taking into account the 

considerations reported by (Coulter et al., 2019), it is evident 

that these low numerical variation ΔN is attributable to the light 

conditions at the moment of field data campaigns. Moreover, 

Table 2 allows to also detect the influence of georeferencing 

strategies on the consistency of the final point clouds, showing 

comparable results for the three setups. These findings are also 
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supported by the statistics (ME and RMSE) reported in Table 3. 

In all examined setups, ME and RMSE are in line with the 

standards defined by ASPRS for the digital production of 

cartographic data (American Society for Photogrammetry and 

Remote Sensing (ASPRS), 2015; Saponaro et al., 2019b) 

concerning the different georeferencing strategies. Although 

affected by a greater computational effort with a reduction of 

manual operations, the co-alignment procedure returns 

geometrically robust products (Table 3). Planar RMSE were in a 

range from +2.47% for the CO-MAR case in DG to -7.44% for 

the CO-OCT case in IG (20 GCP). The RMSE3D instead 

obtained all better values than the non-co-aligned cases, in 

particular the best result was always obtained in the CO-OCT 

case with a value of -6.84%. 

Systematic errors are spatially consistent over time, aided by the 

search for matched tie points on multiple timestamps, and thus 

may be discriminate for change detection tasks. 

 

ID GCPs SPC DPC ΔN [%] 

DEC 

0 

111,985 

4,736,385  

10 4,718,898  

20 4,744,114  

MAR 

0 

131,265 

5,166,324  

10 5,151,581  

20 5,163,812  

OCT 

0 

94,550 

4,720,623  

10 4,693,732  

20 4,714,341  

CO-DEC 

0 

113,602 

4,720,623 -0.33 

10 4,693,732 -0.53 

20 4,714,314 -0.63 

CO-MAR 

0 

133,494 

4,969,606 -3.81 

10 4,950,451 -3.90 

20 4,968,757 -3.78 

CO-OCT 

0 

98,860 

4,787,687 +1.42 

10 4,767,307 +1.57 

20 4,782,280 +1.44 

Table 2. Summary of points included in the Sparse Point 

Clouds (SPC) and Dense Point clouds (DPC) for the three 

different setups (0, 10 and 20 GCPs) per each analysed sub-

chunk. Percentage rate (ΔN) between the amount of points 

contained in the co-aligned clouds and the original ones. The 

labels DEC, MAR, OCT indicate respectively the datasets of 

December, March, October; the labels preceded by the prefix 

CO the ones obtained by Co-Split. 

Conversely, by comparing the percentage changes between 

RMSEP and RMSE3D, it is evident that planar components 

affect more the final error than the vertical one since RMSE3D is 

slightly higher in all examined scenarios. Nevertheless, 

georeferencing strategies influence their results since their 

values improves with the increment of the number of GCPs, as 

already discussed by (Capolupo et al. 2020a; Saponaro et al., 

2019b). 

Appreciable improvements, however, can be observed in DG 

cases by adopting the co-alignment methodology. In future 

work it will therefore be encouraging to evaluate possible 

improvements in DG cases by equipping RPAS technologies 

with RTK-GNSS receivers. 

 

 

ID GCPs 
ME 

[m] 

ΔME 

[%] 

RMSEP 

[m] 

ΔRMSEP 

[%] 

RMSE3D 

[m] 

ΔRMSE3D 

[%] 

DEC 0 2.008  1.437  2.047  

10 0.095  0.098  0.108  

20 0.056  0.047  0.059  

MAR 

0 1.856  1.510  1.907  

10 0.096  0.098  0.109  

20 0.057  0.047  0.059  

OCT 

0 3.599  1.281  3.758  

10 0.095  0.099  0.108  

20 0.059  0.047  0.061  

CO-

DEC 

0 1.981 -1,35 1.430 -0,49 2.015 -1,57 

10 0.094 -0,71 0.096 -2,10 0.107 -1,25 

20 0.055 -1,59 0.046 -3,51 0.058 -1,35 

CO-

MAR 

0 1.800 -3,02 1.548 2,47 1.830 -4,05 

10 0.096 -0,33 0.097 -1,22 0.108 -0,39 

20 0.056 -0,98 0.046 -2,81 0.059 -0,65 

CO-

OCT 

0 3.418 -5,03 1.306 1,90 3.575 -4,87 

10 0.093 -2,26 0.094 -5,56 0.104 -3,92 

20 0.055 -6,49 0.043 -7,44 0.057 -6,84 

Table 3. Summary of statistics (mean error (ME), root-mean-

square planar error (RMSEP) and three-dimensional error 

(RMSE3D)) measured on the 10 CPs distributed in the 

investigated scene. For each variable, the comparison between 

the models obtained from conventional and co-aligned 

procedures is presented in terms of percentage (Δ). 

