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schindler@ethz.ch

Commission II

KEY WORDS: Point Clouds, Semantic Segmentation, Deep Learning, Transfer Learning, Domain Adaptation

ABSTRACT:

Deep learning models achieve excellent semantic segmentation results for airborne laser scanning (ALS) point clouds, if sufficient
training data are provided. Increasing amounts of annotated data are becoming publicly available thanks to contributors from all
over the world. However, models trained on a specific dataset typically exhibit poor performance on other datasets. I.e., there are
significant domain shifts, as data captured in different environments or by distinct sensors have different distributions. In this work,
we study this domain shift and potential strategies to mitigate it, using two popular ALS datasets: the ISPRS Vaihingen benchmark
from Germany and the LASDU benchmark from China. We compare different training strategies for cross-city ALS point cloud
semantic segmentation. In our experiments, we analyse three factors that may lead to domain shift and affect the learning: point
cloud density, LiDAR intensity, and the role of data augmentation. Moreover, we evaluate a well-known standard method of
domain adaptation, deep CORAL (Sun and Saenko, 2016). In our experiments, adapting the point cloud density and appropriate
data augmentation both help to reduce the domain gap and improve segmentation accuracy. On the contrary, intensity features can
bring an improvement within a dataset, but deteriorate the generalisation across datasets. Deep CORAL does not further improve
the accuracy over the simple adaptation of density and data augmentation, although it can mitigate the impact of improperly chosen
point density, intensity features, and further dataset biases like lack of diversity.

1. INTRODUCTION

Unordered point clouds in 3D space have become a standard
representation of spatial data, used across a wide range of ap-
plications like digital mapping, building information model-
ling and transportation planning. An important task for many
such applications is semantic segmentation, i.e., assigning a
semantic class label to every point. As manual labelling is
time-consuming and expensive, researchers have for a long
time sought to automate that task. Thanks to deep neural net-
works the accuracy of supervised semantic segmentation has
improved significantly in recent years. But deep learning re-
lies on large quantities of annotated reference data. Labelling
a sufficiently large and diverse training set for every location
and/or every sensor still presents a significant workload and is
not scalable. E.g., labelling 2km2 of ALS data from Dublin
(Ireland) into 13 hierarchical multi-level classes took >2,500
person-hours (Zolanvari et al., 2019). More and more annot-
ated ALS data is available in public datasets and benchmarks,
labelled according to various nomenclatures. If models trained
from such public data (source scenes) could be transferred to
other target scenes, per-project annotation would become ob-
solete. However, in practice almost every project (including the
public datasets) is different in terms of source and target envir-
onment. Machine learning models, in particular deep learning
models, will tend to overfit to the source data and therefore de-
liver poor results when naively applied to new, previously un-
seen target data.

Many studies have explored strategies to mitigate domain
shift and overfitting (from here on simply termed “training

strategies”), so as to employ machine learning when the source
and target data follow different distributions. One natural ap-
proach, often used for point clouds, is data augmentation to ar-
tificially increase the diversity of the training data. Besides,
there are also more formal methods for so-called unsupervised
domain adaptation, meaning statistically inspired strategies to
adapt to a new target distributions for which only data, but
no ground truth annotations, are available. Unsupervised do-
main adaptation has recently shown promise in 2D image pro-
cessing (Wilson and Cook, 2020, Wang and Deng, 2018). Re-
cently, some authors have also started to adopt it for 3D point
cloud interpretation (Wu et al., 2019, Luo et al., 2020, Jaritz et
al., 2020).

Here, we investigate a number of elementary training strategies
for semantic segmentation of ALS point clouds across differ-
ent cities. To that end, we work with two public ALS data-
sets from Germany and China, and transfer models between
them. In terms of semantic segmentation model, we construct
a residual U-net style convolution architecture and employ KP-
Conv (Thomas et al., 2019) as the backbone, due to its proven
performance on ALS point clouds (Varney et al., 2020). In our
experiments, we analyse three factors that may affect general-
isation across cities: (i) the point density that is fed into the
network; (ii) the augmentation method employed to synthetic-
ally increase data diversity; and (iii) the influence of intensity
features (on top of pure point coordinates). Furthermore, in-
spired by the success of unsupervised, statistical domain adapt-
ation in image processing, we also evaluate the effectiveness
of a widely known method, deep CORAL (Sun and Saenko,
2016). We find that elementary measures, like setting a suitable
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point density and augmentation, significantly benefit cross-city
generalisation, whereas deep CORAL does not further improve
over them. On the contrary, intensity complicates generalisa-
tion and might best be discarded when the generality of the
model is desirable.

