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ABSTRACT:

Collective perception of connected vehicles can sufficiently increase the safety and reliability of autonomous driving by sharing
perception information. However, collecting real experimental data for such scenarios is extremely expensive. Therefore, we built a
computational efficient co-simulation synthetic data generator through CARLA and SUMO simulators. The simulated data contain
image and point cloud data as well as ground truth for object detection and semantic segmentation tasks. To verify the superior
performance gain of collective perception over single-vehicle perception, we conducted experiments of vehicle detection, which
is one of the most important perception tasks for autonomous driving, on this data set. A 3D object detector and a Bird’s Eye
View (BEV) detector are trained and then test with different configurations of the number of cooperative vehicles and vehicle
communication ranges. The experiment results showed that collective perception can not only dramatically increase the overall
mean detection accuracy but also the localization accuracy of detected bounding boxes. Besides, a vehicle detection comparison
experiment showed that the detection performance drop caused by sensor observation noise can be canceled out by redundant

information collected by multiple vehicles.

1. INTRODUCTION

Autonomous driving promises to release humans from tedious
driving tasks and increase traffic efficiency, for example, by pla-
tooning and car-sharing. However, there are still many security
problems waiting to be solved. The source of such issues comes
either from the incompleteness, such as occlusions and limited
field-of-view (fov), and imperfection, such as observation noise
of the data collected by sensors or from the uncertainty intro-
duced by data processing such as the black-box property of ma-
chine learning.

Many algorithms have been developed to aggregate and fuse the
data collected by different sensors of the same vehicle (

s ) to address the first issue. However, they can not
efficiently resolve the occlusion problem based on the fov of
a single vehicle. To this end, smart-intersection ( s

; , ) is proposed to mitigate occlusion by
sharing the Bird’s Eye View (BEV) observation from infrastruc-
ture with traffic participants. This method is simple and effi-
cient for intersections with busy traffic but not applicable to all
driving scenarios considering their static property. Therefore,
we propose COllective Multi-Agent Perception (COMAP), a
distributed perception system that is based on vehicle-to-vehicle
(V2V) scenarios and shares information across vehicles. Each
autonomous vehicle is regarded as an agent in the V2V net-
work, hence the term Multi-Agent. Data fusion of COMAP can
happen in different stages of data processing. According to the
processing stages, the methodologies of COMAP can be cat-
egorized into three types: raw data fusion (RDF), deep feature
fusion (DFF), and fully processed data fusion (FDF).

Collective perception is not a new concept, it has been re-
searched for about one decade. However, most of the developed
methods under this context fuse the fully processed data, such

as predicted objects ( s ; ,
; , ). In the recent two years, along

with the maturation of different high-performance perception

algorithms and simulators for autonomous driving, some re-

searchers start to pay attention to early data fusion (RDF, DFF)

for collective perception in order to further improve the accur-

acy and reliability of perception system. Cooper ( ,
) fuses raw point cloud data based on the KITTI (

, ) and the T&J data set. KITTI is a popular data set
for different tasks of autonomous driving, but all data are col-
lected by sensors mounted on a single vehicle. T&J is a data
set the authors collected at a parking plot with two Lidars (Ve-
lodyne VLP-16 Puck). Cooper realized collective perception
by fusing consecutive frames of point clouds and detecting the
static vehicles on the side of the road. Using these data sets,
they further investigated the benefit of collective perception in
F-Cooper ( , ) by fusing voxel features that
contain the information aggregated from all points in a voxel
and by fusing spatial features learned by a Deep Neural Net-
work (DNN). Both Cooper and F-Cooper showed that cooper-
ative perception with early fusion can significantly improve the
detection performance compared with single-agent perception.
However, they did not compare early data fusion with late fu-
sion (FDF). Instead, ( , ) compared fusion
performance in all three data processing stages by using the
Volony data set which is a synthetic data set the authors pro-
duced by CARLA simulator ( , ). In their
work, it is proved that early data fusion outperforms late fu-
sion by a large margin, especially when GPS noise exists. Be-
sides, they also showed that DFF is more robust to GPS noise
than RDFE. V2Vnet ( , ) also conducted experi-
ments to compare the performance of joint perception and pre-
diction with these three fusion strategies similar to (

s ) based on the simulated data from LidarSim (
s ). Results in this work also show that collect-
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ive perception can significantly improve object detection per-
formance, and they drew the same conclusion as (

, ) when comparing the performance between the three
types of fusion strategies.

