
3D POINT CLOUD DATA PROCESSING AND INFRASTRUCTURE INFORMATION 
MODELS: METHODS AND FINDINGS FROM SAFEWAY PROJECT 

 
 

M. Soilán 1, *, A. Justo 2, A. Sánchez-Rodríguez2, D. Lamas 2, B. Riveiro 2 

 
1 Deptartment of Cartographic and Terrain Engineering, University of Salamanca, Calle Hornos Caleros 50, 05003 Ávila, Spain; 

msoilan@usal.es 
2 CINTECX, Universidade de Vigo, GeoTECH group, Campus Universitario de Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain; 

(andres.justo.dominguez, anasanchez, daniel.lamas.novoa, belenriveiro)@uvigo.es 
 
 

Commission II, WG II/3 
 
 

KEY WORDS: Point Cloud Processing, Industry Foundation Classes, Infrastructure Modelling, Road Inventory, Railway Inventory 
 
 
ABSTRACT: 
 
Monitoring and digitalization are key to improve the resilience of the infrastructure network in the context of assessing its disaster 
management cycle. SAFEWAY is a project funded by the H2020 framework that aims to assess infrastructure resilience integrating 
multiscale information attending to all modes of disaster management cycle. This work presents the methodologies developed in the 
project for road and rail infrastructure monitoring and modelling, using remotely sensed data from Mobile Mapping Systems (MMS). 
First, 3D point clouds of both road and rail infrastructure are heuristically processed, obtaining geometric and semantic information 
from the most relevant assets, as well as the alignment, which is a key entity for generating information models. Such models are 
computed following the specifications of the Industry Foundation Classes (IFC) 4.1 schema, considering its current limitations and 
future potential for linear infrastructure modelling. Finally, the information is centralized in a core software platform where a user 
interface has been developed to aid visualization and interpretation of the resulting data. 
 
 

 
*  Corresponding author 

1. INTRODUCTION 

Currently, there is an increasing concern regarding the ability of 
the transportation network to function during adverse events, 
and quickly recover to an operational level of service. This 
concern is motivated by two facts: First, the maintenance 
budgets of the transportation network are not evolving 
accordingly with its necessities (European Commission, 2019), 
leading to a faster deterioration of an ageing network; and 
second, the frequency of extreme climate events is likely to 
increase due to climate change. A study by Forzieri et al. (2018) 
projects different climate risks to critical infrastructures, 
estimating an impact of 10 times the present damage by the end 
of the century, being the highest economic losses for industry, 
transport and energy sectors. Thus, the concept of resilience is 
gaining attention, as a quantification of the capacity of a 
transportation network to perform despite the increasing risk of 
extreme events, considering the different phases of the disaster 
management cycle: Prevention, preparedness, response and 
recovery (Alexander, 2002).  
 
In this context, this work presents research methodologies that 
have been developed during the execution of SAFEWAY 
project (SAFEWAY, 2021). It has been funded by the H2020 
framework of the European Commission, under the Smart, 
Green and Integrated Transport programme. Its main focus is to 
develop an Infrastructure Management System (IMS), 
conceived to improve the resilience of the European 
infrastructure by integrating predictive knowledge about the 
potential occurrence of extreme events (natural or human-
made), and knowledge about the infrastructure current 
performance. This includes information about the network given 
by the infrastructure managers (e.g. number of vehicles per time 

unit, accident hot-spots…), and also a multiscale monitoring of 
the facilities, including both satellite (Interferometric SAR) and 
terrestrial (Mobile Laser Scanning) techniques.  
 
In terms of disaster management cycle, infrastructure 
monitoring is an essential pre-disaster activity (Erdelj et al., 
2017), as it can be applied to the assessment of structural health, 
environmental changes or asset inventory. The objective of 
SAFEWAY with respect to infrastructure monitoring is to 
develop an Infrastructure Information Model supported by open 
standards and following the interoperability principles of 
Building Information Modelling (BIM). While BIM is widely 
adopted in the building industry, there is still a major need of a 
standard, neutral exchange format for transportation 
infrastructure (Chong et al., 2016; Costin et al., 2018). That 
challenge is being slowly handled, where the most noteworthy 
effort is the work done by buildingSMART, an international, 
not-for-profit organization that maintains and develops the 
Industry Foundation Classes (IFC) data model. Their latest 
release, IFC4.3 RC2 (BuildingSMART, 2020), is a standard 
candidate that includes different infrastructure domains within 
the data model: Road, rail, bridge, tunnels, and ports and 
waterways. 
 