2. RELATED WORK

This section reviews recent developments of point cloud se-
mantic segmentation, and associated training strategies aimed
at improving generalisation.

2.1 Semantic Segmentation Techniques for Point Clouds

Point cloud semantic segmentation is a supervised classifica-
tion task. Shallow machine learning classifiers with manu-
ally designed features have been the traditional way to ad-
dress the problem, including for example support vector ma-
chines (Zhang et al., 2013), random forests (Weinmann et al.,
2015, Hackel et al., 2016), and Adaboost (Wang et al., 2014).
The crucial step in this setting is feature extraction. For point
clouds, the most common features are basic geometric prop-
erties, height-based features if the gravity direction is known,
and features based on eigenvalues of the local point distribution
(Weinmann et al., 2015, Hackel et al., 2016, Xu et al., 2019).
Besides, graph-based neighborhood models such as conditional
random fields have been utilised as a post-processing step to
smooth the per-point labels (Landrieu et al., 2017).

In recent years, deep learning has become the dominant ap-
proach for point cloud analysis. It requires no feature engin-
eering and achieves better performance for many tasks includ-
ing semantic segmentation. Deep learning-based methods can
be sorted into three main categories: image-based, voxel-based,
and point-based (Xie et al., 2020). Image-based methods pro-
ject point clouds to image-like 2D representations, then ap-
ply 2D convolutions to them (Boulch et al., 2018, Yang et al.,
2017). Their main shortcoming is that they do not fully exploit
the 3D geometry. Another solution is to discretise the point
cloud to a regular, ordered voxel grid and then use regular 3D
convolutions (Tchapmi et al., 2017). Voxel-based deep learn-
ing is time-consuming and memory-hungry, so most methods
now exploit the sparsity of the voxel space and employ sparse
convolutions (Choy et al., 2019, Graham et al., 2018) that only
operate on non-empty voxels. Point-based methods include dif-
ferent techniques that make it possible to operate directly on the
point cloud. They mainly differ by the way they define the ker-
nels. The pioneering PointNet (Qi et al., 2017a) simply replaces
convolution with a more general multi-layer perceptron (MLP).
However, PointNet only learns global features, but not local
ones. To overcome this limitation, PointNet++ was proposed,
which captures local features via an image pyramid-like hier-
archical aggregation (Qi et al., 2017b). Several recent works
instead design explicit convolution kernels for point clouds.
Among them, KPConv (Thomas et al., 2019) has demonstrated
high efficiency and good performance for point cloud semantic
segmentation, notably for large, mobile-mapping type outdoor
scenarios.

Also for ALS point clouds, deep learning is increasingly being
the method of choice. PointNet/PointNet++ has been widely
utilised as network backbone, since it appeared earlier (Yousef-
hussien et al., 2018, Lin et al., 2020, Huang et al., 2020). More
recently, PointCNN (Arief et al., 2019), graph convolutions
(Wen et al., 2021), spatially sparse convolution (Schmohl and

Sörgel, 2019), and KPConv (Varney et al., 2020, Lin et al.,
2021) have also been adopted and have achieved good results
on ALS data.

2.2 Training Strategies for Point Clouds

Data augmentation is an elementary training strategy for deep
learning tasks (Shorten and Khoshgoftaar, 2019). Rotation,
scaling, symmetry, random noise, and randomly removing
points are common augmentation operations for point clouds
(Chaton et al., 2020, Thomas et al., 2019). By synthetically in-
creasing the diversity of patterns in the data, they can help to
prevent overfitting when training data is limited. Recently, it
has also been proposed to learn the data augmentation (Chen et
al., 2020, Li et al., 2020).