As discussed above, the data sets used for COMAP scenarios
are either real data (KITTI, T&J) or simulated data (Volony,
LidarSim). Same as KITTI, all currently available open-source
data sets for autonomous driving collected from real scenes are
based on a single-agent perception system. Under the concept
of COMAP, these data sets can only be used to investigate static
objects on the roadside or on a parking plot similar to T&]J,
which is different from the real driving scenarios of COMAP.
On the other hand, it is extremely expensive to collect real data
for COMAP with a fleet of autonomous vehicles, hence the
compromise of generating such data with simulations. Lid-
arSim ( R ) extracts and fuses the 3D
dynamic objects and the 3D static maps from real point cloud
data of several cities and then randomly place these dynamic
objects back to a selected scene so that they can perform ray
casting over this new 3D scene to generate new point clouds.
To make the generated point clouds more realistic, they fur-
ther produced deviations for points using a DNN. However, this
simulation method can not provide image data which is critical
for some vision problems that the point-clouds-only system can
not solve sufficiently, such as detecting road debris, identify-
ing smoke reflections of laser beams. Moreover, data generated
by virtual simulators, such as CARLA, can also be transferred
to a realistic domain through DNNs. Volony is a data gener-
ator based on CARLA under the concept of COMAP. They use
the “autopilot” mode of CARLA to make the vehicles drive in
the city in random behavior. However, we found that it is hard
to scale up the simulation by introducing more CAVs (Con-
nected Autonomous Vehicles) and sensors to bigger towns in
CARLA with only limited computational resources so that the
traffic density can reach a specific level similar to busy cities.
Furthermore, the "autopilot” mode makes the vehicles perfectly
aligned to the lanes and waypoints (3D-directed points in driv-
able road areas) of CARLA, which is very unrealistic. There-
fore, we perform CARLA-SUMO co-simulation in order to in-
troduce the more realistic routing mechanics of SUMO (Simu-
lation of Urban MObility ( , )) to CARLA and
navigate the vehicles so that they can drive in a certain small
area of a town to increase traffic density with a limited number
of CAVs.

Based on the simulation data, two object detection experiments

are performed to show the significant benefit of COMAP be-

cause object detection is an indispensable task of the perception

system of autonomous vehicles. According to the network ar-

chitecture, object detectors can be classified into single-stage

detectors ( s s ; s
) and two-stage detectors ( ,

, ). Single-stage detectors run faster
because of fewer layers in their network architecture when two-
stage detectors generate more accurate bounding box predic-
tions benefiting from their box-refining process in the second
stage. The low accuracy of bounding box regression is found to
be related to the misalignment of object localization and clas-
sification confidence, so CIA-SSD ( R ) intro-
duced one more IoU (Intersection over Union) regression head
to the detector and use the predicted IoU scores to rectify the
classification confidence. Since CIA-SSD performs similar to
the state-of-the-art two-stage detectors but much faster, we ad-
opt this network for our first experiments of 3D object detection

on point clouds. Besides, we conduct the second experiment
with Bird’s Eye View (BEV) representation of point clouds as
the input of the network. Detectors based on this format of the
input are also prevalent for autonomous driving because they
can avoid 3D convolutions, which makes them more computa-
tionally efficient. PIXOR ( s ) is a single-stage
detector that takes BEV representations as input but different
from the detectors mentioned above because of its proposal-free
feature. This feature again spares the time for generating the
anchor box hypothesis and assigning the anchors to the ground
truth boxes to calculate the regression targets. Therefore, we
use this model for the second experiment.