This opens a new and promising research line: The generation 
of Infrastructure Information Models as IFC-compliant data 
models, by feeding meaningful geomatic data to them. Thus, 
this work will focus on the two main challenges that arise from 
this line of research: (1) The processing of remotely sensed 
data, specifically 3D point clouds, to automatically extract 
geometric and semantic information to feed the information 
models, and (2) The definition of the models, using available, 
open resources to generate IFC-compliant files.  
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Regarding the first of the challenges, the state of the art has 
evolved considerably during the last decade. The growing 
popularity of MMS and the improvements on hardware that is 
able to process and handle 3D point cloud data more efficiently, 
allowed a fast improvement of the methods and algorithms to 
segment and classify 3D point cloud data of infrastructure 
environments. Specifically, this work is focused on two 
different infrastructures: Road and railway.  
 
Road infrastructure has been a common object of study in the 
literature, as the geometric and radiometric information 
provided by MMS is appropriate for road inventory mapping, 
including not only the road pavement itself but also many of its 
assets (Guan et al., 2016). Early approaches estimated the road 
surface using existing algorithms such as RANSAC (Smadja et 
al., 2010) or by extracting road edges using geometric-based 
criteria such as slope (Yoon and Crane, 2009) or the presence of 
curbs (Yang and Dong, 2013). Other works integrate the 
segmentation of the road in a more complex segmentation 
framework that includes the whole road environment, relying on 
heuristics and hierarchical processing (Yang et al., 2015) or 
using supervised machine learning approaches, such as the 
approach in (Balado et al., 2019), where a Deep Learning model 
is trained to classify the main elements of the road environment, 
finding good classification results for the road surface. The 
segmentation of the road surface allows the subsequent 
detection of road markings. The intensity attribute of the 3D 
point clouds has been used as a key feature to detect reflective 
elements such as road markings (Cheng et al., 2017; Guan et al., 
2014). Wen et al. (2019) develop a deep learning framework 
that obtains promising results for road marking segmentation, 
classification and road marking completion, dealing with 
partially occluded markings. Research involving other built road 
assets has been active as well. Traffic signs are typically 
segmented following analogous approaches than for road 
markings, relying on the intensity attribute of the point clouds, 
with the necessity of an extra sensor fusion step, combining 3D 
point cloud and 2D camera information to extract the semantics 
of the traffic signs (Arcos-García et al., 2017; Wen et al., 2015). 
Other assets that have been assessed using 3D point cloud data 
are pole-like objects such as light poles (Yu et al., 2015) or 
guardrails (Matsumoto et al., 2019; Vidal et al., 2020).  
 
Railway infrastructure has received proportionally less attention 
than road infrastructure in the literature, but the existing 
research shows a similar potential for the segmentation and 
classification of 3D point clouds of railway environments. 
Arastounia (2017) presents an algorithm that is able to detect 
rail tracks, contact cables and catenary cables even in complex 
configurations with slops, curves and merging rail tracks, in 
both terrestrial and aerial point clouds. There exist similar 
works that develop supervised machine learning approaches 
instead of relying exclusively on heuristics, such as the work of 
Sánchez-Rodríguez et al. (2018), which uses a Support Vector 
Machine (SVM) algorithm to classify the rails, or Soilán et al., 
(2020), that apply a Deep Learning semantic segmentation 
model (PointNet) to segment 3D point clouds of railway 
tunnels. Recently, Karunathilake et al. (2020) proposed an 
approach to detect different structures on the rail geometry such 
as railway crossings and turnouts, showing that the extraction of 
secondary information such as distance change between tracks, 
or change of levels between rails, is not straightforward and its 
automation requires a complex geometric analysis.  
 
With this context, it is clear that point cloud processing will 
play an important role on as-built modelling processes 

(Pătrăucean et al., 2015). Recent works that generate IFC 
models of bridges from automatically processed point clouds 
(Sánchez-Rodríguez et al., 2020; Zhao and Vela, 2019), and the 
upcoming publication of IFC data models for road and railway 
infrastructures motivates this work, whose main objective is to 
present the relevance of remote sensing in the digitalization of 
linear infrastructure in the context of a European research 
project, showcasing the developed methodologies and 
qualitative results that have been achieved. The contribution of 
this work is twofold: 

• To offer an insight on the developed methods, that 
exploit the promising synergies between the growing 
capabilities of remotely sensed data to obtain precise 
semantics of the infrastructure environment, and the 
need of input data for generating as-built digital 
models. 