While, at first glance, deep learning continues to set the state
of the art on many public benchmarks, the situation in reality
is more complex. The excellent performance is achieved only
when trained on data from the same dataset, i.e., recorded in
the same (or a very similar) environment with the same sensor
setup. Effectively, the semantic segmentation easily overfits to
the unique, specific conditions, so that domain shifts exist even
between seemingly similar datasets. From this extreme special-
isation, due to the high capacity of deep networks, arises a need
for domain adaptation. This was first observed for 2D images
(Wilson and Cook, 2020, Wang and Deng, 2018), but more re-
cently also explored for various 3D point cloud analysis tasks.
In the setting of self-driving scenarios, (Langer et al., 2020, Wu
et al., 2019) first project LiDAR point clouds to images and then
apply imaged-based domain adaptation on them to aid semantic
segmentation. For the important, point cloud-specific domain
shift of density differences, (Yi et al., 2020) formulate domain
adaptation as a complete-and-label problem. A voxel comple-
tion network is proposed to fill in gaps between the source and
target data, so they have similar density. xMUDA (Jaritz et al.,
2020) utilises cross-modal learning with images to address the
domain shift between point clouds in road scenes. Mutual in-
formation from cross-modal features is shown to improve se-
mantic segmentation. These works are aimed at point cloud
semantic segmentation, but the domain adaptation strategies do
not directly operate on uni-modal point clouds. Towards dir-
ect point cloud domain adaptation, (Luo et al., 2020) propose
a framework that jointly aligns data and feature distributions
of MLS point clouds, with a small network to refine the eleva-
tion of target data and an adversarial network to align the fea-
tures. (Peng et al., 2020) also address domain adaptation with
adversarial learning and demonstrate their method for two sim-
ilar ALS datasets (captured in the same region) and for an ALS
dataset and a MLS dataset.

3. METHODOLOGY

We are not aware of any systematic comparison of different do-
main adaptation strategies for point clouds. In this work, we set
up a state-of-the-art semantic segmentation pipeline, with KP-
Conv as the backbone, and compare several basic and practical
training strategies. We run experiments under different condi-
tions in terms of input point cloud density, data augmentation,
and the use of intensity features. Beyond these “hand-designed”
manipulations of the input data, we also test a classical, well-
established domain adaptation algorithm, deep CORAL (Sun
and Saenko, 2016).
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3.1 Semantic Segmentation by KPConv

KPConv (Thomas et al., 2019) is a direct point cloud convolu-
tion operator, based on the idea to approximate the continuous
convolution operator in a local, spherical 3D neighbourhood.
Let pi and fi be points from a point cloud P ∈ RN×3 and their
corresponding features from F ∈ RN×D. The point convolu-
tion at a point p ∈ RN×3 is denoted as follows:

(F ∗ g)(p) =
∑

pi∈Np

g(pi − p)fi , (1)

where g is the kernel function of KPConv. Np = {pi ∈
P | ‖pi − p‖ ≤ r} represent neighbour points of p within a
fixed radius r ∈ R. In KPConv, g takes the those neighbours
centered on p as input to the convolution. The domain g is
defined as a 3D sphere:

B3
r = {q ∈ R3 | ‖q‖ ≤ r} , (2)

where qi = pi − p.

KPConv provides two kernel versions, a rigid and a deformable
one. In the former, the kernel points are distributed in a fixed
layout within the sphere, whereas the deformable one allows
for learned shifts of their positions. In practice, deformable KP-
Conv does not outperform the rigid version on scenes lacking
diversity such as ALS point clouds (Thomas et al., 2019, Lin et
al., 2021) but requires more GPU memory and run time. Hence,
we use rigid KPConv in this work.

In our experiments we use the authors’ original PyTorch-based
implementation (https://github.com/HuguesTHOMAS/
KPConv-PyTorch). Our semantic segmentation embeds
KPConv in a U-net architecture (Ronneberger et al., 2015),
following ResNet block design (He et al., 2016) in the encoder.
Each convolution layer in this network is followed by batch
normalization (BN) (Ioffe and Szegedy, 2015) and a Leaky
ReLU activation (Maas et al., 2013). Grid sampling is em-
ployed as the sub-sampling strategy to reduce the density and
increase the context along the layers. Hence, the data in each
layer are the center points of regularly spaced grid cells. The
convolution sphere radius ri for the i-th layer is adjusted by a
corresponding factor α, i.e.,

ri = αli , (3)

where li and ri denote the grid size and convolution radius in
the i-th layer. Due to limited GPU RAM, the size of the input
sphere, and thus the size of the receptive field in the network,
are dependant on the grid spacing of first sub-sampling: wider
spacing causes stronger down-sampling (with potential loss of
information), but on the other hand allows for a larger receptive
field (with more context).