The contributions of this paper are as follows:

e First, we developed a data generator for COMAP, which
can generate both images and point cloud data with ground
truth for both object detection and semantic segmentation

e Second, this data generator is very efficient and can be eas-
ily scaled up for dense traffic scenarios without dramatic-
ally increasing the computational resources.

e At last, we conducted object detection experiments on the
generated data set to show the benefit of COMAP over
single-agent perception in the perspective of detection ac-
curacy, bounding box localization accuracy and the robust-
ness against sensor noise.

2. METHOD
2.1 Simulation

For the co-simulation, the main task of CARLA is to generate
sensor data. We choose CARLA map “"Town05” (figure 1), a
urban map with many cross junctions and ”T” junctions, as the
simulation world because vehicles are more probable to be oc-
cluded by the buildings in this scenario and COMAP aims to
solve this problem. Each CAV in CARLA is mounted with a
RGB camera, a semantic segmentation camera, and a semantic
LiDAR sensor. It is well known that the data generated by these
simulated sensors have a big domain shift comparing to the data
generated by real sensors. However, in this paper, we concen-
trate on researching the effectiveness of COMAP on improving
the perception performance in comparison with single-vehicle
perception, for which the experiments can be conducted only
under the synthetic domain. Therefore the generated data are
not transformed to real domain with any transfer learning tech-
nologies. Instead, we generate noisy data by building the sensor
uncertainty model.

Figure 1. Map town 05 of Carla with junction IDs
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For cameras, we use the default sensor parameters, such as
horizontal field of view and lens parameters, from CARLA.
For LiDAR, additional to the original points generated by ray-
casting in the physical world, we build the sensor model with
normal distributions for horizontal (A ~ (0, E%)) and vertical
N ~ (0, E%,)) angular uncertainties as well as the reflection
distance (V' ~ (0, E%)) uncertainties. The standard deviation
Ey and Ev for both angular uncertainties are defined as con-
stant. However, according to the physical property of LiDAR,
the standard deviation of LiDAR sensor noise is a distance-
dependent variate defined by the equation (1), where Ep min
and Ep maz are the minimum and maximum standard deviation
along the range dimension, respectively. The distance of a point
to the origin of the LiDAR is represented as d and the maximum
observation distance of the LiDAR is defined as dmqz. In ad-
dition, we calculate the intensity of the reflected laser beam of
each point with equation (2) where + is the atmosphere attenu-
ation rate. Based on this intensity we drop points if the sampled
probabilities from a uniform distribution & ~ (0, 1) is smaller
than the intensity I of corresponding points.

d

max

ED = ED,min + . (ED,max - ED,min) (1)

I=e¢" 2

Figure 2. An example for COMAP scenario (red: ego-vehicle,
magenta: data-sharing-vehicle, green: in-range-vehicles but not
chosen for sharing data, yellow: not-in-range-vehicles)

SUMO is responsible for the traffic flow generation and the nav-
igation of vehicles based on the same map transformed from
CARLA "Town05” to SUMO xml format. In order to create
enough meet up scenarios and traffic density for COMAP with
limited number of vehicles and sensors, we run each simulation
based only on one junction. An example of such simulation is
given in figure 2. The vehicles randomly choose an entry road
and an exit road that is connected to this junction and depart
from the junction-opposite end of the entry road. Once they
finish driving over the exit road, they will choose a entry and
exit road of this junction again and find the optimal route back
to the new entry road. This loop continues until the simulation
reaches the pre-defined number of simulation frames or there is
no CAV in the range of ego-CAV anymore. As shown in fig-
ure 2, although many vehicles (green and magenta) are in the
communication range (e.g. 30m) of ego-vehicle (red), Furthest
Point Sampling (FPS) algorithm is used to select a maximum
number (e.g. 4) of cooperative vehicles in order to avoid too

. N @‘) '\ X

=
)

Figure 3. An example frame of the data collected by a single
vehicle. Top left: RGB image; Top right: semantic segmentation
label; Middle: point cloud colored by the point-wise label; Bot-
tom: Fused point cloud data from 5 vehicles and the ground truth
bounding boxes of all vehicles in the scene (height information is
encoded into the point color, lines of bounding boxes are in black,
the direction of bounding boxes are illustrated with a red bar on
the upper front line of each box)

much redundant data. These selected vehicles are colored in
magenta.