• To show how the resulting data from these methods 
are applied on practice to the core platform of 
SAFEWAY, where they are combined with different 
modules aiming to improve the resilience of the 
transportation network. 

 
This work is structured as follows: Section 2 details the case 
study data as extracted from the SAFEWAY pilots and the 
developed methods for point cloud processing and infrastructure 
modelling. Section 3 outlines the results and discusses their 
current potential and limitations. Finally, conclusions of this 
work are shown in Section 4.  
 

2. METHODS.  

This section describes the most relevant aspects of the 
methodologies developed in the project. In Figure 1 a complete 
workflow can be seen, with the interaction of three well-defined 
blocks: (1) Point cloud processing, where semantic and 
geometric data from road and railway environments are 
extracted, (2) Infrastructure modelling, which defines the output 
format of the data from the previous block and generates IFC-
compliant models. (3) SAFEWAY core platform, where the 
infrastructure models are fed into a multiscale software that 
integrates relevant information in all resilience dimensions 
(preparation, response and recovery, mitigation).  
 

 
Figure 1. Workflow of the proposed methodologies. 

 
2.1 Case study data 

Among the four pilots within SAFEWAY project, each of them 
in a different European country, point cloud data from MMS 
has been collected in two of them. In total, the pilots contain 
approximately 300km of road and 110km of railway as 3D point 
cloud data.  
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In order to validate the proposed methods, smaller sections from 
the collected 3D point clouds have been selected. Road case 
study is divided in highway and conventional sections, from 
which approximately 20km of road data have been selected for 
validation of the methods. Similarly, about 90km of railway 
data have been selected for validation. It is also relevant to note 
that urban areas and railway stations have not been included in 
the case study data.    
 
2.2 Point cloud processing 

This subsection offers a description of the point cloud 
processing methods that were developed to fulfil the objectives 
of the project, for both road and railway infrastructure.   
 
2.2.1 Road infrastructure 
 
The objective of the presented methods is twofold: 
 

− To obtain the alignment of the road as a set of 3D, 
structured and consecutive points, as it is an essential 
entity for spatial referencing and positioning in the 
infrastructure model.  

− To extract semantics and geometries of relevant assets 
of the road infrastructure.  

 
The alignment is defined as the central axis of the road. 
Therefore, it can be easily located if the road edges are known. 
For that reason, the proposed approach starts with a ground 
segmentation method, based on Douillard et al. (2011) voxel-
based region growing approach, using the recorded trajectory of 
the MMS for the selection of seed points.  
 
Then, road markings are detected on the ground segment by 
locally analysing transversal sections of the road. The intensity 
attribute of the point cloud is essential for this analysis, as road 
markings have considerably higher intensity values than the 
asphalt. A local analysis is mandatory as this value depends on 
the distance and the incidence angle between the sensor and the 
surface, so applying global thresholds would lead to wrong 
results.  
 
After this detection process, points belonging to road markings 
are still unstructured. Thus, a classification process is proposed 
where road markings are grouped via Euclidean clustering, and 
subsequently analysed, extracting features on each cluster such 
as length along the trajectory, width, or continuity, to define two 
classes of linear markings: solid and dashed. Other road 
markings such as arrows are not considered for this process.  
 
Finally, road edges are extracted by analysing the spatial 
context of the road markings with respect to the trajectory of the 
MMS. That means, linear markings that are further from the 
trajectory at both sides are selected as edge candidates. Then, 
consecutive polynomial curves are fitted to those markings 
confirmed as road edges, and they are sampled with a fixed 
spatial resolution. For each couple of correspondent sampled 
points from both edges, a point of the road alignment is 
computed as the closest point of the road point cloud with 
respect to the coordinates that result of averaging such sampled 
points (Figure 2).  
 

 
Figure 2. The road alignment of this highway section (red 

colour) is defined as de central axis of the road, 
which is delimited by its edges (green colour).  

 
Furthermore, semantics and geometries of other relevant assets 
are also extracted: 
 

• Road markings: Their position and geometric features 
are necessarily known after the extraction of the 
alignment, as explained.  

• Traffic signs: These assets play an important role on 
road safety. They are detected using the intensity 
attribute of the point clouds in a similar fashion than 
road markings, as well as previous knowledge about 
their dimensions and geometry. If the traffic sign is on 
a pole, the geometry of the pole can be also analysed 
for its representation in the infrastructure model. 