3.2 Domain Adaptation by Deep CORAL

Correlation alignment is a popular, representative statistical al-
gorithm for unsupervised domain adaptation. It tries to min-
imise the domain shift by aligning the second-order statistics
of source and target feature distributions, which can be done
without any labels for the target domain. We adopt a deep ver-
sion of correlation alignment, named deep CORAL (Sun and
Saenko, 2016), which can be directly integrated into any neural
network architecture.

Deep CORAL imposes the correlation alignment as a soft con-
straint, via the loss function. The CORAL loss is defined as the
distance between the second-order statistics in the source and
target feature matrices:

LCORAL =
1

4d2
‖CS − CT ‖2 , (4)

with CS and CT the source and target feature covariance
matrices. During training, LCORAL is minimised with mini-
batches from the training set of the source domain and the target
domain. The intuition behind deep CORAL is to “deform” the
source and target feature distributions such that they match up
to second-order statistics, assuming that the class-conditional
distributions will then match better, too.

Multiple CORAL loss functions over different activation layers
within the network can be combined, and added to the semantic
segmentation loss Lseg , to obtain a joint loss function:

Ltotal = Lseg +

t∑
i=1

λ(i)L(i)
CORAL , (5)

where t is the number of layer-wise CORAL losses and λ(i) is
the weight coefficient of the i-th CORAL loss.

We train our KPConv-based residual U-net with standard cross-
entropy loss for Lseg . Empirically, CORAL terms for lower
layers did not have much influence, so we only align the fea-
ture maps of the last activation layer with a single CORAL loss
LCORAL. The network architecture is depicted in Figure 1. xSi

and xTi represent input source and target samples, respectively.
ySi is the set of input labels (given only for the input source
data).

Figure 1. Illustration of the network structure.

4. EXPERIMENTS

4.1 Datasets

Two ALS point cloud benchmark datasets are adopted for the
evaluation: the ISPRS Vaihingen benchmark (Cramer, 2010,
Rottensteiner et al., 2012) and LASDU (Ye et al., 2020). ISPRS
Vaihingen was captured with a Leica ALS50 system from an
average flying height of ≈500m in Vaihingen, Germany; while
LASDU was captured with a Leica ALS70 system at an average
flying height of ≈1200m in a town of northwest China, which
is a part of the HiWATER (Heihe Watershed Allied Telemetry
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Experimental Research) project (Li et al., 2013). The original
labels of LASDU (6 classes, including a rejection class “unclas-
sified”) and ISPRS Vaihingen (9 classes) are different. How-
ever, for evaluation purposes the label sets of the two domains
should match. Hence, we map the 9 classes of ISPRS Vaihingen
to the 6 classes of LASDU, following the classification rule of
LASDU. The “powerline” class of ISPRS Vaihingen is mapped
to “others”, as no powerlines are labelled in LASDU. Points
with label “others” are used for training, but are ignored in the
quantitative evaluation. Table 1 shows the mapping between the
two label sets.

Classes of ISPRS Vaihingen Mapped classes Classes of LASDU
Impervious surfaces Ground Ground

Roof, facade Building Building
Tree Tree Tree

Low vegetation, bushes Low vegetation Low vegetation
Car, fence/hedge Artifact Artifact

Powerline Others (Ignored) Unclassified

Table 1. Class mapping for ISPRS Vaihingen and LASDU point
cloud datasets.

The ISPRS Vaihingen benchmark contains defined training and
test portions. LASDU consists of four portions. It is recom-
mended to use files 2 and 3 as the training data, and 1 and 4
as the test set for semantic labelling (Ye et al., 2020). Table 2
shows the number of points in each class for both datasets.

Mapped classes ISPRS Vaihingen LASDU
Training Test Training Test

Ground 193,723 101,986 704,425 637,257
Building 179,295 120,272 508,479 395,109

Tree 135,173 54,226 204,775 108,466
Low vegetation 228,455 123,508 210,495 192,051

Artifact 16,684 11,130 66,738 53,061
Others (ignored) 546 600 33,206 12,659

Table 2. Point distributions in ISPRS Vaihingen and LASDU
datasets.