To obtain enough data for training neural networks, simulations
are run based on 21 junctions labeled with IDs as shown in fig-
ure 1. This junction-based simulation can also be applied to any
other big cities straightforwardly. An example frame of gener-
ated data is shown in figure 3. Ground truth annotations for
both semantic segmentation and object detection are provided.

In the next section, we perform experiments on object detec-
tion with the generated COMAP data set, since object detec-
tion is one of the most important perception task of autonom-
ous vehicles. For the experiments, we generate a data set with
vehicle communication range of 60m with at most 10 selected
cooperative vehicles that are in the range of the ego vehicle. For
all simulation scenarios, 20 vehicles are randomly chosen from
21 prototypes to be spawned in the world. We use one 32-beam-
LiDAR at a rotation rate of 10HZ for each vehicle because it is
already sufficient enough to perform object detection through
COMAP. In total, we generated 4391 frames of data. More
detailed information about the simulation parameters such as
sensor parameters can be found in the configuration file of our
github repository'.

! https://github.com/YuanYunshuang/cosense-simulation.
git
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2.2 Object Detection

To investigate the efficiency of COMAP based on our simulated
data set, we conduct experiments to detect vehicles based on
point clouds. We tested two single-stage detectors for both 3D
vehicle detection with CIA-SSD ( R ) and BEV
vehicle detection with PIXOR ( R ).

CIA-SSD

CIA-SSD is the state-of-the-art 3D object detector that out-
performs other single-stage detectors (

, ) both in mean Average Precision (mAP) and in-
ference time for car detection on KITTI benchmark. It takes
voxels as input and uses 3D sparse convolution ( , )
to encode the input voxels into latent feature spaces. These
spatial features are then be compressed from four dimensions
(C' x L x W x H) to three dimensions (C' - H x L x W), where
C' is the number of features and L, W and H are the sizes of
features in three spatial dimensions. Then 2D convolutions op-
erate on these three-dimensional feature maps. Two successive
convolution blocks are used to extract different abstract levels
of semantic features. These two levels of features are then ag-
gregated by weighted addition. The weights are learned by an
attention fusion module constructed by convolution layers and a
softmax layer. At last, several convolutional layers are attached
to the head of the network to do classification and regression
tasks.

We use the same network structure and loss functions as CIA-
SSD, but instead of the Distance-Variant loU-Weighted Non-
Maximum-Suppression (DI-NMS) they proposed, we use the
standard NMS for selecting final detected bounding boxes. Be-
cause DI-NMS is designed to reduce false-negative predic-
tions and strong oscillations of regressed bounding boxes of
distant objects in KITTI data set where the points are very
sparse. However, the point sparsity in the fused point clouds
of COMAP data set does not change regularly against the dis-
tance. DI-NMS would remove too many true-positive predic-
tions and deteriorate the detection performance. Since we only
need to detect vehicles, the classification is binary. In addition
to bounding box regression, we follow CIA-SSD and also re-
gress the IoUs and classify the BBox directions. The regres-
sion angles of bounding boxes are limited to [0, 7] which is
direction-agnostic. The positive and negative angles are dif-
ferentiated by the bounding box direction classifier.

PIXOR

With the consideration of expensive computation of high di-
mensionality of point clouds, PIXOR only uses 2D convo-
Iutions. Instead of projecting aggregated point features (e.g.
height, intensity, occlusion) along the Z-axis to XY-plane, it
divides 3D physical spaces into small 3D cells and regard
height dimension as the input image channels for the 2D fully-
convolutional network, which uses a backbone network of four
residual convolution blocks to encode the input as well as
down-sample it 16 times and then uses FPN-like ( ,

) structure to up-sample the feature maps 4 times by com-
bining the low-resolution features and high-resolution features
from the backbone network. The header of PIXOR contains
four convolution layers followed by two separated branches
of convolution layer, one for classification, one for bound-
ing box regression. Different from CIA-SSD, which makes
prior assumptions about the bounding boxes at each pixel of

the (e.g. 4times) down-sampled feature maps and then clas-
sify the object category of these boxes and regress the encoded
residuals between these proposed boxes and the ground truth
boxes, PIXOR explicitly classifies these feature pixels similar
to semantic segmentation, and regress the normalized box en-
codings [cos0, sinf,log(dz), log(dy),log(l),log(w)] for each
pixel, where 6, dx, dy, [, w are the bounding box orientation,
the position offset to the pixel center, and the length and
width of the box. However, in our experiment, we use
[cosB, sinb, dz, dy,log(l),log(w)] to encode box regression
target in order to let the sign also play a role in the offset direc-
tion.