• Overpasses location and clearance: Overpasses can 
be detected by searching for the presence of solid 
structures directly over the road segment. Their 
clearance is an important measurement in terms of 
road maintenance, and it can be computed as the 
vertical distance between a reference on the road 
(normally, road edges and alignment) and the height 
of the lower face of the overpass entrance.  

• Guardrails: They are an important asset in terms of 
road safety, that can be detected using previous 
knowledge about its relative position with respect to 
road edges and its geometric features. If the profile of 
the guardrails is known beforehand, as it is usually 
standardized, the infrastructure model will only 
require the positioning of the guardrails from the point 
cloud processing block. 

 
Figure 3 shows a road section where different entities and assets 
are detected on the point cloud. Section 3.2.1 will detail how 
this geomatic information can be used to generate the 
infrastructure model. 
 

 
Figure 3. Semantic segmentation of a conventional road section. 

Road edges (green), alignment (red), guardrails 
(black) and traffic signs (blue) are shown.  
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2.2.2 Railway infrastructure 
 
The objectives and methods developed for railway 
infrastructure are analogous to those of road infrastructure. 
However, the differences between the geometries and elements 
to be defined are significant, hence the methods have to be 
different as well.  
 
Here, rail detection is a key process to define the alignment of a 
railway lane, as they will be analogous to the road edges from 
Section 2.2.1, as a reference to compute the alignment. 
 
The proposed approach starts by isolating the railway track. In 
order to do so, each processed railway section is voxelized and 
then rotated according to the pitch angle of the trajectory 
recorded by the vehicle, so the influence of the slope is 
neglected. Then, a height histogram is computed and the points 
whose height belongs to the largest bin is selected following the 
approach of Arastounia (2015).  
 
A two-step process is defined for detecting the position of the 
rails. In a first step, a rough rail estimation is conducted by 
analysing local differences of point height and point intensity, 
as it is observed that rails are higher and less reflective that their 
local neighbourhood. Then, the roughly selected rail points are 
divided in several sections, transversally with respect to the 
direction of the trajectory, being the length of each section small 
enough to neglect the impact of rail curvature on the subsequent 
steps. For each of these sections, a single point on top of each 
rail is computed by analysing the profile of the rail points (let 
them be Pt). This step has into account rail turnouts, such that 
only one pair of rails – the one followed by the trajectory of the 
vehicle – is considered.  
 
The second step refines the previous estimation by analysing the 
set of points Pt, having into account the presence of false 
negatives in the detection process. Then, a region of interest can 
be built from the refined coordinates of the set Pt based on the 
previous knowledge of the rail dimensions, allowing a fine 
detection of the rails.  
 
Finally, the approach shown in Section 2.2.1 for computing the 
alignment of the road is employed here: Consecutive polynomic 
curves are fitted, and subsequently sampled to obtain a set of 
points delineating the rails. The alignment is defined as the set 
of points resulting of averaging each couple of correspondent 
points from both rails (Figure 4).  
 

 
Figure 4. Railway alignment. Rails (coloured in green) are 

detected and used as a reference to compute the 
alignment (coloured in red) of the railway lane.  

 
The railway environment has different assets whose detection 
and positioning in an infrastructure model is of great interest. 
Considering the points that do not belong to the railway track, 
the following assets are automatically extracted:  

 
• Masts and cantilevers: They are pole-like objects that 

sustain the electrification structure of the railway 
infrastructure. They are detected applying a Principal 
Components Analysis (PCA)-based dimensionality 
analysis on the voxelized point cloud. First, voxels 
whose structure is linear (first eigenvalue significantly 
larger than second and third eigenvalues) and vertical 
are selected, and then clustered and filtered by height. 
A region growing analysis allows to segment the 
masts together with their cantilevers, that support the 
electrical wiring.  

• Wiring: A similar PCA-based approach is applied to 
perform an initial segmentation of the cables, 
considering that wiring has a similar direction than the 
trajectory if projected on the XY plane. Then, wire 
clusters are generated filtering by length, linearity and 
density. Finally, they are classified as catenary or 
contact cable by analysing the spatial relationship of 
the wire clusters on a rasterized version of the point 
cloud on the XY plane.  