4.2 Experiment Setup and Evaluation Metrics

Three experiments have been run. Each experiment includes six
cases, obtained by using IPSRS Vaihingen (V H) or LASDU
(LS) as source and target datasets and switching on (w DC) or
off (w/o DC) correlation alignment with deep CORAL. Writing
A → B to denote training on dataset A and testing on B, the
six cases are: V H → V H , LS → V H (w/o DC), LS → V H
(w DC), LS → LS, V H → LS (w/o DC), and V H → LS
(w DC). In section 4.3, the influence of input grid size, i.e.,
point density is investigated. In section 4.4, the role of data
augmentation is assessed. Section 4.5 explores how intensity
features affect accuracy and generalisation.

In all experiments, the batch size is set to 8 and α in equation
3 is set to 2.5. Training with stochastic gradient descent (SGD)
is run for 60,000 iterations, at which point the loss function
has always converged. The initial learning rate is set to 0.01
and decays at a rate of 0.1 every 7,500 iterations when train-
ing on V H , respectively decays at the same rate every 12,500
iterations when training on the larger LS. Data augmentation,
including random rotation around the z-axis, random scaling,
random symmetry about the x-axis, and Gaussian noise, is al-
ways applied except for the dedicated experiments without data
augmentation in Section 4.4. The scaling factor is randomized
within [0.8, 1.2]. The standard deviation σ of Gaussian noise
is set to 5cm. When using correlation alignment the weight
coefficient λ = 1.0. Since KPconv can only operate on limited

(spherical) subsets of a large point cloud, we adopt the authors’
voting strategy during testing and average the estimated class
probabilities of each point, obtained from at least 20 different
sphere samples. Training and testing were performed on a Ge-
force RTX 2080 Ti GPU with 11GB RAM.

Following the ISPRS Vaihingen benchmark, all results are eval-
uated in terms of overall accuracy (OA) and F1 score.

F1i =
2TPi

2TPi + FPi + FNi
, (6)

OA =

n∑
i=1

(
TPi

TPi + TNi + FPi + FNi
) , (7)

where i is the class index and TP refers to the number of true
positives, FP the false positives, TN the true negatives, FN the
false negatives.

4.3 Experiment I: Evaluation of Input Point Density

As explained in Section 3.1, an important hyper-parameter of
KPConv is the input point cloud density, i.e., in our setup
defined via the grid size. A trade-off has to be found between
input density and receptive field size. We test three settings for
the grid spacing l: 0.25m, 0.5m and 0.8m. These correspond
to input context spheres of radius 13m, 25m and 40m, respect-
ively. When l is bigger, the network can see a larger region, but
with sparser sampling and thus less geometric details and less
information on small objects. Data augmentation as described
in Section 4.2 is used in all runs. LiDAR intensities are not
used.

Table 3 shows that the best generalisation results, for both
V H → LS and LS → V H , are achieved when l = 0.5m.
Still, a clear domain shift exists. The OA of LS → V H (cross-
city) is 9 percent points (pp) lower than that of V H → V H
(within-city). Similarly, the OA of V H → LS is 10.5 pp lower
than that of LS → LS. The F1 scores are also lower across
all classes. Deep CORAL has a negative impact on the overall
accuracy, due to more mistakes on the large ground and veget-
ation classes. We note that in case of non-optimal sample dens-
ity l deep CORAL has a mild positive effect. In V H → LS
(l = 0.25m), LS → V H (l = 0.25m) and LS → V H
(l = 0.8m), the OA increases between 0.7 and 2.2 pp. It seems
that aligning the feature distributions somehow mitigates the
domain difference for features derived from points sampled at
sub-optimal density. An example for LS → V H is shown
in Figure 2. Note that at overly coarse sampling (0.8m) large
areas of ground points along roads are misclassified as low ve-
getation, and deep CORAL corrects these errors. However, at
proper sampling density of l = 0.5m, the mistakes do not hap-
pen in the first place, so there is no room for improvement.

4.4 Experiment II: Evaluation of Data Augmentation

Deep neural networks require large training sets to avoid over-
fitting. Data augmentation is a technique to synthetically in-
crease the sample size by manipulating existing samples in
plausible ways. Table 4 presents results for the same settings
as above for grid spacing l = 0.5m, but without data augment-
ation, compared to Table 3. Again, LiDAR intensity values are
not used.