2.3 Experiments

Because the map is symmetric against the roads from junction
924” to junction 224" as shown in figure 1, we select the data
generated in 12 junctions at the lower part of the map as train-
ing set and 9 junctions in the upper part as the test set. In total,
we got 4655 training samples and 4013 test samples. In all
experiments, we only detect the objects in ranges [-40, 70.4],
[-40, 40], and [-3, 1] meters along the longitudinal:x, lateral:y
and vertical:z direction of the ego-vehicle, respectively. All in-
put points from the cooperative vehicles are transformed to the
LiDAR coordinate system of the ego-vehicle. For both types of
selected networks, we only train a single model for each net-
work that can be used for all scenarios including the single-
agent perception which only takes the point cloud of the ego-
vehicle as input of the network, and the COMAP perception,
which takes in the fused point clouds of multiple vehicles.

For CIA-SSD, we use voxel size of [0.1,0.1,0.1], and only z,
y, z coordinates are used as voxel features. In each pixel of
4 times down-sampled feature maps, we define 2 boxes of the
same size (mean size of all boxes in training data set) and two
perpendicular rotation angles (0°, 90°) as the prior bounding
boxes, also called anchors. The regression targets of bounding
boxes are generated by assigning the anchors to ground-truth
bounding boxes with an IoU threshold of 0.6 as matched (pos-
itive samples), 0.45 as unmatched (negative samples), and oth-
ers as ignored anchors, which do not contribute to the training
process. We follow the original work of CIA-SSD to use two
heads of convolutional layers to do the binary classification for
vehicle class and the direction of the vehicle, and two convo-
lutional heads to regress the encoded residuals of the bounding
box and the IoUs between the predicted bounding boxes and
the ground truth bounding boxes. Smooth LI Loss is used for
regression of bounding boxes and IoUs and cross entropy for
classifying bounding box directions. Classification head uses
focal loss and the same hyperparameters as recommend in (

, ). The losses for all these heads are normalized
by the number of positive samples, but the weights for posit-
ive samples are enhanced 50 times to prevent the network from
classifying all anchors as negative. The weights for balancing
different losses are set to 1.0, 2.0, 1.0, and 0.2 for objective-
ness classification, bounding box regression, IoU regression,
and direction classification, respectively. During inference, we
use a score threshold of 0.3 to select valid bounding box pre-
dictions for NMS module. The IoU threshold for NMS is set
to a very small value (0.01) because two vehicles can not oc-
cupy the same spatial area. We give a small threshold to allow a
small overlap because of the inaccuracy of the predicted bound-
ing boxes.

For PIXOR, we use cross entropy for classification loss and nor-
malize it by the number of all samples. The loss of positive
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samples is re-weighted by factor 20 to ensure that the network
still learns from positive samples when the negative samples
dominate. Smooth L1 Loss is used for bounding box regression
and normalized by the number of positive samples. Only posit-
ive samples contribute to the regression losses. A re-weighting
strategy is not used between classification and regression losses
for this network. During the test phase, we threshold the classi-
fication scores by 0.8, and decode bounding boxes from regres-
sion values that correspond to the top-score pixels of the clas-
sification map. These decoded bounding boxes are then passed
to NMS with the IoU threshold of 0.01.

We use the same data pre-processing and augmentation set-
tings for training both networks on the original data set without
adding sensor noise. In addition, we trained one more CIA-
SSD model on the noisy data set by introducing sensor noise
parameterized with Ey = Ev = 0.05°, Ep min = 0.02m,
Ep min = 0.06m and d.maz = 80m in order to investigate the
effect of sensor noise on the detection performance. The dif-
ference between the no-noise point cloud and the noisy point
cloud is shown in figure 8 in Appendix A.