• Droppers: Droppers are the elements that join 
catenary and contact cables. They are detected by 
selecting the bounding box of catenary and contact 
cables, removing them afterwards, and clustering the 
remaining points with the DBSCAN algorithm. 
Clusters that are in contact with a catenary-contact 
cable pair are removed are selected and classified as 
droppers.  

• Signs: Sign panels are detected using the intensity 
attribute of the point cloud in a similar manner than 
for the road infrastructure. The presence of signs 
attached to point clusters previously classified as 
masts has to be considered.  
 
Note that these are brief descriptions of the actual 
implementation, hence previous considerations or 
requirements of the data are omitted for simplicity. 
Figure 5 shows a railway section with the results of 
the segmentation process, highlighting the 
aforementioned assets.  
 

 
Figure 5. Semantic segmentation of a railway section. Rails 

(red), masts (blue), droppers (black), wiring (green) 
and signs (yellow) are detected in the 3D point 
cloud. 

 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-239-2021 | © Author(s) 2021. CC BY 4.0 License.

 
242



 

2.3 Infrastructure modelling  

This subsection presents the IFC model building methodology 
used to represent and enrich the information obtained by the 
point cloud processing methods. Differently from them, the IFC 
modelling procedure does not operate in a different manner for 
road and railway. The differentiation is established at an upper 
level of abstraction by setting a spatial structure 
(IfcSpatialStructureElement). This defines a hierarchy where a 
project is divided into sites, which are divided into facilities 
(e.g. road or railway), which are divided into facility parts (e.g. 
road segment). Such a classification aids in the organization of 
the projects and incentives the grouping of elements with 
similar characteristics or close in space. The positioning of 
most, if not all, elements in the infrastructure model is guided 
by the alignment (IfcAlignment / IfcAlignmentCurve). It serves 
as a linear reference system that, besides easing the geometric 
and positioning definitions, ensures that the aligning of one 
asset of the transportation network with another, only depends 
on the alignment. 
 
The placement of elements, however, also requires two 
additional components besides the alignment: a relative point 
definition (IfcDistanceExpression) and an orientation 
(IfcOrientationExpression). The obtention of that point is what 
drives the cloud processing when trying to place a certain kind 
of object in the model. It uses the alignment as a basis curve and 
describes a point in space by a distance along the curve and a 
series of offsets with pre-defined directions that allows the 
description of any point in space (Figure 6). As for the 
orientation, it is extracted from the slope and tangent direction 
of the alignment at the defined point. 
 
Relative to the geometric definition of the different elements 
included in the model, each case has its own details, but most of 
them can be defined using an extrusion operation. This 
operation is defined by the extrusion of a profile (IfcProfileDef) 
along a curve (IfcSectionedSolidHorizontal) or direction 
(IfcExtrudedSolid) for a certain length (Figure 6). The use of 
different parametric profiles allows the creation of a large 
variety of elements. Additionally, this can be further extended 
by defining an arbitrary outer curve of a profile using, for 
example, a polyline (IfcPolyline). The extrusion along a 
direction is used for straight elements such as traffic signs, 
plates or posts. On the other hand, the use of a curve for 
extrusion results in curved elements that follow the shape of the 
used curve. This is the case for the railing of the guardrail and 
the road pavement. 
 

 
Figure 6. Schema of the modelling methodology. The position 

of an asset is defined relative to the alignment, and 
its geometry is extruded from a profile definition.  

 
It is worth noting that the BIM model of the infrastructure 
should not only contain 3D information, but semantics as well. 
This encompasses the identification of individual elements 
(name, description, tag, etc…), their material, relationships to 
one another, and property sets. For instance, lane width, number 
of lanes, and road width of the road were added into the model 
by attaching different property sets to an annotation element 
(IfcAnnotation). The semantic meaning is also fundamental in 
one of the elements previously mentioned, the traffic signs. 
Their intended meaning can be included in the model either in 
the element description or by the use of the previously 
mentioned property sets. 
 

3. RESULTS AND DISCUSSION 

This section presents the most relevant outcomes and 
applications of the presented methods, discussing their utility 
and limitations.  
 