Comparing the numbers in Tables 4 and 3, we see that cross-
city generalisation suffers if data augmentation is disabled. The
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Input grid size Settings OA Ground Building Tree Low vegetation Artifact

l = 0.25m

V H → V H 0.8421 0.8427 0.9362 0.8272 0.7830 0.4306
LS → V H (w/o DC) 0.7433 0.7279 0.8683 0.7475 0.6765 0.0145
LS → V H (w DC) 0.7536 0.7862 0.8722 0.7986 0.5792 0.1002

LS → LS 0.8575 0.8892 0.9679 0.8670 0.5979 0.4025
V H → LS (w/o DC) 0.6809 0.7696 0.8099 0.8458 0.3677 0.0904
V H → LS (w DC) 0.6882 0.7616 0.8323 0.8627 0.3980 0.1172

l = 0.5m

V H → V H 0.8724 0.9021 0.9504 0.8376 0.8165 0.4735
LS → V H (w/o DC) 0.7812 0.8017 0.9038 0.7859 0.6705 0.3163
LS → V H (w DC) 0.7290 0.7348 0.9209 0.8244 0.4509 0.2469

LS → LS 0.8683 0.9044 0.9642 0.8652 0.6382 0.4744
V H → LS (w/o DC) 0.7638 0.8188 0.8892 0.8653 0.3935 0.1246
V H → LS (w DC) 0.7181 0.7576 0.9087 0.8585 0.4086 0.0844

l = 0.8m

V H → V H 0.8646 0.8902 0.9456 0.8322 0.8069 0.4730
LS → V H (w/o DC) 0.7422 0.7782 0.8508 0.7368 0.6145 0.3079
LS → V H (w DC) 0.7641 0.8026 0.8717 0.7548 0.8717 0.1581

LS → LS 0.8537 0.8860 0.9664 0.8665 0.5361 0.4306
V H → LS (w/o DC) 0.7409 0.8088 0.8696 0.8699 0.3981 0.1232
V H → LS (w DC) 0.6462 0.6348 0.9329 0.8573 0.3200 0.1294

Table 3. Results with different input grid spacing. Data augmentation was carried out but intensity features were not used.

Figure 2. Example visualisation (experiment I).

OA decreased by 8 pp and 6 pp for LS → V H and V H → LS,
respectively. Deep CORAL manages to mitigate that perform-
ance drop, improving OA by 2.8 pp and 4.2 pp, correspondingly.
However, its impact is again class-specific and the F1 scores of
several classes are decreased significantly. In particular, in the
V H → LS test the F1 scores for trees and buildings are lower
than before, and the score for artifacts even drops to 0.

4.5 Experiment III: Evaluation of Intensity

This experiment additionally assesses the role of intensity fea-
tures, which one might expect to also influence cross-city gen-
eralisation. In the original ISPRS Vaihingen and LASDU data-
sets, the LiDAR return intensities have already been scaled to
[0, 255], so we directly concatenate them with the 3D point co-
ordinates and feed the resulting 4D points to the network. Table
5 shows segmentation results with added intensities, at density
l = 0.5m, with data augmentation, compared to Table 3. Intens-
ities do improve the within-city results slightly for V H → V H
and more significantly for LS → LS, especially the separa-
tion of ground and low vegetation. This makes sense, as the
two classes are difficult to distinguish based only on geomet-
ric features – they both share low height and mostly horizontal,
planar layout. However, the performance for both LS → V H
and V H → LS drops significantly when using also intens-
ity. OA decreases by 5 pp for LS → V H , and even by 27
pp for V H → LS. As can be seen in Figure 3, the classifier
trained on V H misclassifies large regions of ground in LS as
low vegetation. One can see that the intensity distributions of
the two datasets differ significantly (Figure 3a and 3b), with al-
most all ground points in V H having low intensities<45, while
in LS the intensities concentrate in the range [90, 150]. Thus,
involving intensities widens the domain gap. As in Section 4.4,
domain adaptation slightly mitigates the drop in OA, but does
not resolve the main issues.
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Settings OA Ground Building Tree Low vegetation Artifact
V H → V H 0.8329 0.8537 0.9275 0.8029 0.7665 0.4360