In each frame, there might be a different number of cooper-
ative point clouds. Therefore, we sample a varying number
of cooperative point clouds with FPS and fuse them with the
ego point cloud. The fused point clouds are then augmented by
random flipping against the y-axis followed by rotation around
the z-axis with a rotation angle uniformly sampled from the
range [—10,10] degrees and scaling uniformly sampled from
the range [0.95,1.05]. During training, we remove all ground
truth bounding boxes which do not have enough point obser-
vations to prevent the network from learning “ghost” objects
and generating too many false positive detections during test-
ing. We train both networks with ADAM ( s

) optimizer parameterized with betas=[0.95, 0.999] on a
single Nvidia 1080Ti GPU with constant learning rate of 10~
The batch sizes of CIA-SSD and PIXOR are set to eight and
two, respectively. For all experiments, we train the networks
with 50 epochs.

To investigate the influence of the number of cooperative
vehicles on the fusion performance, we test the detection ac-
curacy of different cooperative configurations on vehicle num-
ber, which differs from 0 (no cooperative vehicles available) to
4. We evaluate the mean Average Precision (AP) following the
definition of Area Under Precision-Recall Curve (PR-AUC) by
counting predictions at different IoU thresholds varying from
0.3 to 0.7 with an interval of 0.1. For one test of n cooper-
ative vehicles, we calculate mAPs only on the frames that the
ego vehicle has at least n cooperative vehicles. Besides, we
performed one more test with the same models but the differ-
ent method for selecting cooperative vehicles in order to study
how the communication range influences the detection result.
Instead of randomly choosing n vehicles from all cooperative
vehicles, we choose n from the vehicles that are in a specific
communication range of the ego vehicles. This range differs
from 30m to 60m with an interval of 10m.

3. RESULTS AND EVALUATION

We first compare the overall vehicle detection performance
of CIA-SSD and PIXOR. The mAP results are listed in table
1. The IoUs between predicted and ground truth bounding
boxes are calculated directly over 3D boxes for CIA-SSD
while they are calculated over BEV boxes for PIXOR. It is

obvious in table 1 that CIA-SSD performs better than PIXOR
in all test configurations of different IoU thresholds (2nd row)
and the number of cooperative vehicles (1st column). This is,
because CIA-SSD uses anchor-based target encoding which
explicitly tells the network how to learn local features of a
bounding box. Moreover, CIA-SSD is more robust against
the object height shift along the Z-axis profiting from the
weight-sharing mechanism of 3D convolution over all three
physical dimensions. However, PIXOR still has its advantage
over CIA-SSD because of its 2D representation of point clouds.
This is critical for some cases for which the input dimension
should be further increased by considering the sequential or
temporal information, such as FaF ( s ) which
achieves joint detection, tracking, and motion forecasting by
taking successive frames of point clouds as input. Besides,
we observed that some detected bounding boxes of CIA-SSD
are flipped comparing to ground truth as marked with blue
dashed eclipses in figure 5. This is caused by the unstable
rotation angle encoding when angles are close to —m and
m. CIA-SSD classifies the rotation angles into positive and
negative categories, a predicted negative angle close to —m will
be regarded as wrong if the ground truth angle is a positive
angle close to 7 even they are nearly in the same direction. To
this end, we conducted additional experiments by encoding
angles with sine and cosine like PIXOR. This efficiently
removed the the bounding box flipping problem but the mAP
performance degraded as shown in figure 4. Therefore, we
kept the original encoding of CIA-SSD with considering that
orientations can be easily corrected in the vehicle tracking
stage where the temporal sequence information is considered,
such as FaF ( , ).