In the context of SAFEWAY, as it was shown in Figure 1, the 
outputs of the point cloud processing methods presented in 
Section 2.2 are sent to the infrastructure modelling block as well 
as to the SAFEWAY data core platform. Similarly, the 
infrastructure models feed the core platform as well. While this 
platform contains several layers (climate associated risks, 
decision support tools) aiming to improve the resilience of the 
infrastructure, the tool within the scope of this work consists of 
a user interface that allows an interactive and navigable 
visualization of the processed point cloud data. In Figure 7a, a 
screenshot of the user interface can be seen, where the user can 
explore the infrastructure from the point of view of the Mobile 
Mapping System, on the 3D point cloud and on a panoramic 2D 
view. Furthermore, the same area is extracted in the satellite 
view from Google Maps. Over it, some of the extracted 
semantics can be seen, as the alignment, the overpass clearances 
or the traffic signs.  
 
Similarly, Figure 7b shows a highway exit section, whose 3D 
point cloud view includes the segmentation results from the 
ground, road markings and traffic signs. In the aerial view, the 
alignment is drawn as a polyline.  
 
While the automation potential of remotely sensed data for 
infrastructure modelling and digitalization is made clear in this 
work, there are still some limitations that must be discussed. 
First, it is important to note that the presented methodologies in 
Section 2.2 are highly based on heuristic processes, with many 
parameters that control the performance of the algorithms. The 
adjustment of those parameters may be dependant of certain 
specifications of the infrastructure typology that may differ 
between regions or countries (e.g., the track gauge of the 
railway network). One of the possible solutions is to perform a 
parameter analysis that select those parameters which have a 
dependence on the type of infrastructure and develop a user 
interface to allow the infrastructure manager to adapt the 
algorithms to their needs. Another option, more attractive in 
terms of research and given the promising results of the 
heuristic-based segmentation methods, is to consider the output 
of those automatic methods as labelled data that can be used to 
train supervised learning models. With the recent advances in 
Deep Learning on the 3D point cloud domain, and the 
possibility of obtaining labelled data from large datasets, the 
development of classification models with better generalization 
properties than the heuristic methods is a clear future line for 
this research.  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-239-2021 | © Author(s) 2021. CC BY 4.0 License.

 
243



 

In terms of infrastructure modelling, the a relevant limitation is 
given by the fact that IFC Road and IFC Rail are yet not 
published as final standards by the time this work is being 
written. Thus, some of the assets that can be modelled do not 
have a semantic representation on the standard, although they 
can be visualized as a 3D model with the appropriate geometry, 
as specified in Section 2.3: The IFC schema presents multiple 
ways to model the geometry of an element. Currently, several 
approaches are being explored, such as the use of simplified 
mesh geometry to represent highly complex elements that are 
not easily parametrized in a tessellated manner. 
However, this limitation is just a matter of time, hence future 
research on the extent of the generation of IFC Road and IFC 

Rail models from 3D point cloud data is expected, leading to an 
automation on the digitalization of the infrastructure.  
 
 
 
 
 
 
 
 
 

 

 
Figure 7. User interface. (a) Different views – 2D and 3D – of the infrastructure, with semantic layers (traffic signs and overpass 

clearance). (b) 3D view with the results of the semantic segmentation of the road. 
 
 

4. CONCLUSIONS 

This paper presents the most relevant results of the 
methodologies developed in SAFEWAY, a H2020 project that 
aims to improve the resilience of the European infrastructure. 
Specifically, this work focuses on the important role played by 
remotely sensed data collected by MMS. Those data allow to 
obtain detailed geometric representations of the infrastructure 
that can be processed to extract meaningful information. This 
work presents a description of different heuristic-based methods 
that perform a semantic segmentation of road and rail 
infrastructures, extracting some of the most relevant assets. 
Furthermore, methods for the automatic computation of the 
alignment of both infrastructures are presented. Then, that 
alignment is employed as the base geometry to generate 
information models as IFC-complaint files. Finally, resulting 
data from both point cloud processing and information 
modelling is fed to the software core platform of the project, 
where it can be interactively visualized, as well as play a role as 
input for the decision support tool that is integrated in such 
platform.  
 

There are some interesting conclusions that can be extracted 
from this work. First, the clear synergy between 3D point cloud 
data for the generation of infrastructure BIM models. In a 
context where digitalization and interoperability are becoming 
more important, the automation of monitorization and 
digitalization tasks is key for an efficient implementation of the 
BIM methodology in the infrastructure field. Furthermore, the 
presented methodologies open new and relevant research lines, 
as detailed in the Discussion: The application of Deep Learning 
to the semantic segmentation of 3D point clouds taking 
advantage of large, labelled datasets; and the upcoming 
publication, as final standard, of IFC Road and IFC Rail.   
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