LS → V H (w/o DC) 0.7005 0.7885 0.7453 0.6361 0.6468 0.2725

LS → V H (w DC) 0.7281 0.7612 0.8800 0.7673 0.5564 0.2012

LS → LS 0.8608 0.8921 0.9692 0.8701 0.5750 0.4578

V H → LS (w/o DC) 0.7032 0.7749 0.8370 0.8371 0.3758 0.0886

V H → LS (w DC) 0.7455 0.8537 0.7626 0.6184 0.7499 0

Table 4. Results without data augmentation (l = 0.5m). Intensity features were not used.

Settings OA Ground Building Tree Low vegetation Artifact
V H → V H 0.8775 0.9153 0.9454 0.8291 0.8247 0.5595

LS → V H (w/o DC) 0.7302 0.7749 0.8549 0.7499 0.5363 0.2891

LS → V H (w DC) 0.7433 0.7571 0.9269 0.7934 0.5091 0.3874

LS → LS 0.8939 0.9225 0.9686 0.8736 0.7461 0.4517

V H → LS (w/o DC) 0.4897 0.2649 0.8748 0.8608 0.3241 0.0981

V H → LS (w DC) 0.5106 0.3634 0.8434 0.8217 0.3471 0

Table 5. Results with intensity (l = 0.5m). Data augmentation was carried out.

Figure 3. The inference result visualisation (experiment III).

Figure 4. Confusion matrices.

4.6 Further Analysis

Confusion matrix. To analyse the class-wise effect of the
domain shift, we inspect confusion matrices of V H → LS,
LS → LS, LS → V H , and V H → V H , for the best-
performing spacing l = 0.5m. In Figure 4 it can be seen that
an obvious issue in both the V H → LS and LS → V H res-
ults is indeed the confusion between low vegetation and ground,
due to their similar geometric characteristics. Within one data-
set intensity can to some degree compensate the mistake, but it
even extends the gap between the two point clouds. Arguably,
the two large classes associated with the ground are the main
challenge for domain adaptation between V H and LS.

Minority class. Minority classes, in our case especially arti-
facts, appear to be negatively affected by domain adaptation
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with deep CORAL. In extreme cases, e.g., V H → LS (w
DC) in Tables 4 and 5, the F1 score even drops to 0. There
are multiple potential reasons for this behaviour. On the one
hand, the deep CORAL loss is calculated without taking into
account the classes (which are unknown for the target distri-
bution). Rare classes will therefore have almost no influence
on the adaptation. And the resulting warping of the feature
space, optimised to accommodate the dominant classes, can be
counter-productive. On the other hand, an aggravating factor
might also be that the artifact class contains a too large vari-
ety of objects in LASDU, including walls, fences, light poles,
vehicles, etc. The corresponding, wide and diffuse set of fea-
tures each valid only for few examples might lead to a com-
plicated feature distribution not sufficiently characterised by the
second-order statistics.

5. CONCLUSION

We have empirically investigated cross-city learning of se-
mantic segmentation for ALS point clouds, using example data-
sets from Germany and China. Three factors were considered
that all affect the results, and a representative, generic domain
adaptation strategy was evaluated. Our experiments indicate
that data augmentation and proper choice of the input density
play an important role and can significantly boost generalisa-
tion performance. On the contrary, LiDAR intensities exhib-
ited stronger differences between datasets and might better be
avoided, as they negatively impact performance across datasets.
As for unsupervised, statistical domain adaptation with deep
CORAL, we found that when training conditions are not op-
timal (e.g., intensities present or point density not well chosen)
it brings a mild improvement, however it did not resolve the im-
portant problems and affected different classes rather unevenly.
Elementary design choices, like choosing the right input dens-
ity and using data augmentation, were much more important
to achieve acceptable generalisation. Surprisingly, when those
were set to support generalisation in the best possible way, cor-
relation alignment even deteriorated the result by reinforcing
class-dependent biases.

In future work we would like to develop domain adaptation
methods that are better suited for semantic segmentation of
ALS point clouds. Another important step for future research
will be to introduce datasets with larger class nomenclatures, to
analyse and tackle domain adaptation for application scenarios
with more fine-grained semantics.
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