3.2 DoD outputs 

DoDs is a 2.5D raster representation of the elevation grid 

variation between DEMs belonging to the same timestamp 

(Figure 3). Uniformity of color corresponds to the zones with 

absence or extremely low value of uncertainty (δz is close to 

zero); conversely, the inhomogeneity in color is related to 

uncertainty δz on vertical component. The scalar fields in 

Figure 3 showed how the differences between the DEMs, 

returned by running the two alignment methods, attested to 

uncertainty values mostly close to zero. In line with the results 

reported by (Coulter et al., 2019), the most extreme values were 

traced in the outermost areas where noise and distortions are 

commonly non-attenuating, and, consequently, change detection 

studies should be focused on innermost areas. In the DG cases, 

the values increased and were not regular (see DEC case) due to 

the low inherited precision by co-registration. In fact, as noted 

in Table 3, the high variance associated with the low accuracy 

of the image geo-tags transferred a high degree of lability to the 

DG clouds. This caused an equally high δz value and therefore, 

although ME and RMSE values were improved (Table 3), these 

high uncertainties could affect the reliability of any change 

detection. Slight improvements were recorded in georeferenced 

cases with 20 GCPs compared to cases with 10 GCPs, 

demonstrating that except for highly accurate purposes it is 

possible to opt for this latter choice by reducing manual 

operations and processing time. 

The co-alignment methodology did not generate significant 

uncertainties along the vertical component, leaving co-

registration between clouds essentially tied to the 

georeferencing strategy adopted. 
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Figure 3. Representation of the scalar fields 2.5D DEM of 

Difference (DoD) obtained by superposition of DEM processed 

by traditional approach or using co-alignment. 

3.3 M3C2 outputs 

M3C2 plug-in results were presented in Figure 4, providing the 

maximum distance, comprised between +0.752 and -0.752, 

among the clouds: points with no deviation are in green. Once 

again, the highest deviation values were detected on DG 

scenarios because of the tolerances of the receiver on board the 

RPAS. Nevertheless, being the distance uniformly distributed 

across the study area, it was recognized as a systematic error 

mainly due to the relative positioning between clouds which did 

not affect the morphology of the area. In all cases, the highest 

deviations have to be attributed to the noise caused by water 

reflectance and lack of coherence in the outermost areas. 

The case of the MAR dataset, georeferenced with 20 GCPs, was 

emblematic: larger deviations were recorded throughout the 

whole area under investigation, except for the coastal strip, 

which is green. As can be expected, the deviations tend to 

cancel out in the surroundings of the GCPs, demonstrating once 

again the importance of the distribution of GCPs in the 

surveyed area. 

This last test has therefore validated the results already obtained 

in the previous sections, confirming how the co-alignment 

methodology does not produce artifacts or distortions even on 

planar components. The morphology investigated is therefore 

not falsified, thus proving useful in the detection of changes. 
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Figure 4. M3C2 maximum distance obtained by comparing 

dense point clouds derived from the two processing approaches 

for all georeferencing strategies. 

4. CONCLUSION 

The aim of this research work was to analyze the results of the 

sparse point cloud co-alignment process, an alternative method 

of co-registration among point clouds obtained from RPAS. 

For the detection of geomorphological changes based on multi-

epoch photogrammetric products from RPAS, accurate co-

registration of point clouds is essential. Indeed, any 

misalignment of the models representing the analyzed scene 

could be detected as a false change or lead to unreliable 

descriptions. Image co-registration involves the identification of 

correspondence points between images, often GCPs distributed 

across the investigated scene, which simultaneously 

georeference and overlay the datasets to the same reference. The 

detection of these correspondence points has traditionally been 

done manually, requiring considerable human intervention, in 

terms of costs and time. Conversely, under this study, an 

alternative novel methodology was experimented.  

Although conditioned by a greater computational effort but with 

reduced manual operations, the adoption of a co-alignment 

procedure between different datasets returns numerically 

consistent in point density terms and geometrically robust 

clouds. Systematic errors become spatially coherent over time 

because the clouds are the result of the same matched tie points 

on multiple timestamps, and thus be negligible for change 

detection cloud-to-cloud. 

Analysing the georeferencing strategy impact, it is possible to 

deduce that the largest contribution to the error improvement is 

due to the planar components. Overall, it was confirmed a 

relatively better behavior for each georeferencing strategy 

adopting the co-alignment methodology. 
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In differences raster between DEMs, it is evident how the area 

in all cases is characterized by uniformity of δz values close to 

zero, except for the outermost areas characterized by more 

extreme values and therefore higher values of δz. The high 

variance associated with the low accuracy of the image geo-tags 

transfers a high degree of lability to the DG clouds. This causes 

an equally high δz value and therefore although ME and RMSE 

values are improved, these high uncertainties can affect the 

reliability of any change detection.  

Even in the cloud-to-cloud comparison with M3C2 algorithms it 

is found the homogeneity of these deviations therefore showing 

that morphology is preserved in the co-alignment methodology 

but an improvement in cloud co-registration can only be 

obtained with a number greater than 10 GCPs implemented in 

the georeferencing phase. As can be expected, the deviations 

tend to cancel out in the surroundings of the GCPs, 

demonstrating once again the importance of the distribution of 

GCPs in the surveyed area.  

Given the accuracy and reliability of the results, which are 

comparable to the outcomes from classical approaches, the 

detection of geomorphological changes achieved by co-

alignment approaches may become commonplace in RPAS-

SfM-based topographic change detection. The results obtained 

in this work show that a particularly large advantage of co-

alignment is that it forces poor quality surveys to achieve a 

more robust shared geometry, perhaps set by the other surveys, 

which strongly increases the comparability of surveys and the 

accuracy of topographic change detection. 

Future research work can therefore be set up to search for 

variations in geomorphological changes between multi-epoch 

datasets by adopting the two approaches analyzed in this paper.   
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