Network CIA-SSD PIXOR
ToU 0.3 0.5 0.7 0.3 0.5 0.7
0 78.8 | 76.0 | 62.6 | 70.1 | 66.7 | 57.3
92.0 | 90.2 | 80.6 | 85.5 | 84.0 | 76.6
4 96.5 | 958 | 88.7 | 90.4 | 89.4 | 84.7

Table 1. Vehicles detection mAP of communication range 60m
(in %). The second row defines the IoU threshold for calculating
mAP. Number 0, 2, 4 in the first column indicates the number of
cooperative vehicles.

—&— direct
sin_cos

mMAP@IoU0.7

0 1 2 3 3

Number of cooperative vehicles
Figure 4. Performance of CIA-SSD with different bounding box
target encodings at communcation range 60m. The legend “dir-
ect” indicates the original encoding by the residual of ground
truth angle minus the pre-defined anchor angle, where “sin_cos”
means the decoupled angle encoding like PIXOR.
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Figure 5. The vehicle detection performance of CIA-SSD. Top: detection result with/without cooperative vehicles, green indicates
ground truth, red indicates predictions, the thick bar of each box tells the box orientation; Bottom: three plots show mAPs calculated
with three IoU thresholds, each one shows the results with a different number of cooperative vehicles (horizontal axes, vary from O to
4) and communication ranges (plotted in different colors, vary from 30m to 60m)

For both CIA-SSD and PIXOR, mAPs have the same changing
tendency when adjusting the IoU threshold and the number of
cooperative vehicles as shown in table 1. Therefore, we only
take the results of CIA-SSD as an example for further analysis
as shown in figure 5. The top figures give a visual overview of
the vehicle prediction results of different cooperative modes. In
the top left image, three vehicles are occluded by the building
on the right hand of the ego vehicle. Some vehicles are detec-
ted but with a very low IoU with the ground truth bounding box,
in other words, low localization accuracy. With one cooperat-
ive vehicle, these low accurate boxes in the top left image are
refined and one more vehicle is detected as shown in the top
middle image. When the number of cooperative vehicles fur-
ther increases to four, all vehicles are detected with a high box
localization accuracy as shown in the top right image.

In the bottom row of figure 5, the horizontal axes give the num-
ber of cooperative vehicles, and 0 means that only the point
cloud of the ego vehicle is used for object prediction. Each
line in the figure gives the mAPs of a specific communica-
tion range and each plot shows the mAP result calculated at
a different IoU threshold. In all communication ranges and at
all IoU thresholds, the mAPs all increased dramatically as the
number of cooperative vehicles increases. In comparison with
the variant of cooperative vehicles, the communication range
has a rather smaller influence on the performance. It only in-
creased the accuracy by about 2% by increasing the communic-
ation range from 30 meters to 60 meters and the mAP gain stops
at 50 meters. Therefore, we think it is beneficial to set the com-
munication range at a lower level because it can not only save
transmission power of the communication network but also in-
crease the re-usage of radio frequency channels.

By comparing the bottom three sub-figures in figure 5, we con-
clude that all mAPs drop dramatically as IoU threshold in-
creases. However, they drop less when there are more co-

operative vehicles available. For example, without cooperative
vehicles, the detection accuracy of the ego vehicle has dropped
about 16% (from 0.79 to 0.63) where it only dropped about 7%
when there are four cooperative vehicles (from 0.96 to 0.89)
available. This effect can be better identified in figure 6 by
evaluating the IoU scores. As expected, the changing tendency
of IoU scores normalized over the number of all ground truth
bounding boxes (figure 6: Top right) is identical to mAP met-
ric. In order to investigate the localization accuracy of predicted
bounding boxes, we also normalized the IoUs by the number of
these predicted bounding boxes to get the average IoU of the
true positive predictions. This is shown in the top left plot of fig-
ure 6. The average IoU has been dramatically improved as the
number of cooperative vehicles increases. However, the com-
munication range can barely influence the IoUs of predicted
bounding boxes especially when there are enough cooperative
vehicles (more than 2). This is because the growth of visible co-
operative vehicles can not only increase the point observations
of a specific object but also provide better special distribution
of observation origins to ensure this object to be observed from
different view directions. In contrast, increasing the communic-
ation range can only slightly refine the overall point distribution
regarding the point density.

To further visualize the remarkable improvement of COMAP
on the bounding box localization accuracy, which is also im-
portant for object tracking and motion prediction, we coun-
ted the true positive predictions that lie in different intervals of
IoUs. The counted number in each interval is then normalized
by the total number of the true positive predictions to obtain
ratios as shown in the bottom plot of figure 6. Each color in
the plot indicates a specific number of cooperative vehicles. As
this number increases from O (blue) to 4 (purple), the ratio of
the low-IoU (0.3 ~ 0.8) predictions all decreased and these
decreased ones are replaced by the high-IoU (0.8 ~ 1.0) pre-
dictions hence the increased ratio of boxes in this interval. This
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Figure 6. Influence of the number of cooperative vehicles and
communication ranges on the localization accuracy (IoU) of pre-
dicted bounding boxes. Top: average IoU of all positive predicted
bounding boxes with ground truth, they are normalized over the
number of all true positives (left) as well as all ground truths
(right); Bottom: ratios of true positive predictions in different
IoU intervals for communication range 50m

means that the IoU of a detected object is less probable to be
under 0.8 when increasing observing vehicles.

0.4 -&- 30
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Figure 7. Influence of sensor noise on detection performance.
Performance drop (mAP@IoUOQ.7 difference in %) of different
communication ranges are plotted with the dashed line in differ-
ent colors. The black solid line is the mean mAP drop of all
results. Vertical bars indicate the standard deviation.

At last, we compare the detection performance on the data with
and without noise. The result is shown in figure 7. Each point
in the figure indicates the performance change by introducing
sensor noise to the data. Negative values mean that the mAP
at the IoU threshold of 0.7 has dropped, where positive values
mean that the performance is improved by introducing noise.
When there are no or zero cooperative vehicles, the mAP has
dropped 1% (62.6% to 61.6%) because of noise. As the num-

ber of cooperative vehicles increases, the negative influence of
noise on the performance of vehicle detection gradually dis-
appeared. Starting from three vehicles, the average mAP for
all communication ranges even increased with the existence of
sensor noise. For example, with communication range 30m
and 4 cooperative vehicles, the mAP increased from 86.3% to
86.5%. This has proved that COMAP can not only increase the
detection accuracy but also suppress the sensor noise because
the measurement accuracy can be increased by redundant ob-
servations.

4. CONCLUSION

In this paper, we proposed COMAP for connected autonom-
ous vehicles and generated point cloud data as well as image
data under the context of this concept through an efficient co-
simulation with CARLA and SUMO. We then conducted ex-
periments of object detection that have shown a significant per-
formance gain of COMAP in comparison with single-agent per-
ception. We also tested the detection performance with a dif-
ferent number of cooperative vehicles and different commu-
nication ranges. The results revealed that increasing the num-
ber of cooperative vehicles can dramatically improve the de-
tection mAP as well as the box localization accuracy while
enlarging the communication range can sightly improve mAP
but not the localization accuracy of the predicted bounding
boxes. Moreover, the comparison study of sensor uncertainty
has shown that COMAP can suppress the negative influence of
sensor noise on the detection performance.

All results show that COMAP can significantly increase the per-
formance of the perception system of the autonomous vehicle.
However, there are still lots of challenges that need to be over-
come. In this paper, we did not consider the localization error
of the vehicles which can deteriorate the fusion performance if
this error is not appropriately handled. However, we see the
potential of improving SLAM (Simultaneous Localization And
Mapping) of autonomous vehicles by COMAP. Besides, safety
is a critical issue for autonomous driving. With the simulated
data set which has the innate feature of 100% certainty, this
issue can be also better studied, for example, under the con-
text of uncertainty estimation ( s ). Moreover,
sharing visual data can also be a heavy load for communica-
tion networks. With ensuring the perception performance, bet-
ter strategies are also needed for selecting as little sharing data
as possible. This can be achieved by only sharing the necessary
data or the data from higher processing stages.
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A: Original point cloud without noise and point cloud with

noise
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Figure 8. An example frame of point cloud data before and after
adding sensor noise (only points in the front half-circle of the

vehicl

e is visualized)
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